
KoG•25–2021 C. Clemenz, L. Weydemann: Reflection Techniques in Real-Time Computer Graphics

https://doi.org/10.31896/k.25.10
Review
Accepted 2. 12. 2021.

CHRISTIAN CLEMENZ
LEONARD WEYDEMANN

Reflection Techniques in Real-Time
Computer Graphics

Reflection Techniques in Real-Time Computer
Graphics

ABSTRACT

Reflections have a long history in computer graphics, as
they are important for conveying a sense of realism as well
as depth and proportion. Their implementations come
with a multitude of difficulties, and each solution typically
has various trade-offs.

Approaches highly depend on the geometry of the reflec-
tive surface since curved reflectors are usually more difficult
to portray accurately. Techniques can typically be catego-
rized by whether they work with the actual geometry of
the reflected objects or with an image of these objects. For
curved surfaces, image-based techniques are usually pre-
ferred, whereas for planar surfaces the reflected geometry
can be used more easily because of the lack of distortion.
With current advances in graphics hardware technology,
ray tracing is also becoming more viable for real-time ap-
plications. Many modern solutions often combine multiple
approaches to form a hybrid technique.

In this paper, we give an overview of the techniques used
in computer graphics applications to create real-time re-
flections. We highlight the trade-offs that have to be dealt
with when choosing a particular technique, as well as their
ability to produce interreflections. Finally, we describe how
contemporary state-of-the-art rendering engines deal with
reflections.

Key words: reflections, interreflections, real-time render-
ing

MSC2010: 51-04, 51p05, 78A05

Tehnike zrcaljenja u Real-Time računalnoj grafici

SAŽETAK

Zrcaljenja imaju dugu povijest primjene u računalnoj

grafici zbog njihove važnosti u prenošenju realističnosti

prikaza te prikaza dubine i omjera na slikama. Pri im-

plementaciji zrcaljenja dolazimo do raznih teškoća i svako

novo rješenje često imaju svoju cijenu.

Pristupi implementacije ovise o geometriji plohe na ko-

joj leži prikaz, što je ploha zakrivljenija, to je teže postići

vjerni prikaz. Tehnike možemo kategorizirati u one koje

rade sa stvarnom geometrijom zrcaljenih objekata te one

koje rade samo sa slikama objekata. Kod zakrivljenih ploha

koriste se tehnike bazirane na slikama, dok se kod ravnin-

skih ploha koristi zrcaljena geometrija jer nema iskrivljenja.

Zahvaljujući trenutnom razvoju tehnologije grafičkih hard-

vera, metoda praćenja zraka (ray tracing) postaje sve is-

plativija u real-time primjeni. Mnoga moderna rješenja

kombiniraju razne pristupe i dolazi do hibridnih tehnika.

U ovom radu dajemo pregled tehnika korǐstenih u pri-

mjeni računalne grafike za postizanje real-time zrcal-

nih slika. Naglašavamo probleme koji nastaju pri

korǐstenju odred-ene tehnike te njihove mogućnosti u

pogledu stvaranja med-uzrcaljenja. Naposljetku, opisujemo

kako moderni alati za renderiranje rješavaju probleme zr-

caljenja.

Ključne riječi: zrcaljenje, med-uzrcaljenje, real-time ren-

deriranje

1 Introduction

Reflections have been a research topic in Computer Graph-
ics for over forty years because of the big part they play in

depicting realistic scenes. They have a great impact on how
we perceive things. For example, mirrors can make small
spaces look much larger by giving a sense of depth. They
can also convey if a surface is rough or smooth and whether

87



KoG•25–2021 C. Clemenz, L. Weydemann: Reflection Techniques in Real-Time Computer Graphics

it is planar or curved. We were made aware of these im-
portant properties and the complex topic, when we created
a scene that demonstrates the geometry of a C-60 fullerene
using multiple mirrors as seen in Figure 1.
Recently, major advances have been made on the topic of
real-time reflections. In addition, their field of application
grew as well. Besides their typical use in video games,
real-time reflections are now also used in architectural vi-
sualization and movie production. But older techniques
are also still relevant to this day. Depending on the spe-
cific application, each technique has its own advantages
and disadvantages.
In the following chapters, we give an overview of the cur-
rent state-of-the-art techniques to provide the reader with
an outline of the advantages and drawbacks one needs to
consider (Section 2) and we discuss contemporary multi-
purpose rendering engines and how they deal with reflec-
tions (Section 3).

Figure 1: Interreflections of a single C-60 fullerene cre-
ated with our implementation of a geometry-
based reflection technique. The fullerene is
placed in front of three orthogonal mirrors,
which are positioned on the XY, XZ and YZ
plane respectively.

2 Techniques

Over the years many different techniques have been de-
veloped to create real-time reflections. McReynolds and
Blythe [12] categorize them into two groups: object-space
and image-space techniques. The former work directly
with the geometry while the latter uses textures to cre-
ate reflections. So, henceforth, we will label these tech-
niques geometry-based and image-based respectively. His-
torically, ray tracing was not used in real-time applications
because of its long computation time per frame. In recent

years, it has become more and more advanced to allow for
interactive frame rates. Additionally, the development of
new graphics hardware, that has dedicated ray tracing ca-
pabilities, has made it suitable for a wider range of real-
time applications. Because of this, we include them as a
category in our list of techniques. Besides those categories,
there are many hybrid techniques that combine multiple
approaches to alleviate their individual shortcomings. In
this section, we discuss each category in detail, showing
examples and considering their advantages and disadvan-
tages.

2.1 Geometry-Based Techniques

McReynolds and Blythe [12] describe geometry-based
techniques as approaches that directly transform the ge-
ometry of the reflected object. In other words, they create
virtual objects that are transformed to represent reflections.
This process highly depends on the surface of the reflector.

2.1.1 Planar Surfaces

For planar surfaces, a single affine transformation for each
object is enough to describe its reflection, since the reflec-
tor’s surface normal does not change. This means that it
can easily be computed and applied as an additional trans-
formation matrix for example.
Geometry-based techniques need an additional clipping
stage, as the virtual object that is created can protrude the
plane of reflection or extend beyond its boundary. Accord-
ing to McReynolds and Blythe [12] clipping can easily be
done for planar reflectors either by defining custom clip-
ping planes, which the graphics pipeline can use, or by
using the stencil buffer to distinguish between pixels that
belong to the reflective surface and those that do not. The
stencil buffer approach can either be done by rendering
the reflector first and then only render the reflected ob-
jects inside the stencil or by rendering the reflections first
and clearing the image buffer around the stencil afterwards.
The second approach can be faster, because the stencil is
only used for one clearing operation and not for rendering
every individual reflected object. The first approach is bet-
ter suited for interreflections between multiple reflective
surfaces, since the stencil can contain flags that distinguish
between different reflectors and the depth of reflection. An
example of our implementation using the stencil buffer is
shown in Figure 2. We use the stencil to determine where
to draw the virtual objects.

2.1.2 Curved Surfaces

In the case of curved reflectors, it gets more complicated.
Reflections now also depend on the viewpoint, which can
be seen in Figure 3. Therefore, they must now be com-
puted for each vertex individually by finding the correct
intersection point of the viewing ray and the reflector sur-

88



KoG•25–2021 C. Clemenz, L. Weydemann: Reflection Techniques in Real-Time Computer Graphics

Figure 2: Our simple reflection setup. We mirror the object for as long as it remains in front of any mirror plane. The left
image shows a top-view of the reflections. The final result on the right is created by using a stencil buffer to only
render pixels that are inside the mirrors bounds.

face. McReynolds and Blythe [12] mention that a closed-
form solution for finding the reflection point for arbitrary
viewpoints, reflector positions, surface shapes, and vertex
positions can be very difficult and is usually too complex
to generalize.

Ofek and Rappoport [15] proposed a solution for reflec-
tions on curved reflectors that creates virtual objects by re-
flecting each polygon’s vertices. They assume that the re-
flector itself is represented by a polygonal mesh. If this was
not he case, they would tesselate the reflector. Each poly-
gon on the reflector divides the space around the reflector
into a hidden and a visible cell. Each reflected object is
also tesselated depending on the desired resolution of the
result. Afterwards, each polygon of the reflected object is
reflected. This is done by finding the virtual reflected ver-
tex for each vertex in the polygon. In order to reflect this
vertex correctly, Ofek and Rappoport find the polygon on
the reflector that is used as the mirror. To prevent the re-
sult from looking like a linear approximation, they use the
barycentric coordinates of the mirrored vertices inside the
cell above the reflector polygon to interpolate between the
three tangent planes associated with the reflector polygon.
This interpolation is then used as the final plane of reflec-
tion for that particular vertex. In order to quickly find out
in which cells the vertices are located, Ofek and Rappoport
[15] use an explosion map as their data structure. Explo-
sion maps are very similar to environment maps, which we
will discuss in Section 2.2.1. Instead of color information
the map contains polygon IDs to quickly find surface poly-
gons for any given UV coordinate. They claim that their
method works best for convex surfaces but it also works
for concave surfaces. Surfaces that have both convex and
concave areas should be split into separate meshes.

McReynolds and Blythe [12] mention that clipping the vir-
tual objects created by such a method against curved reflec-
tors directly is possible but can be a time consuming oper-
ation if the reflector is complex. An alternative would be
to use the depth buffer to only render objects with greater
depth than the reflector, but this would also render them
incorrectly if one virtual object occludes another one.
To summarize, creating reflections using curved reflectors
paired with a geometric approach can be very complicated,
depending on scene size and complexity. The results are
relatively accurate but usually other approaches are pre-
ferred for curved reflectors, as we will see in the next sec-
tion.

Figure 3: A comparison of reflection rays on planar and
curved surfaces. On the left the object O gets
reflected to the same virtual position O′ because
the surface normal N does not change. On the
right the same object’s reflection point varies
depending on the viewing position.

2.2 Image-Based Techniques

As the name implies image-based techniques use images
or textures to create reflections. McReynolds and Blythe
[12] state that these textures are then used for the reflec-
tive surface which is the case for environmental mapping.

89



KoG•25–2021 C. Clemenz, L. Weydemann: Reflection Techniques in Real-Time Computer Graphics

Additionally, we also include approaches into this category
that use the final or intermediate rendered image itself.

2.2.1 Environment Mapping

An early technique that was developed to create reflections
is environment mapping, which is also often called reflec-
tion mapping. The idea is to project the scene onto the
surface of a primitive centered around the reflective object.
This is done by rendering the scene, viewed from the cen-
ter point of the reflective object, onto six images forming
a cube. These images are mapped onto the primitive using
a mapping function that depends on the type of primitive.
During the rendering step, another function is needed to
retrieve the information from the map.
One of the most popular environment mapping methods is
cube mapping and was proposed by Greene [7]. The map
is created as described above and uses the cube formed by
the image planes directly without re-mapping. The cube
can be aligned with the coordinate axes, so that the largest
vector component of the reflected viewing direction de-
termines the face that needs to be indexed directly. The
texture coordinates are determined with the remaining two
components. If the cube is not aligned, the cube faces have
to be tested for intersection with the reflected viewing ray.
An example of cube map indexing can be seen in Figure 4.

Figure 4: A top-view of cube map indexing. The viewing
direction V is reflected in the object’s surface
normal N. The reflected direction R determines
the cube face and the texture coordinates to use
for the final color value.

Another technique that was proposed very early on by
Blinn and Newell [4] is sphere mapping, which uses a
sphere as the primitive onto which to map the environment.
The key difference is that the image planes get mapped

onto a sphere whose surface is then re-mapped to a cir-
cular shape inside a 2D texture. This has the advantage
that all information is contained in only a single image.
However, sphere maps also have drawbacks. Some tex-
ture space is wasted since the texture itself is rectangular.
But more importantly, they introduce sampling problems.
While texture coordinates are interpolated linearly, sphere
maps are non-linear. This leads to interpolation artefacts,
especially close to the edge of the circular image.
Regardless of which primitive is used, environment map-
ping is especially useful for curved reflectors, because re-
flections can be calculated without complex geometrical
transformations for each object’s vertex in the scene. In
some cases, it is also convenient that the maps can be pre-
processed if the surroundings or the reflectors are static.
On the other hand, if either the surroundings or the posi-
tion of the reflector, i.e. the reflection center, change, the
map needs to be recalculated. The resolution of the texture
map is also important since it influences how accurately
the reflection can be depicted. In addition, their accuracy
depends on the distance between the reflected object and
the reflector and will be better for more distant objects.
According to McReynolds and Blythe [12] interreflections
are possible by iteratively creating the environment maps
for each reflector and then applying them for the next iter-
ation.
More information and specific calculations for the map-
pings mentioned above can be found in the work of Mizu-
tatni and Reindel [13] and in McReynolds and Blythe [12].
Building on these environment mapping methods, Yu et
al. [20] developed a technique to improve on regular envi-
ronment maps by using 4D light fields instead of 2D tex-
tures. Light fields are a collection of images on a 2D image
plane. From those images, every possible viewing ray can
be synthesized inside a given region, according to Yu et
al. By surrounding the reflector with six such light fields,
they can support dynamic reflections for moving reflectors
inside the cube, including motion parallax.
Another extension to environment mapping can be found
in Popescu et al. [16]. In addition to environment maps,
they use two types of impostors to approximate the geome-
try of objects in the scene. The first type is the billboard. It
approximates an object by mapping its image to a textured
quadrilateral which can easily be intersected with reflected
viewing rays. Optionally, they can also store surface nor-
mals per texel, to facilitate interreflections. The second
type of imposter they use, is the depth map which is a
billboard with an added depth channel. The depth maps
improve reflections in cases where the object is close to
the reflector or when the object and the reflector intersect.
They also allow for motion parallax. Popescu et al. sug-
gest that their method can be regarded as a middle ground
between environment maps and ray tracing. The impostors

90



KoG•25–2021 C. Clemenz, L. Weydemann: Reflection Techniques in Real-Time Computer Graphics

use more geometric information than the environment, but
do not have as much geometric complexity as ray tracing.

2.2.2 Screen Space Techniques

A modern approach that has been developed in the last
decade is called Screen-Space Reflections (SSR). The
method was introduced as Real-Time Local Reflections
by Sousa et al. [17]. This approach creates the reflec-
tions in a post-processing step. First, the scene is rendered
into a buffer structure called G-Buffer. The G-Buffer is a
collection of render targets that contains diffuse color in-
formation but also the geometrical information for each
pixel of the rendered scene. It stores depth, surface nor-
mal and position values. After rendering to the G-Buffer,
a ray is shot from the viewing position towards each sur-
face point stored in the G-Buffer and then it is traced along
its reflected ray using the stored surface normal. This ray
is sampled at specific intervals. The sample points are
mapped into the 2D screen space, where the sample point’s
depth is checked against the G-Buffers depth value. If the
depth value in the G-Buffer is lower, this marks an intersec-
tion. An illustration of this process can be seen in Figure 5.

Sousa et al. [17] mention that, while it is a relatively fast
technique, it can have problems due to the very limited
information in screen space. McGuire et al. [11] give de-
tailed information on the implementation of Screen-Space
Reflections and improve the path sampling for more effi-
ciency. A major drawback of this method is that it can
only produce reflections of objects that are contained in-
side the current view. Tracing rays outside the image is not
possible. This can lead to artefacts on the image boundary.

2.3 Real-Time Ray Tracing Techniques

An early implementation of ray tracing goes back to the
work of Whitted [19]. He proposed a method for real-
istic rendering by following the viewing ray through the
scene and recursively applying the intersection informa-
tion to the current pixel. The number of how often the ray
is reflected needs to be limited to keep the computation
time low, but the higher the number the better the result.
While this method works very well to create realistic im-
ages, it is computationally expensive. It heavily relies on
visible surface algorithms to only test for intersections on
an object if the ray crosses its bounding volume, instead of
testing all objects in the scene. This technique alone is not
sufficient for high-resolution images at interactive frame
rates in complex scenes. There have been many improve-
ments to this ray tracing algorithm, but only in recent years
it was getting to a point where the results became real-time
viable through advanced techniques and dedicated ray trac-
ing hardware.

Figure 5: A top-down overview of Screen-Space Reflec-
tion. A ray is shot through the current pixel in
yellow. It is reflected using the surface normal
N, that is contained in the current pixel of the G-
Buffer. The reflected ray gets sampled and pro-
jected into Screen-Space. As soon as the sample
depth is bigger than the depth in the G-Buffer,
an intersection has been found. The color value
of the intersection in the G-Buffer is then used
for the final color in the current pixel.

Bounding Volume Hierarchies (BVH) and KD-trees are es-
sential for improving ray tracing speed, as they reduce the
number of objects that need to be checked for intersection.
An overview of these ray tracing data structures and archi-
tectures can be found in Deng et al. [5]. Recent advances
have made it possible to construct a BVH in real-time as
shown in Lauterbach et al. [9]. This allows for highly
complex and dynamic scenes where the spatial data struc-
ture needs to change every frame. Denoising algorithms
also greatly reduce the number of reflected rays needed per
pixel to generate images without visible artefacts. State-of-
the-art techniques for denoising ray traced images can be
found in the papers by Bako et al. [1] and Marrs et al. [10].
Bako et al. use neural networks to denoise the images.
Marrs et al. introduce an improved temporal antialiasing
technique that uses adaptive ray tracing.
The most recent GPU architectures come with ray tracing
cores that are capable of computing the above-mentioned
algorithms in parallel directly on the GPU, allowing for no-
tably faster image generation. Details on the most recent
algorithms and architecture can be found in the Turing ar-
chitecture white paper by NVIDIA [14].

91



KoG•25–2021 C. Clemenz, L. Weydemann: Reflection Techniques in Real-Time Computer Graphics

To summarize, the biggest advantage of real-time ray trac-
ing are the accurate reflections they produce. Interreflec-
tions are not only possible but inherently come with the
algorithm. Despite the recent improvements real-time ray
tracing is still dependent on dedicated hardware.

2.4 Hybrid Techniques

Each of the before mentioned techniques has its own short-
comings. Some of them can be avoided or alleviated by
using more than one technique.
An early hybrid technique can be found in the work of Kil-
gard [8]. It combines planar reflections with stencil buffer
clipping. This improves the clipping stage in certain cases.
Interreflections, for example, can be done quite easily with
the stencil buffer as it allows for marking individual pixels
with the interreflection recursion depth.
Bastos and Stürzlinger [3] developed a hybrid approach
that improves upon traditional environment mapping.
They call it a hybrid between a geometry-based and an
image-based solution. They warp the texture contained in
the environment map into the space of the reflected view-
point. In addition to the color information stored in the
environment map, they also store the depth value of the
texels. Their method preserves the depth of the reflected
scene and corrects the perspective distortion that appears
in classic environment mapping techniques. A detailed de-
scription for viewpoint warping can be found in their paper
[3].
A more recent hybrid approach was proposed by Ganestam
and Dogget [6]. They wanted to seamlessly trace paths in
the scene, without using a full ray tracing approach. So,
they developed a heuristic scene tracing approach. They
divide the scene into different volumes. In a volume that is
close to the camera, objects are placed inside a BVH (see
Section 2.3), which is updated every frame. Outside this
first volume, objects are rendered into a cube map structure
of G-buffers. These buffers can be used for tracing the path
in image space, reducing the complexity of the scene out-
side the innermost volume. Rays can be seamlessly traced
between these two volumes. The combination of those two
techniques is very efficient in avoiding the long computa-
tion times of ray tracing and the problems that come with
the image-based buffer technique.
Walewski et al. [18] developed a method for hybrid render-
ing that determines which parts of the scene are to be ren-
dered with secondary effects, like shadows and reflections,
by calculating an importance value for them. They esti-
mate the time it takes to render an object using ray tracing
and weigh it against the importance value. Then they sort
the scene into a graph, putting the more relevant objects at
the top. When calculating the secondary effects, they start
with the objects with the highest importance value and then
follow the graph towards the most important objects that

can still fit into the remaining available calculation time for
the current frame. The importance value depends on mul-
tiple variables. Most of them are calculated every frame,
like the size in the viewport, for example. Some are also
determined by the user beforehand, for example, how im-
portant it is to select objects that were previously chosen
for secondary effects. For a detailed description of how the
importance value is calculated see the paper of Waliewski
et al. [18].
The PICA PICA hybrid rendering pipeline is a hybrid ren-
dering approach by Barré-Brisebois et al. [2] that combines
traditional rasterization shaders with compute shaders and
ray tracing shaders for the entire rendering pipeline. Their
method does not specifically focus on reflections, but they
are included as an integral part of their feature set. They
state that reflections are one of the main features that ben-
efit from ray tracing. Although they incorporated Screen-
Space Reflections into their approach, they mostly use ray
tracing for the final result to keep it simple. They also make
use of denoising algorithms we previously mentioned in
Section 2.3, that work on the final image to remove arte-
facts in areas where the number of traced rays was not high
enough.

3 State-of-the-Art Rendering Engines

Currently, there are many real-time rendering engines pub-
licly available. Most of them use state-of-the-art computer
graphics techniques to portray realistic scenes and effects.
Among those techniques, reflections are only a small sub-
set of their capabilities, albeit a very important one. We
will discuss two examples of freely available engines and
compare their approaches and capabilities to give an in-
sight into how they can produce real-time reflections. We
chose these two because of their popularity and their ex-
tensive documentation.

3.1 Unreal Engine 4

The Unreal Engine 4 offers multiple different ways to pro-
duce real-time reflections. The first one uses planar re-
flections. This is Unreal Engine’s geometric approach to
render the scene a second time using a user-defined plane
as a mirror. The engine handles clipping and reflective ob-
jects around the plane are taken care of automatically. This
feature must be turned on deliberately in the engine’s set-
tings before it is available to the user, as it is potentially
expensive to compute. Furthermore, they advise to only
use a few of these planes if any at all, since it directly cor-
responds to the scene’s complexity. To compensate for this
the engine has multiple parameters to limit the number of
reflected objects, for example, a maximum distance. More
information can be found in the Unreal Engine Documen-
tation on planar reflections [24].

92



KoG•25–2021 C. Clemenz, L. Weydemann: Reflection Techniques in Real-Time Computer Graphics

The second method the Unreal Engine offers is Screen
Space Reflections. This method is turned on by default.
It generates little computational overhead as compared to
other methods. There are only very few parameters to
tweak the result, but the most notable one certainly is the
quality setting that can be set between 0 and 100, with 50
as the default. The documentation [26] does not mention
exactly how this parameter affects the algorithm.

The third option for reflections uses environment map-
ping. This method comes in multiple different forms. The
Unreal Engine defines these as Reflection Capture Actors
and Scene Capture Actors [23] that can be placed inside
the scene. The former ones only map reflections inside
a user-defined volume. This volume is either a cuboid or
spherical. Their reflections are computed before run time
and do not affect per frame computation time very much,
since they are just environment maps which we already dis-
cussed in Section 2.2.1. The latter ones are fully dynamic
cube maps. Their maps capture the entire scene and are
recalculated on every frame, according to the documenta-
tion. This comes with a large computational cost. There
is also the option for a 2-dimensional screen capture that
works similarly but only maps to one texture instead of six
cube map faces.

The final method for real-time reflections in Unreal Engine
4 is one that uses real-time ray tracing [25]. Its ray tracer
is actually a hybrid between conventional ray tracing and
raster effects, according to the documentation. A key in-
gredient for real-time viability is the denoising algorithm
used by the engine. This allows for fewer samples during
ray tracing.

Figure 6: A comparison of environment mapping (top),
screen-space reflections (middle) and ray tracing (bottom)
using Unreal Engine 4. The images are taken from the
BlueprintOffice scene by Epic Games with the default ren-
dering settings. The top image uses only Reflection Cap-
ture Actors. Notice how the reflection of the blue light
source is not captured here. The reflections on the floor
are blurry due to the limited environment map resolution.
The windows of the building in the background are not en-
compassed by an environment map and therefore do not
show reflections. In the middle image, only screen-space
reflections are used. Thereby, the windows of the opposite
building cannot show reflections because the outside walls
of the room are not contained in the rendered image. The
reflections on the floor are sharper because they use infor-
mation from the rendered image directly. The bottom im-
age uses ray tracing with a single bounce after the first in-
tersection. The biggest difference in this image, compared
to the other two, is that the windows of the building in the
background show reflections of the exterior. The reflections
on the floor are also sharper but much more subtle.

93



KoG•25–2021 C. Clemenz, L. Weydemann: Reflection Techniques in Real-Time Computer Graphics

Figure 6 shows a comparison of images that were created
using different reflection techniques which are available in
Unreal Engine 4.

3.2 Unity

Unity also supports multiple reflection techniques but their
rendering engine is split into three separate rendering
pipelines supporting different effects. When choosing a
specific reflection technique, this has to be taken into ac-
count. See the Unity rendering pipeline documentation
[22, 21] for a comparison between the rendering pipelines.

Similar to the Unreal Engine, Unity offers environment
mapping in the form of cube maps. Here they are called
Reflection Probes. They are placed inside the scene and
can be used by any reflective object that comes close to the
Reflection Probe. If there are multiple probes close to re-
flectors, the final reflection gets interpolated between their
environment maps. According to the Unity documentation,
this technique is available in every currently supported ren-
dering pipeline, albeit with some minor differences.

Screen Space Reflections are available as a post-processing
effect, but only in the High Definition Rendering Pipeline.

Real-time ray tracing is currently in preview and only
available inside the High Definition Rendering Pipeline.
Their approach is to completely replace other rasterized
effects with ray tracing. This means that the ray traced re-
flections replace the screen space reflections. Additionally,
ray tracing is not supported in combination with Reflection
Probes.

4 Conclusion

Reflections in real-time scenes can be achieved in mul-
tiple ways. Geometry-based techniques can produce re-
alistic results and are easy to calculate for planar reflec-
tors, but curved surfaces are too complex to find a gen-
eralized solution. Image-based techniques can break the
complexity of curved reflectors, since they work in image
space rather than object space. Although not accurate, en-
vironment maps give a good approximate solution that can
be calculated before run-time. Screen-Space Reflections
work well for accurate reflections in real-time but are lim-
ited to the information of the camera view. Real-time ray
tracing is getting more viable with dedicated hardware and
improved algorithms to reduce tracing complexity. Hybrid
approaches can compensate for the drawbacks of individ-
ual methods and can also produce fast and accurate results
even though they can be more complex. Current state-
of-the-art engines offer the user a variety of techniques to
choose from to fit their individual needs.

References

[1] S. BAKO, T. VOGELS, B. MCWILLIAMS, M.
MEYER, J. NOVÁK, A. HARVILL, P. SEN,
T. DEROSE, F. ROUSSELLE, Kernel-predicting Con-
volutional Networks for Denoising Monte Carlo Ren-
derings, ACM Transactions on Graphics (TOG) 36(4)
(2017), 1–14.

[2] C. BARRÉ-BRISEBOIS, H. HALÉN, G. WIHLIDAL,
A. LAURITZEN, J. BEKKERS, T. STACHOWIAK,
J. ANDERSSON, Hybrid Rendering for Real-Time
Ray Tracing, Ray Tracing Gems: High-Quality and
Real-Time Rendering with DXR and Other APIs,
Apress, 2019, 437–473.

[3] R. BASTOS, W. STÜRZLINGER, Forward Mapped
Planar Mirror Reflections, University of North Car-
olina at Chapel Hill, Computer Science Technical Re-
port TR98-206 (1998).

[4] J.F. BLINN, M.E. NEWELL, Texture and Reflection
in Computer Generated Images, Communications of
the ACM 19(10) (1976), 542–547.

[5] Y. DENG, Y. NI, Z. LI, S. MU, W. ZHANG, Toward
Real-Time Ray Tracing: A Survey on Hardware Ac-
celeration and Microarchitecture Techniques, ACM
Computing Surveys (CSUR) 50(4) (2017), 1–41.

[6] P. GANESTAM, M. DOGGETT, Real-time Multiply
Recursive Reflections and Refractions Using Hybrid
Rendering, The Visual Computer 31 (2015), 1395–
1403.

[7] N. GREENE, Environment Mapping and Other Ap-
plications of World Projections, IEEE computer
graphics and Applications 6(11) (1986), 21–29.

[8] M. KILGARD, Creating Reflections and Shadows Us-
ing Stencil Buffers, At Game Developers Conference
7 (1999).

[9] C. LAUTERBACH, M. GARLAND, S. SENGUPTA,
D. LUEBKE, D. MANOCHA, Fast BVH Construction
on GPUs, Computer Graphics Forum 28(2) (2009),
375–384.

[10] A. MARRS, J. SPJUT, H. GRUEN, R. SATHE,
M. MCGUIRE, Improving Temporal Antialiasing
with Adaptive Ray Tracing, Ray Tracing Gems:
High-Quality and Real-Time Rendering with DXR
and Other APIs (2019), 353.

[11] M. MCGUIRE, M. MARA, Efficient GPU Screen-
Space Ray Tracing, Journal of Computer Graphics
Techniques (JCGT) 3 (2014), 73–85.

94



KoG•25–2021 C. Clemenz, L. Weydemann: Reflection Techniques in Real-Time Computer Graphics

[12] T. MCREYNOLDS, D. BLYTHE, Advanced Graphics
Programming Using OpenGL, Elsevier, 2005.

[13] Y. MIZUTANI, K. REINDEL, Environment Mapping
Algorithms, https://www.reindelsoftware.

com/Documents/Mapping/Mapping.html, Ac-
cessed: 2021-8-4.

[14] NVIDIA, NVIDIA Turing GPU Architecture, White
Paper, 2018.

[15] E. OFEK, A. RAPPOPORT, Interactive Reflections on
Curved Objects, Proceedings of the 25th annual con-
ference on Computer graphics and interactive tech-
niques (1998), 333–342.

[16] V. POPESCU, C. MEI, J. DAUBLE, E. SACKS,
Reflected-scene Impostors for Realistic Reflections
at Interactive Rates, Computer Graphics Forum 25(3)
(2006), 313–322.

[17] T. SOUSA, N. KASYAN, N. SCHULZ, Secrets of
CryENGINE 3 Graphics Technology, SIGGRAPH,
Advances in Real-Time Rendering in 3D Graphics
and Games (2011).

[18] P. WALEWSKI, T. GAŁAJ, D. SZAJERMAN, Heuris-
tic Based Real-Time Hybrid Rendering with the Use
of Rasterization and Ray Tracing Method, Open
Physics 17(1) (2019), 527–544.

[19] T. WHITTED, An Improved Illumination Model for
Shaded Display, Proceedings of the 6th annual con-
ference on Computer graphics and interactive tech-
niques 17(1) (1979), 14.

[20] J. YU, J. YANG, L. MCMILLAN, Real-Time Reflec-
tion Mapping with Parallax, Proceedings of the 2005
symposium on Interactive 3D graphics and games
(2005), 133–138.

[21] Unity High Definition Rendering Pipeline Doc-
umentation, https://docs.unity3d.com/

Packages/com.unity.render-pipelines.

high-definition@12.0/manual/

Feature-Comparison.html, Accessed: 2021-
9-14.

[22] Unity Universal Rendering Pipeline
Documentation, https://docs.

unity3d.com/Packages/com.unity.

render-pipelines.universal@12.0/manual/

universalrp-builtin-feature-comparison.

html, Accessed: 2021-9-14.

[23] Reflections in the Unreal Engine Manual,
https://docs.unrealengine.com/4.26/

en-US/Resources/Showcases/Reflections/,
Accessed: 2021-5-27.

[24] Planar Reflections in the Unreal Engine Man-
ual, https://docs.unrealengine.com/4.26/

en-US/BuildingWorlds/LightingAndShadows/

PlanarReflections/, Accessed: 2021-7-28.

[25] Ray Tracing in the Unreal Engine Manual,
https://docs.unrealengine.com/4.26/

en-US/RenderingAndGraphics/RayTracing/,
Accessed: 2021-9-22.

[26] Screen-Space Reflections in the Un-
real Engine Manual, https://docs.

unrealengine.com/4.27/en-US/

RenderingAndGraphics/PostProcessEffects/

ScreenSpaceReflection/, Accessed: 2021-9-22.

Christian Clemenz
e-mail: christian.clemenz@uni-ak.ac.at

University of Applied Arts Vienna
Oskar-Kokoschka-Platz 2, A-1010 Vienna, Austria

Leonard Weydemann
e-mail: leonard.weydemann@uni-ak.ac.at

University of Applied Arts Vienna
Oskar-Kokoschka-Platz 2, A-1010 Vienna, Austria

95

https://www.reindelsoftware.com/Documents/Mapping/Mapping.html
https://www.reindelsoftware.com/Documents/Mapping/Mapping.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.0/manual/Feature-Comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.0/manual/Feature-Comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.0/manual/Feature-Comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.0/manual/Feature-Comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/universalrp-builtin-feature-comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/universalrp-builtin-feature-comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/universalrp-builtin-feature-comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/universalrp-builtin-feature-comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/universalrp-builtin-feature-comparison.html
https://docs.unrealengine.com/4.26/en-US/Resources/Showcases/Reflections/
https://docs.unrealengine.com/4.26/en-US/Resources/Showcases/Reflections/
https://docs.unrealengine.com/4.26/en-US/BuildingWorlds/LightingAndShadows/PlanarReflections/
https://docs.unrealengine.com/4.26/en-US/BuildingWorlds/LightingAndShadows/PlanarReflections/
https://docs.unrealengine.com/4.26/en-US/BuildingWorlds/LightingAndShadows/PlanarReflections/
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/PostProcessEffects/ScreenSpaceReflection/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/PostProcessEffects/ScreenSpaceReflection/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/PostProcessEffects/ScreenSpaceReflection/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/PostProcessEffects/ScreenSpaceReflection/

	Introduction
	Techniques
	Geometry-Based Techniques
	Planar Surfaces
	Curved Surfaces

	Image-Based Techniques
	Environment Mapping
	Screen Space Techniques

	Real-Time Ray Tracing Techniques
	Hybrid Techniques

	State-of-the-Art Rendering Engines
	Unreal Engine 4
	Unity

	Conclusion

