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Asymptotes of Plane Curves – Revisited

Asymptotes of Plane Curves – Revisited

ABSTRACT

In this paper we present a review of the basic ideas and
results concerning asymptotic lines of plane curves. We
discuss their different definitions, namely that of a limit-
ing position of tangent lines, of the tangent line at infinity,
and finally the one that requires that the distance between
points of a curve and asymptotic line tends to 0 as the
point moves along an infinite branch of the curve. We
also recall the method of determining asymptotes of alge-
braic curves from the leading coefficients in their equation
and provide examples.
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Asimptote ravninske krivulje - ponovni pogled

SAŽETAK

U ovom radu dajemo pregled osnovnih ideja i rezultata
vezanih uz asimptote ravninskih krivulja. Raspravljamo o
njihovim različitim definicijama, naime, o definiciji kao o
graničnom položaju tangenata, o definiciji kao o tangenti
u beskonačnosti, te konačno o definiciji koja zahtijeva da
udaljenost izmed-u točke krivulje i asimptote teži 0 kako
se točka kreće duž beskonačne grane krivulje. Takod-er
se prisjećamo metode odred-ivanja asimptota algebarskih
krivulja iz vodećih koeficijenata u njihovoj jednadžbi te
navodimo primjere.

Ključne riječi: ravninska krivulja, asimptota, granična
tangenta, tangenta u beskonačnosti

1 Introduction

Many plane curves have asymptotes. They are an in-
evitable part of the curve sketching. In this paper, the term
asymptote will primarily refer to the asymptotic straight
line, where, of course, there exist other asymptotic curves
such as asymptotic parabolas or cubic curves, or asymp-
totic points.

In the first encounter with the notion an asymptote is very
often described as a straight line that approaches a curve
but never touches it which is a suitable description for the
prototype school examples of curves, such as a hyperbola
as the graph of a rational function f (x) = 1/x, the graph
of an exponential and logarithmic function, or a hyperbola
as a curve in analytic geometry. However, rigorous math-
ematical definition which developed through history in-
cludes the possibility that the curve intersects its asymptote
or that it oscillates around the asymptote. In this historical
development, we can mention Apollonius of Perga (262

BC-190 BC) who introduced the aforementioned descrip-
tion of an asymptote of a curve as “lines [a curve and its
asymptote] which do not meet, in whatever direction they
are produced” [21]. Much later, in his work on perspective,
Desargues (1591-1661) took a different approach, namely
that of projective geometry, and introduced asymptotes as
tangent lines at infinity, whereas Newton (1643-1727) used
asymptotes as the main tool in classification of cubics on
the account of their points at infinity [1]. In historical cal-
culus sources from the transition between 19th and the 20th

century, an asymptote of a curve was given as the limiting
position of a tangent line to the curve when the point of
tangency moves away from the origin, or a line, the dis-
tance of which from a point in a curve diminishes as the
point moves away from the origin [3, 4, 5, 6, 18, 22].

In school and early university mathematics asymptotes are
considered for graphs of real (smooth) functions. There is
no unique or “the best” choice of definition, which may be
confirmed by the following quotations:
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“My own preference is for the limiting tangent definition,
partly because I feel that asymptotes have something to do
with tangents, and partly because it is easier to use than the
rival definitions” ([8], p. 281);
and
“The limit of tangents may not exist, even when asymp-
totes exist [in the sense of definition by distance]. This fact
shows that the limit of tangents is not a suitable definition
of an asymptote” ([6], p. 91).
In our previous work we were interested in students’ recol-
lection of the notion of asymptote [13, 12, 11]. Motivated
by the richness of the notion, our aim here is to present a
mathematical review of the basic ideas and results concern-
ing asymptotes of plane curves that goes beyond school
requirements.

2 Definitions of an asymptote

Definition 1 [23] A line l is an asymptote to a curve if the
distance from a point P to the line l tends to zero as P tends
to infinity along some unbounded part of the curve.

Definition 2 [9] Asymptotes are the limits of tangent lines
when the point of contact tends to infinity.

Definition 3 [19] An asymptote of a plane curve is a tan-
gent to the projective curve determined by it at a point at
infinity, which tangent is not the line at infinity.

These definitions are not equivalent in general. In the fol-
lowing we first analyze what they imply.

Distance between points in Definition 1 is taken as the Eu-
clidean distance. But if this distance tends to zero, then
the vertical (for a horizontal or oblique asymptote) or the
horizontal distance (for a vertical asymptote), also tends to
zero [2, 6, 15]. The vertical or the horizontal distance is
the absolute value of difference of the corresponding coor-
dinates of a point on a curve and on an asymptotic line.
This consideration implies that, following Definition 1, a
line y = kx+ l is an asymptote of a function f : I → R of
class C1, where I ⊂ R is an open interval, if and only if
lim
x→∞

( f (x)− kx− l) = 0 [15]. Now it follows

k = lim
x→∞

f (x)
x

, l = lim
x→∞

( f (x)− kx). (1)

To use Definition 2, we start from a tangent line of a curve
which is the graph of a function f at a point (x0, f (x0)),
and given by

y = f ′(x0)x+ f (x0)− f ′(x0)x0.

The graph of a function f has a limiting tangent line if and
only if the direction of the tangent line and its intercept

with y axis have limiting value, that is, the limits

lim
x0→∞

f ′(x0), lim
x0→∞

( f (x0)− f ′(x0)x0)

exist [4, 8]. If lim
x0→∞

f ′(x0) =∞ the function might still have

vertical asymptote.
We reason similarly for parametrized curves or curves
given by implicit equations; to find a tangent line of a
curve c(t) = (u(t),v(t)) or a curve given by F(x,y) = 0
requires looking at the limiting value of the gradient v′/u′

or − ∂F
∂x /

∂F
∂y , and if the limit exists, then looking at the lim-

iting value of the intercept of the tangent line on the axis
[4, 8].
Definition 3 is set up in projective plane which is also a nat-
ural way of thinking about asymptotes. We extend R2 and
assume the following correspondence between R2 and P2,
which maps a point at infinity of the curve in the direction
of x→ ∞ to the origin of the real plane

(x,y) 7→ [x,y,z] 7→ [z,y,x] =
[ z

x
,

y
x
,1
]
7→
( z

x
,

y
x

)
. (2)

First arrow represents the mapping P : R2→ P2, P(x,y) =
[x,y,z], where points in P2 are equivalence classes given
with [x,y,z] = {(αx,αy,αz),α ∈ R, α 6= 0}. Second is
projective transformation T : P2→ P2, T [x,y,z] = [z,x,y],
such that T 2 = id. Last is the mapping R : P2 → R2,
R[z,y,x] = (z,y). An asymptote, as the tangent at infin-
ity, corresponds to the tangent line at the origin following
the mapping in (2) [8, 10, 20].

Example 1. The curve c given by the equation F(x,y) =
y3− x3 + 1 = 0 has the line y = x as an asymptote in the
sense of all definitions.

Def.1. Let P(xP,yP) be a point on the curve c, and d =
|xP−yP|√

2
is the distance between the point P on the

curve c and the line y = x. Since

d =

(
xP− 3

√
x3

P−1
)

√
2

→ 0, for xP→ ∞

the line y = x is an asymptote.

Def.2. The equation of the tangent line to the curve c at
point P is(

∂F
∂x

)
P
(x− xP)+

(
∂F
∂y

)
P
(y− yP) = 0.

The direction of the tangent line in a point (xP,yP)

is given by kP =− ( ∂F
∂x )P(
∂F
∂y

)
P

=
3x2

P
3y2

P
, and the intercept of
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the tangent line with y axis by lP = yP+
( ∂F

∂x )P(
∂F
∂y

)
P

·xP =

−3
3· 3
√

x3
P−1

, both having the limiting values for xP→∞

as kP→ 1 and lP→ 0 respectively. The line y = x is
a limiting tangent line.

Def.3. The homogeneous equation of the curve c in the pro-
jective plane P2 is given with f (x,y,z) = y3− x3 +
z3 = 0. The equation of the tangent line to the pro-
jective curve at point with homogeneous coordinates
P[xP,yP,zP] is(

∂ f
∂x

)
P

x+
(

∂ f
∂y

)
P

y+
(

∂ f
∂z

)
P

z = 0,

that is, (−3x2
P)x+ (3y2

P)y+ (3z2
P)z = 0. The point

at infinity of the curve f (x,y,z) = 0 has homoge-
neous coordinates [1,1,0] and the equation of the
tangent line to the curve at the point at infinity is
−3x+3y = 0, that is, the line y = x in the real plane.
This line is a tangent at infinity.

Figure 1: Example 1

Example 2. The graph of the function f (x) = sinx
x has the

line y = 0 as an asymptote in the sense of Definitions 1 and
3, but not in the sense of Definition 2.

Def.1. Since k = lim
x→∞

f (x)
x = 0 and l = lim

x→∞
( f (x)− kx) =

lim
x→∞

sinx
x = 0, the line y = 0 is the asymptote.

Def.2. The direction of the tangent line f ′(x0) =
cosx0

x0
−

sinx0
x2

0
→ 0 has a limiting value, but the intercept of

the tangent line with the y axis, f (x0)− f ′(x0)x0 =
−cosx0 has no limiting value as x0→ ∞. The func-
tion has no limiting tangent line.

Def.3. Following the correspondence (2) we obtain

(x, f (x)) 7→ [x, f (x),1] 7→ [1, f (x),x] =
[

1
x
,

f (x)
x

,1
]

7→
(

t, t · f
(

1
t

))
, t =

1
x
.

The tangent of the function F(t) = t · f
( 1

t

)
, for t = 0

and F(0) = lim
x→∞

f (x)
x = 0, is the limit of the secants

through point (0,0) and (F(t), t), as t → 0. Since
lim
t→0

F(t)
t = lim

t→0
f
( 1

t

)
= lim

x→∞
f (x) = 0, the limit of the

secants is y = 0 which corresponds back to the line
y = 0 as tangent at infinity.

Figure 2: Example 2

To analyze relations between Definitions 1, 2 and 3, we
introduce c = (u(t),v(t)) as a (parametrized) curve in R2,
with continuous first derivatives and infinite branch in the
direction t→ t0, and without loss of generality u(t)→ ∞.

Theorem 1 (1) If a line l is an asymptote of the curve c
in the sense of Definition 2, then l is an asymptote of
the curve c in the sense of Definition 1.

(2) If a line l is an asymptote of the curve c in the sense
of Definition 2, then l is an asymptote of the curve c
in the sense of Definition 3.

(3) A line l is an asymptote of the curve c in the sense
of Definition 3 if and only if l is an asymptote of the
curve c in the sense of Definition 1.

Definition 2.

Definition 3.Definition 1.

Figure 3: Relationship between the three definitions of an
asymptote

We provide the proof of the Theorem 1.

(1) Proof. Assume c has a limiting tangent line, that is,

y = lim
t→t0

v′(t)
u′(t)

· x+ lim
t→t0

(
v(t)− v′(t)

u′(t)
·u(t)

)
(3)

where k = lim
t→t0

v′(t)
u′(t) and l = lim

t→t0

(
v(t)− v′(t)

u′(t) ·u(t)
)

.

The distance between the limiting tangent line and
point on curve c is given by

d =
|k ·u(t)− v(t)+ l|√

k2 +1
.
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Since

lim
t→t0

(v(t)− k ·u(t)) = lim
t→t0

v(t)
u(t) − k

1
u(t)

= lim
t→t0

v′(t)·u(t)−v(t)·u′(t)
(u(t))2

− u′(t)
(u(t))2

= lim
t→t0

(
v(t)− v′(t)

u′(t)
·u(t)

)
= l,

then d→ 0 as t→ t0, and the limiting tangent given
in (3) is an asymptote in the sense of Definition 1.�

(2) Proof. Assume c has a limiting tangent line y =
kx+ l given in (3). By embedding R2 in P2 the ho-
mogenenous coordinates of a point on the curve c
are

(u(t),v(t)) 7→ [u(t),v(t),1] =
[

1,
v(t)
u(t)

,
1

u(t)

]
and the point at infinity of the curve c is[

1, lim
t→t0

v(t)
u(t)

, lim
t→t0

1
u(t)

]
= (1,k,0)

since by l’Hospital rule k = lim
t→t0

v′(t)
u′(t)

= lim
t→t0

v(t)
u(t)

.

Tangent at infinity corresponds to the limit of the se-
cants (or the chords [6, 8]) joining the point at infin-
ity of the curve with an arbitrary point on the projec-
tive curve, as it tends to the point at infinity. Follow-
ing (2)

(u(t),v(t)) 7→ [u(t),v(t),1] 7→

7→ [1,v(t),u(t)] =
[

1
u(t)

,
v(t)
u(t)

,1
]

and the chord joining points (0,k) and
(

1
u(t) ,

v(t)
u(t)

)
on

the corresponding curve is

y− k =
v(t)
u(t) − k

1
u(t) −0

(z−0)

y = (v(t)− k ·u(t)) · z+ k

which transforms back into y= k ·x+(v(t)−k ·u(t)).
The tangent at infinity is thus given by

y = k · x+ lim
t→t0

(v(t)− k ·u(t)) . (4)

Since lim
t→t0

(v(t)− k · u(t)) = l the tangent at infinity

given in (4) coincides with the limiting tangent given
in (3). �

(3) Proof. Let y = kx + l be a tangent at infinity of
a curve c given in (4). Then k = lim

t→t0

v(t)
u(t) , and

l = lim
t→t0

(v(t)− k ·u(t)). Distance between the tan-

gent at infinity and a curve c is given by

d =
|k ·u(t)− v(t)+ l|√

k2 +1
→ 0 as t→ t0.

Therefore, the tangent at infinity given in (4) is an
asymptote in the sense of Definition 1.

To show the converse, let y = kx+ l be an asymptote
of a curve c in the sense of Definition 1, that is,

d =
|k ·u(t)− v(t)+ l|√

k2 +1
→ 0 as t→ t0.

Then

lim
t→t0

(v(t)− k ·u(t)) = l and lim
t→t0

v(t)
u(t)

= k

which correspond to the coefficients of a tangent at
infinity given in (4). �

However, as stated in [8] for algebraic curves the following
theorem holds.

Theorem 2 Definitions 1, 2, 3 are equivalent in the case
of algebraic curves.

3 Methods of finding asymptotes of alge-
braic curves

Definitions we discussed provide different ways how to de-
termine asymptotes of plane curves. We summarize that
the most common way how to determine slant asymptotes
of a function graph is to look for them as y = kx+ l where
coefficients k, l are given by (1). Furthermore, in the spe-
cial case of a rational function f (x) = P(x)

Q(x) its (linear or
curvilinear) asymptote is the quotient of the polynomials
in the numerator and denominator. For example, a function
f (x) = x2+1

x−1 can be rewritten as f (x) = x+1+ 2
x−1 which

enables to recognize the equation of its slant asymptote as
y = x+1. Its vertical asymptote appears as the zero of the
denominator x = 1 (see Figure 4 on the right). This proce-
dure also gives asymptotes of algebraic curves when their
equation can be expressed in the suitable form by express-
ing, for instance, y by x.

Generally, finding asymptotes of a real algebraic plane
curve reduces to finding corresponding tangent lines at the
points at infinity of the projective curve (see Example 1 and
[10]) or at the origin for the corresponding curves obtained
by projective transformations (see Examples 2, 4 and 5,
and [17, 20]). In the purely algebraic context, finding
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asymptotes comes down to determining lines that reduce
the degree of the equation of algebraic curve. Regardless
of the chosen definition, an asymptote of the curve is line
that intersects the curve in at least two coincident points at
an infinite distance [2, 4, 5, 6, 7].
In the case of a hyperbola b2x2−a2y2 = a2b2, if we analyze
a number of common (real) points with a line y = kx+ l
(which can be 0, 1 or 2), we arrive at the quadratic equa-
tion (b2−a2k2)x2−2a2klx−a2l2−a2b2 = 0 with one so-
lution in x if and only if k2a2− b2 = l2. This is known
as the tangency condition. However, when the leading
coefficient vanishes, that is b2− a2k2 = 0 (implying that
k = ± b

a 6= 0), and when the next coefficient vanishes as
well, giving l = 0, we arrive at the known equation of an
asymptote of the hyperbola as y = ± b

a x. This method of
determining the asymptote can also be generalized. In [14]
conditions for a quadratic curve

a1x2 +a2xy+a3y2 +b1x+b2y+ c = 0 (5)

to have asymptotes are explored, which can be further in-
terpreted as conditions that ensure that a quadratic curve
is a hyperbola. By substituting y = kx+ l in (5) we arrive
at the quadratic equation in x, and by equating the coeffi-
cients of x2 and x to 0, while the constant coefficient is not
0, we obtain the asymptotes of a curve. Summarizing [14],
if

A1 a2
2− 4a1a3 > 0 and the equation (5) cannot be fac-

torised into linear factors, it represents a hyperbola
with asymptotes y = kx+ l, where k and l are so-
lutions of equations a1 + a2k+ a3k2 = 0 and a2l +
2a3kl +b1 +b2k = 0.

A2 a3 = 0,a2 6= 0 and the equation (5) cannot be fac-
torised into linear factors, it represents a hyper-
bola with a vertical asymptote x = − a1

a2
and a slant

asymptote y =− a1
a2

x+ a1b2−a2b1
a2

2
.

Example 3.

(i) Let the curve be given by−2x2+xy+y2−y−1 = 0
(see Figure 4 above)

• From A1 it follows that the curve is a hyper-
bola and the coefficients of its asymptotes sat-
isfy −2+ k + k2 = 0 and l + 2kl − k = 0. It
follows k1 = 1, k2 = −2 and l1 = 1

3 , l2 = 2
3 .

Asymptotes are y = x+ 1
3 and y =−2x+ 2

3 .

• The equation of the curve can be written as
(y− x)(y+2x) = y+1. We have

y− x =
y+1
y+2x

−−−−−−→
x→∞,y→x

x+1
3x

=
1
3
+

1
x
.

The asymptote is y− x = 1
3 , and similarly the

other asymptote is y+2x = 2
3 .

(ii) Let the curve be given by −x2 + xy− y−1 = 0 (see
Figure 4 below)

• From A2 it follows that the curve is a hyper-
bola with the vertical asymptote x = 1 and a
slant asymptote y = x+1.

• The equation of the curve can be written as
x(y− x) = y+1, and

y− x =
y+1

x
−−−−−−→
x→∞,y→x

x+1
x

= 1+
1
x
.

The asymptote is y = x+ 1. From − x2

y + x−
1− 1

y = 0, it follows that when y→ ∞, then
x−1→ 0. x = 1 is vertical asymptote.

Figure 4: Example 3

We describe methods of finding asymptotes of general al-
gebraic curves. Let c be an algebraic curve given by an
equation.

F(x,y)= Pn(x,y)+Pn−1(x,y)+ · · ·+P1(x,y)+P0 = 0 (6)

where Pm(x,y) is a term of degree m, Pn =
m
∑

i=0
am,ixm−iyi.
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Assume x → ∞. Substituting y = kx + l results with an
equation of degree n in x. For the line y = kx+ l to be an
asymptote of the curve (6) the two coefficients of the top
degree in the resulting equation must vanish, thus provid-
ing the coefficient k as the root of the leading term Pn(x,y)
in (x,y) = (1,k). This method for finding asymptotes is
reported in different sources, and in [6] it is summarized
with the following theorem:

Theorem 3 The line y = kx+ l is an asymptote of the al-
gebraic curve (6) if and only if

(1) k is a real root of equation Pn(1, t) = 0,

(2) for chosen k, the coefficient l is a root of equation
ψ(s,k) = 0, where

φ(s,k,x)=ψ(s,k)+
1
x

ψ1(s,k)+
1
x2 ψ2(s,k)+ · · ·= 0

and φ is obtained by reduction from F (x,s+ kx) = 0,
and

(3) for chosen k and l, equation φ(l+ε,k,x) = 0 admits
real root ε such that ε→ 0 for x→ ∞.

The equation of the curve (6) can be expressed as

xnPn

(
1,

y
x

)
+ xn−1Pn−1

(
1,

y
x

)
+ xn−2Pn−2

(
1,

y
x

)
+ · · ·

+ xP1

(
1,

y
x

)
+P0 = 0.

By substituting y
x = k+ l

x and by Taylor’s theorem we ob-
tain [5, 6, 15]

xnPn(1,k)+ xn−1 (Pn−1(1,k)+ l ·P′n(1,k)
)
+

xn−2
(

Pn−2(1,k)+ l ·P′n−1(1,k)+
l2

2
P′′n (1,k)

)
+ · · ·= 0.

The simplest situation is when k is a simple root of
Pn(1, t) = 0. Then P′n(1,k) 6= 0 and for x→ ∞ the form
ψ(s,k) in condition (3) of Theorem 3 reduces to

Pn−1(1,k)+ s ·P′n(1,k).

But if k is r-tuple root of Pn(1, t) = 0, depending on the
values of Pi(1,k) and P( j)

i (1,k), and corresponding form
ψ(s,k), different situations can occur. For example, dif-
ferent branches can correspond to the same asymptote, the
curve can have parallel asymptotes, or the curve can have
no asymptotes. In the latter case, the curve could have
a parabolic branch with a parabolic asymptote, or a gen-
eral curvilinear asymptote, when the condition (3) of The-
orem 3 fails.
The condition (3) of Theorem 3 is the necessary condition
for the line y = kx+ l to be the asymptote of the curve (6),

that is, that the curve must have an infinite branch in the
direction of the line y = kx+ l. Note that the method of
leading coefficients following from conditions (3) and (3)
in the Theorem 3 would still provide a line as an asymp-
tote even if the curve has no infinite branch (see Example
4). Nunnemacher [16] noted that such spurious asymp-
totes correspond to the complex branch of the curve. He
provided a simpler method for exploring asymptotes of al-
gebraic curves, focused on the multiplicity of the factor
ax+ by (rather than y− kx) in the term of the top degree
in (6). This method simplifies the calculation, and paral-
lel asymptotes and parabolic branches are easily discerned
(see Examples 4 and 5) but the theorem does not resolve
the issue of spurious asymptotes when no real branch can
be associated with the obtained line.

Theorem 4 Suppose that ax+by is a factor of the top de-
gree form Pn of multiplicity m with a and b real. Let r ≤ m
denote the largest integer with the property that there exist
polynomials Q j(x,y) for n− r + 1 ≤ j ≤ n satisfying the
conditions:

Pn(x,y) = (ax+by)rQn(x,y),

Pn−1(x,y) = (ax+by)r−1Qn−1(x,y), . . . ,

and finally Pn−r+1(x,y) = (ax+by)Qn−r+1(x,y).

Then associated with the factor ax+by is a set of at most
r possible asymptotes ax+ by = t0, where t0 is a real root
of the equation

trQn(b,−a)+ tr−1Qn−1(b,−a)+ · · ·+ tQn−r+1(b,−a)

+Pn−r(b,−a) = 0.

All real asymptotes to the curve c arise in this way as
ax+ by ranges over the real linear factors of Pn(x,y). If
r > 1 it may happen that some of these lines are spurious
asymptotes.

We illustrate the methods and issues with asymptotes of
algebraic curves in the following examples.

Example 4 Let c be the curve given by the equation

F(x,y) = x4−2x2y2 + y4 + x3−2x2y+ xy2 +1 = 0.

Following Theorem 3, we find k1 = 1,k2 =−1 as the zeros
of the leading term P4(1, t) = (t−1)2(t +1)2 in the equa-
tion of the curve. We substitute for y = kx+ l:

• If y= x+ l, then F(x,x+ l)= l2(2x+ l)2+x · l2+1=
0.
The condition (3) of Theorem 3 implies 4l2 +
1
x (4l3 + l2)+ 1

x2 (l4 + 1) = 0 and the coefficient l of
the line derives from ψ = 4l2 = 0, therefore l = 0.
This is spurious asymptote since c has no a real
branch for x→ ∞ in the direction of the line y− x =
0.
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• If y =−x+ l, then F(x,−x+ l) = (−2x+ l)2l2 + x ·
(−2x+ l)2 +1 = 0.
The condition (3) of Theorem 3 implies 4+ 1

x ·(4l2−
4l)+ 1

x2 (−4l3 + l2)+ 1
x3 (l4 + 1) = 0 and the coeffi-

cient l of the line derives from ψ= 4= 0, but asymp-
tote is not obtained.
c has a parabolic branch for x→ ∞ in the direction
of the line y+ x = 0.

Figure 5: Example 4

We establish the same by Theorem 4. The terms in
the equation of the curve are P4(x,y) = (y − x)2(y +
x)2, P3(x,y) = x(y− x)2, P2(x,y) = P1(x,y) = 0. Depend-
ing on multiplicity, factors of the leading term are exam-
ined to obtain an equation for t as a coefficient in the equa-
tion of the line ax+by = t as a potential asymptote.

• Factor y− x can contribute with power r = 2 in the
point (1,1).
The terms factorise into P4 =(y−x)2 ·Q4, Q4(x,y)=
(y+ x)2, P3 = (y− x) ·Q3, Q3 = (y− x)(y+ x).
The equation for t is t2 ·22+t ·0 ·2+0 = 0⇒ t2 = 0.
This is a spurious asymptote since c has no a real
branch for x→ ∞ in the direction of the line y− x =
0.

• Factor y+ x can contribute with power r = 2 in the
point (1,−1).
The terms factorise into P4 = (y + x)2 ·
Q4, Q4(x,y) = (y−x)2, but P3 has no factor (y+x).
The power of the factor y+ x needs to be reduced to
r = 1 in the same point.
The terms factorise into P4 = (y+x) ·Q4, Q4(x,y) =
(y+x)(y−x)2, and the equation for t is t ·0+4 = 0,
and asymptote is not obtained.
c has a parabolic branch for x→ ∞ in the direction
of the line y+ x = 0.

Following idea from (2) and [20] curve c transforms so that
its points at infinity correspond to the origin. In the pro-
jective plane, the homogeneous equation of the curve c is

(y−x)2(y+x)2−x(y−x)2z+z4 = 0 and homogeneous co-
ordinates of its points at infinity are [1,1,0] and [1,−1,0].

• For the point at infinity [1,1,0], we use the following
transformation of coordinates X ≡ 1,Y ≡ y−x,Z≡ z
and the corresponding curve is

Y 2(Y +2)2−Y 2Z +Z4 = 0 ⇒
4Y 2 =−4Y 3 +Y 2Z−Y 4−Z4.

But the curve has an isolated point at (Y,Z) = (0,0)
and no tangent there.
The curve c does not have a real branch for x→∞ in
the direction of the line y−x = 0. Its point at infinity
[1,1,0] is an isolated point.

• For the point at infinity [1,−1,0], we use the follow-
ing transformation of coordinates X ≡ 1, Y ≡ y+ x,
Z ≡ z and the corresponding curve is

(Y −2)2Y 2− (Y −2)2Z +Z4 = 0 ⇒
4Z = 4Y 2 +4Y Z−4Y 3−Y 2Z +Y 4 +Z4.

The tangent at (Y,Z) = (0,0) is Z = 0, which corre-
sponds to the line at infinity. There is no asymptote,
c has a parabolic branch for x→ ∞ in the direction
of the line y+ x = 0.

Example 5 Let c be the curve given by the equation

F(x,y) = x4−2x2y2 + y4 +2xy−2x2−1 = 0.

Following Theorem 3 we find k1 = 1,k2 =−1 as the zeros
of the leading term P4(1, t) = (t−1)2(t +1)2 in the equa-
tion of the curve. We substitute for y = kx+ l:

• y = x+ l⇒ F(x,x+ l) = l2(2x+ l)2 +2xl−1 = 0.
The condition (3) of Theorem 3 implies 4l2 +
1
x (4l3 +2l)+ 1

x2 (l4−1) = 0 and coefficient l of the
line derives from ψ = 4l2 = 0⇒ l = 0.
c has an asymptote y− x = 0.

• y = −x + l ⇒ F(x,−x + l) = (−2x + l)2l2 + 2x ·
(−2x+ l)−1 = 0.
The condition (3) of Theorem 3 implies 4l2−4+ 1

x ·
(−4l3 +2l)+ 1

x2 (l4−1) = 0 and coefficient l of the
line derives from ψ = 4l2−4 = 0⇒ l =±1.
c has parallel asymptotes y=−x−1 and y=−x+1.
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Figure 6: Example 5

We establish the same by Theorem 4. The terms in
the equation of the curve are P4(x,y) = (y − x)2(y +
x)2, P3(x,y) = 0, P2(x,y) = 2x(y− x), P1(x,y) = 0. De-
pending on multiplicity, factors of leading term are exam-
ined to obtain equation for t as a coefficient in the equation
of the line ax+by = t as potential asymptote.

• Factor y− x can contribute with power r = 2 in the
point (1,1).
The terms factorise into P4 = (y − x)2 · Q4,
Q4(x,y) = (y+ x)2, P3 = (y− x) · 0, and the equa-
tion for t is t2 ·22 + t ·0+0 = 0⇒ t2 = 0.
c has an asymptote y− x = 0.

• Factor y+ x can contribute with power r = 2 in the
point (1,−1).
The terms factorise into P4 = (y + x)2 · Q4,
Q4(x,y) = (y−x)2, P3 = (y+x) ·0, and the equation
for t is t2 · (−2)2 + t ·0+(−4) = 0⇒ 4t2−4 = 0.
c has parallel asymptotes y+ x− 1 = 0 and y+ x+
1 = 0.

Following idea from (2) and [20] curve c transforms so
that its points at infinity correspond to the origin. In the
projective plane, the homogeneous equation of the curve
c is (y− x)2(y+ x)2 + 2x(y− x)z2− z4 = 0 and homoge-
neous coordinates of its points at infinity are [1,1,0] and
[1,−1,0].

• For the point at infinity[1,1,0], we use the following
transformation of coordinates X ≡ 1,Y ≡ y−x,Z≡ z
and the corresponding curve is

Y 2(Y +2)2 +2Y Z2−Z4 = 0 ⇒
4Y 2 =−4Y 3−2Y Z2−Y 4 +Z4.

The curve has tangent Y = 0 at the cusp (Y,Z) =
(0,0), which corresponds to the asymptote y−x = 0
of the two branches of the curve c.

• For the point at infinity [1,−1,0], we use the fol-
lowing transformation of coordinates X ≡ 1,Y ≡
y+ x,Z ≡ z and the corresponding curve is

(Y −2)2Y 2 +2(Y −2)Z2−Z4 = 0 ⇒
4Y 2−4Z2 = 4Y 3−2Y Z2−Y 4 +Z4.

The curve has tangents Y −Z = 0 and Y +Z = 0 at
the node (Y,Z) = (0,0), which corresponds to paral-
lel asymptotes y−x−1 = 0 and y−x+1 = 0 of the
curve c.

Finally, let us mention that a subtle and so far the most
systematic analysis of asymptotes of algebraic curves in
real plane, accompanied by an computational algorithm for
finding asymptotes by polynomial root isolation was pro-
vided by Zeng in [23]. Similarly to the projective geom-
etry approach, he introduced an indeterminate to extend
the field R to a new structure that contains an infinitely
large point and keeps the usual ordering and the Euclidean
metrics. Based on Sturm sequences and Sturm’s theorem,
applied to root isolation of the leading polynomial coeffi-
cient of the two-variable polynomial defining an algebraic
curve in real plane, he developed an algorithm for count-
ing its infinite branches and determining the corresponding
asymptotes, if they exist. We omit it here due to its com-
plexity and lack of the space to elaborate its many technical
details.
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