
Tehnički vjesnik 29, 1(2022), 221-230 221

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20210820065715
Original scientific paper

Malware Visualization and Similarity via Tracking Binary Execution Path

Jihun KIM, Sungwon LEE, Doosan CHO*, Jonghee YOUN*

Abstract: Today, computer systems are widely and importantly used throughout society, and malicious codes to take over the system and perform malicious actions are
continuously being created and developed. These malicious codes are sometimes found in new forms, but in many cases they are modified from existing malicious codes.
Since there are too many threatening malicious codes that are being continuously generated for human analysis, various studies to efficiently detect, classify, and analyze
are essential. There are two main ways to analyze malicious code. First, static analysis is a technique to identify malicious behaviors by analyzing the structure of malicious
codes or specific binary patterns at the code level. The second is a dynamic analysis technique that uses virtualization tools to build an environment in a virtual machine and
executes malicious code to analyze malicious behavior. The method used to analyze malicious codes in this paper is a static analysis technique. Although there is a lot of
information that can be obtained from dynamic analysis, there is a disadvantage that it can be analyzed normally only when the environment in which each malicious code
is executed is matched. However, since the method proposed in this paper tracks and analyzes the execution stream of the code, static analysis is performed, but the effect
of dynamic analysis can be expected.The core idea of this paper is to express the malicious code as a 25  25 pixel image using 25 API categories selected. The interaction
and frequency of the API is made into a 25  25 pixel image based on a matrix using RGB values. When analyzing the malicious code, the Euclidean distance algorithm is
applied to the generated image to measure the color similarity, and the similarity of the mutual malicious behavior is calculated based on the final Euclidean distance value.
As a result, as a result of comparing the similarity calculated by the proposed method with the similarity calculated by the existing similarity calculation method, the similarity
was calculated to be 5-10% higher on average. The method proposed in this study spends a lot of time deriving results because it analyzes, visualizes, and calculates the
similarity of the visualized sample. Therefore, it takes a lot of time to analyze a huge number of malicious codes. A large amount of malware can be analyzed through follow-
up studies, and improvements are needed to study the accuracy according to the size of the data set.

Keywords: binary analysis; malicious codes; malware; similarity; visualization

1 INTRODUCTION

Recently, following the rapid development of
computing technology and networks, Information and
Communications Technology (ICT) is widely utilized in
society and industries in general. At the same time,
technologies that threaten information security are
developing, and the most prominent example is security
threats caused by malware. In recent years, the volume of
malware has also been increasing rapidly. In addition,
malware attacks are also becoming more diverse, and
malware variants, which have been fabricated by
modifying existing malware, are also showing explosive
growth rates and are posing various security threats such as
data loss, personal and financial information leakage,
system damage, and Information Technology (IT)
infrastructure destruction. Such high growth rates of
malware and malware variants cause increases in malware
analysts' efforts and analysis time leading to serious social
costs. To cope with the foregoing problem, efficient
analysis methods and studies of malware are required.

Malware analyzing methods are implemented through
largely two mechanisms. First, static analysis is a technique
to identify malicious behaviors by analyzing the structure
or certain binary patterns of malware at the code level [1],
which enables more in-depth and detailed analysis but will
require much time and effort and add considerable
difficulties to analysis if technologies to obstruct static
analysis such as execution file compression and code
obfuscation are applied to malware [2]. Another analysis
method is dynamic analysis, which is executing malware
in a virtual machine to analyze the malicious behavior [3].
This method has an advantage of enabling clear
understanding of malicious behaviors even when execution
file compression or code obfuscation has been applied to
malware because malware is actually executed for analysis.
However, this method is not suitable for analyzing trigger

based malware that runs at a certain time or when the user's
certain action is taken.

The method used for malicious code analysis in this
paper is a static analysis technique. There is a lot of
information that can be obtained through dynamic analysis,
but there is a disadvantage that analysis is possible only
when the environment in which each malicious code is
executed matches. However, since the method proposed in
this paper traces and analyzes the execution flow of the
code, static analysis is performed, but the effect of dynamic
analysis can be expected.

In addition, in the present study, malicious behaviors
are analyzed through the Application Programming
Interface (API) collected during analysis, and malware is
made into images based on the frequencies and interactions
of the APIs. Since the acts of malware imaging as such can
be visually analyzed and malware variants and similar
pieces of malware can be easily analyzed through
comparison between different pieces of malware, in the
present study, the similarities of malware images are also
calculated.

2 RELATED WORKS

Currently, various studies related to malicious code

analysis are being conducted, and there are many studies
using both dynamic analysis and static analysis methods.
Various studies are in progress, such as using a method that
combines dynamic and static analysis to analyze, or how to
bring advantages and improve disadvantages of each.
Various studies have emerged according to the high
necessity, and through the comprehensively grasped and
organized thesis, it is possible to grasp the overall
understanding of the methods of malicious code analysis
and methods for detection [4-6].

Previous binary code based static analysis studies have
been conducted based on signatures made by extracting
internal attributes and features centering on code bases [7].

Jihun KIM et al.: Malware Visualization and Similarity via Tracking Binary Execution Path

222 Technical Gazette 29, 1(2022), 221-230

Such studies analyzed malware by applying statistical
mechanisms based on collected information. The most
representative methods extract strings in malware files [8]
or extract only opcodes from disassembled files and
compile statistics to analyze the features of the file [9-10].
Although such methods can access and identify file
structures because they simply collect and list the
signatures of files, they have a limitation; the behaviors of
malware can be hardly identified with them [11].
Nevertheless, studies that adopted analysis methods based
on file signature based collection methods as such have
been increasing because methods to analyze only the
features of files are more excellent in time efficiency than
code based methods to analyze the inside because of the
massification of malware. Therefore, methods that use the
n-gram technique that cuts and processes information such
as opcodes, strings, and bytecodes based on a certain
criterion [12] or list the byte sequences of binary codes [13]
were proposed. These methods have been developed so
that they can be defined as intrinsic DNAs of files [14], and
similarities between different pieces of malware are
calculated based on them. As mentioned earlier, the
disadvantage of these methods is that they have some
limitations in understanding malicious behaviors. To solve
this problem, a method to identify malicious behaviors
through the extraction of those APIs that are used by
malware has been presented [15] because a ground that
becomes a clear and certain base in malicious behavior
judgment is the discovery of the function that is used by
malware. Although early studies that collected APIs to
judge malicious behaviors listed API sequences, collected
the log information regarding the use of APIs [16], or used
the frequencies of APIs to judge malicious behaviors,
recently, mathematical algorithms such as the nearest
neighbour search algorithm [17] or the longest common
subsequence (LCS) [18] are applied to increase the speed
and enhance the accuracy. Many studies have also
proposed various methods for identifying malicious
behaviors and one example of which is visualization [19].
Basically, the statistical values or opcodes of the APIs
called in the binary codes are shown as image or [20] in the
form of file map images. In addition, dynamic analyses are
sometimes utilized to express the statistics of the APIs used
as thread maps [21] or extract and visualize the entropy of
the files [22]. Such studies for visualization can more
clearly identify malicious behaviors, and 2D based cross-
sectional images are also useful for verifying the
similarities of malware variants and families [23]. The
similarity calculations as such can be applied with qualified
algorithms such as Cosine similarity algorithm [24] and
Jaccard distance algorithm [25] to calculate high
similarities. However, such methods show classification
rates that vary with how data are processed and used and
show low performance speed because they have relatively
large amounts of calculations. In addition, since they
should calculate large amounts of data, they require large
amounts of necessary information and their calculations
may become complicated depending on the algorithm
used. In the present study, the run stream will be searched
to improve the efficiency of the speed to identify malicious
behaviors based on the API information collected and the
foregoing will be developed for visualization. In addition,
similarities will be calculated to analyze the similarities of

malware variants and malware families in order to
complement the limitations of existing studies and
maximize the efficiency.

3 PROPOSED METHOD

The present study adopts static analysis that analyzes
malware at the code level as a basic mechanism. The IDA
is a typical reverse engineering tool used by analysts who
want to analyze binary files. The present study also uses
malware disassembled through the IDA as analysis data.
Previous analysts simply analyzed binary files using
reverse engineering skills. However, the disassembled
malware is so long that the analysis takes tremendous
amounts of effort and time. Therefore, binary automation
tools using taint analysis [26] or symbolic execution [27]
have been released recently and they are used to find
vulnerabilities or bugs in files. In the present study too,
malware is analyzed using path searches such as taint
analysis and symbolic execution. The two methods
introduced are common in injecting variables to observe
run streams in path searches, but whereas taint analysis
cannot observe one execution path, symbolic execution can
search all paths.

The code level analysis process in the present study
follows a mechanism very similar to symbolic execution.
However, the analysis in the present study does not inject
any unknown quantity (symbol) in the process of observing
the stream but does observes the entire stream to examine
the entire stream of the malware being analyzed.

In addition, the frequencies and interacting
relationships of the APIs collected are analyzed to use the
APIs for imaging. The relevant API based images enable
visual identification of malware's behaviors. The final
purpose in the present study is to calculate the similarities
of images that express malicious behaviors to figure out the
similarities of malware variants and similar malware.

3.1 Static Execution Path Exploration

In the IDA, disassembled binary files consist of
instruction sets composed of loc_xxxxxx prefixes and sub-
routines composed of sub_xxxxxx prefixes. To search the
run stream, tracing instruction seta and sub routines
according to branch instructions is important. The branch
instructions out of assembly commands are executed
through commands such as jz and jnz and those commands
such as cmp, test, and xor, which are issued before the
relevant commands are issued, divide paths into true and
false ones. In the present study, paths are divided into
normal, true, and false ones according to branch
instructions before performing path searches. In addition,
the APIs appearing during searches will be collected to
organize mutual relations between the APIs to show the
malicious behaviors. The contents of this section were
developed by referring to previous studies. [28, 29]

The codes in Tab. 1 are binary codes for showing static
execution path searches. The code used a simple code for
the sake of example, and it determines the value received
as an argument and branches according to the value.

If loc_4017AA4 is found to be true through the
compare instruction in the seventh line, it will branch to
loc_41A5DD. If loc_41A5DD is found to be true through
a compare instruction, it will branch to loc_428986. The

Jihun KIM et al.: Malware Visualization and Similarity via Tracking Binary Execution Path

Tehnički vjesnik 29, 1(2022), 221-230 223

15th to 21st lines undergo the abovementioned search
process identically, and in loc_4268DE, since the
subroutine sub_488930 is simply called from line 23
without any compare instruction, it is defined as a normal
mark instead of true or false.

Table 1 Example binary code to display static execution path search
1 loc_417AA4 :

2 … …

3 mov [esp+128Ch+var_1274], ebx

4 call ds:CreateMutexA

5 mov [esp+128Ch+hObject], eax

6 call ds:GetLastError

7 cmp eax,0b7h

8 jz loc_41A5DD

9 loc_41A5DD:

10 .. …

11 call ds:CloseHandle

12 … …

13 cmp byte ptr [esi+4], 0

14 jz short loc_428986

15 loc_428986:

16 … …

17 call ds:EnterCriticalSection

18 cmp word ptr [ebx+40h]

19 Mov [esp+78h+var_64], 1

20 Jnz loc_4268DE

21 loc_4268DE:

22 lea ecx, [esp+78h+var_68]

23 call sub_428930

24 sub_488930:

25 …

26 call ds:LeavecriticalSection

In the binary codes in Tab. 1, it can be seen that

Windows API functions such as CreateMutexA,
GetLastError, and CloseHandle are called from lines 4, 6,
11, 17, and 26, respectively. In a previous study, to analyze
the interaction between the API and the API operation, a
mechanism for applying normal, true, and false marks was
proposed to analyze the operation of the API that is equally
applied to the API.

Fig. 1 is a visualization of the API mutual actions for
the binary codes in Tab. 1.

Figure 1 Visualization of binary code

3.2 API Classification

In the present study, malicious behaviors are

visualized in the form of graphs expressed with nodes and

edges as shown in Fig. 1. However, there is a problem that
the number of APIs is too large to nodalize the APIs. The
number of APIs used by Windows applications is over
20.000 based on Microsoft Developer Network (MSDN).
If all the 20.000 plus some APIs are used for graph imaging,
the analysis time may be too long and the readability may
be degraded. In the present study, to solve such problems,
the APIs will be reclassified and integrated into 25 upper
categories based on the functions of the APIs so that clear
judgment of actions can be expected and time efficiency
can be enhanced. For example, APIs such as CreateFile and
CreateProcess perform functions to "file" or "process"
information and APIs such as GetSystemTime and
GetLocalTime have the function to collect information on
the "time" on the system. In addition, all APIs such as
strcmp and strcat perform functions related to strings.
Although such a classification has been already made in
MSDN, not only there are many categories to which APIs
belong commonly but also the categories are too abstract
to understand the actions. For instance, all APIs related to
processes are included in the process category but whether
the relevant APIs for the creation of, deletion of, or access
to processes or not is unknown. Therefore, the functions of
the API were reclassified into three ones as
CREATE_OR_OPEN, READ_OR_ACCESS, and
CLOSE are shown. Tab. 2 shows the final 25 API
categories.

Table 2 API categorization

FILE-
CREATE_OR_OPEN

FILE-
READ_OR_ACCESS

FILE_CLOSE

PROCESS-
CREATE_OR_OPEN

PROCESS -
READ_OR_ACCESS

PROCESS
_CLOSE

NETWOKR -
CREATE_OR_OPEN

NETWOKR -
READ_OR_ACCESS

NETWOKR
_CLOSE

REGEDIT-
CREATE_OR_OPEN

REGEDIT -
READ_OR_ACCESS

REGEDIT
_CLOSE

SERVICE STRING
DEBUGGIN

G
RESOURCE TIME MUTEX

WINDOW-GUI-AND-
BITMAP

SHELL-AND-CONSOLE THREAD

STSTEM-
INFORMATION

LIBRARY HANDLE

HOOK

However, not all APIs are reclassified into those four

actions. Since APIs such as strcat and strcmp do not
separately perform the function of creating or accessing to
strings separately, APIs related to strings are defined as
being in a single category, and APIs related to "time" such
as GetLocalTime and GetSystemTime are included in the
Time category because the action termed "time" has the
most important value in the identification of malicious
behaviors even if time information is obtained after
accessing the system.

3.3 Matrixing of API Interaction

The examples mentioned in the present study are

intended to understand the proposed method and are part
of the entire binary codes. However, since the number of
entire binary codes of actual malware is huge, the
frequency of interaction of the 25 API categories could be
very high.

Jihun KIM et al.: Malware Visualization and Similarity via Tracking Binary Execution Path

224 Technical Gazette 29, 1(2022), 221-230

In the present study, the mutual relations of APIs were
marked as normal, true, or false using static execution path
searches to analyze the actions. The frequencies in the
entire binary codes in relation to the foregoing can be again
made into a matrix, which will be used for the final
visualization later. In the present study, there are 25 API
categories, which indicate API actions, and since the
actions are again marked as normal, true, or false, the
frequencies were shown with three 25  25 matrices.

Tabs. 3 to 5 show examples to show the frequencies of
the mutual actions of API categories made into matrices,
which show examples of mutual calling relations ranging
from 0 time to 5 times. Although only three categories,
FILE-CREATE_OR_OPEN, HANDLE, and SYSTEM-
INFORMATION are shown in the relevant tables, they are
just to show examples, and all the 25 API categories are
referred to for the final frequencies of mutual relations of
APIs in the present study.

Table 3 API Frequency normal

 FILE CREATE
OR OPEN

HANDLE
SYSTEM

INFORMATION
FILE CREATE

OR OPEN
0 0 0

HANDLE 0 0 2
SYSTEM

INFORMATION
1 0 4

Table 4 API Frequency true

 FILE CREATE
OR OPEN

HANDLE
SYSTEM

INFORMATION
FILE CREATE

OR OPEN
0 1 2

HANDLE 0 0 1
SYSTEM

INFORMATION
1 0 1

Table 5 API Frequency false

 FILE CREATE
OR OPEN

HANDLE
SYSTEM

INFORMATION
FILE CREATE

OR OPEN
0 0 0

HANDLE 0 0 0
SYSTEM

INFORMATION
1 0 2

3.4 Graph Visualization

In the present study, 25 categorized API nodes and

edges related to normal, true, and false marks are
visualized to identify malicious behaviors. The information
used for the visualization consists of 25 categorized API
nodes and frequencies related to normal, true, and false
marks.

Table 6 Composition of graph visualization

Node Edge color
Color Characteristics

of edges

25 API
categories

Normal True False Increase by 50 every
time the frequency
increases by 1

R G B

Tab. 6 shows composition of graph visualization. First,

25 nodes are fixed as absolute paths, and marks, i.e.,
normal, true, and false, constitute the color information of
edges with R, G, and B colors, respectively. The The red,
green, blue (RGB) colors consisting of 0 to 255 increase by
50 every time the frequency of the marks increases. This is
because the maximum number of frequencies was

identified as 5 in the mutual actions of the API categories
in the present study. Of course, a larger number of
frequencies may be identified. However, if the color
information is close to 255, the fact that the frequency of
API mutual actions is sufficiently meaningful and the
increment value of 50 was derived as an appropriate value
to enhance the visibility to show color information in
comparison with the frequency numbers of other
categories. Therefore, it can be seen that higher numbers of
frequencies related to normal, true, or false marks indicate
colors closer to red, green, or blue, respectively. For
instance, with regard to the frequency numbers in Tabs. 3
to 5 in section 3.3, since the frequency numbers of
SYSTEM-INFORMATION are Normal: 4, True: 1, and
False: 2, the color information RGB of the edges consists
of 200, 50, and 100.

Table 7 Color information according to API frequencies

FILE CREATE

OR OPEN
HANDLE

SYSTEM
INFORMATION

FILE CREATE
OR OPEN

0
(0, 1, 0)

= RGB(0, 50,
0)

(0, 2, 0)
= RGB(0, 100, 0)

HANDLE 0 0
(2, 1, 0)

= RGB(100, 50,
0)

SYSTEM
INFORMATION

(1, 1, 1)
= RGB(50, 50,

50)
0

(4, 1, 2)
= RGB(200, 50,

100)

Figure 2 Imaging according to frequencies

Finally, the frequency numbers of API mutual actions

in Tabs. 3 to 5 are integrated as shown in Tab. 7 and are
visualized into a graph as shown in Fig. 2.

3.5 Malicious Behavior Graph Images and Pixel Images

Sections 3.1 to 3.4 are about the code analysis methods

proposed in the present study. First, paths are searched with
branch instructions to trace the run stream, and the
interactions between APIs are analyzed utilizing the
relationships between the APIs collected during the
searches and the frequency numbers. These methods can
be important information in analyzing malicious behaviors.
In section 3.4, an example of graph imaging is shown based
on the actions. In the present study, finally, the entire
actions of malware are made into images and similarities
are calculated based on the relevant images.

Fig. 3 shows a graph made by the imaging of the
malicious behaviors of Gen:Variant.Zusy.210164, which is
actual malware, according to the proposed method. Each
fixed node consists of API categories and the colors of the
edges connected between the nodes have RGB values that
change the frequency numbers of mutual actions of the

Jihun KIM et al.: Malware Visualization and Similarity via Tracking Binary Execution Path

Tehnički vjesnik 29, 1(2022), 221-230 225

APIs. The graph images as such enable malicious behavior
analysis through the identification of API interactions.

Figure 3 Gen:Variant.Zusy.210164 malicious behavior

However, the graph images as such are not suitable for

calculations of similarities because the malicious behaviors

in the present study are shown as API categories expressed
with nodes and interactions expressed with edges and
adoptability and accuracy cannot be expected from
similarities calculated with the color information and the
information such as the shapes of edges. This is because
when color information on graph images is enlarged into
pixel units, other colors than the colors of the edges appear
due to distortion, etc. Therefore, in the present study, APIs'
mutual actions are reconverted into simple 25  25 pixel
images and used in the calculations of the similarities.

Fig. 4 shows the method of changing API mutual
actions into 25  25 pixel image according to new API sum
matrices made by summing up three API matrices for
NORMAL, TRUE, and FALSE actions in the methods
proposed in sections 3.3 and 3.4. In the present study, the
similarities of malware variants and similar malware will
be calculated based on the pixel images as such.

Figure 4 Pixel image changes

3.6 Pixel Image Similarity

In the present study, 25 API nodes composed of

absolute paths and frequency numbers related to Normal,
True, and False actions are constructed into R, G, and B
color information, respectively, for visualization. The
similarities of the malware images in which the actions
were expressed as such can be compared through color
comparisons between pixels.

In the present study, the similarities of the colors of all
pieces of pixel information on two images being compared
are calculated through the algorithm for Euclidean
distances in the color space [30].

     2 2 2
2 1 2 1 2 1

= (

Color DISTANCE SIM

R R G G B B



    
 (1)

Fig. 5 shows 6  6 pixel images intended to present

examples of pixel image similarity calculations and the

pixels were enlarged for easy understanding. One square
means one pixel.

Figure 3 Test pixel images

Tab. 8 shows color information extracted from the

entire pixels (36 pixels) of the two images in Fig. 5. The
similarity between the color distances per pixel of these
two images becomes closer to 1 as the colors become more
similar and it can be seen that RGB: 255, 0, 0 and RGB:
255, 50, 0 are 99% similar colors. Therefore, if the colors

Jihun KIM et al.: Malware Visualization and Similarity via Tracking Binary Execution Path

226 Technical Gazette 29, 1(2022), 221-230

of all the pixels of the two images are the same, color
similarity is calculated as 1.

Table 8 Image similarity calculation

 Pixel Image 1 Pixel Image 2
Color

DISTANCE (d)
1  1 255, 255, 255 255, 0, 0 0.4813
1  2 255, 0, 0 255, 255, 255 0.4813
1  3 255, 255, 255 255, 255, 255 1
1  4 255, 50, 0 0, 50, 0 0.6498
1  5 255, 0, 50 0, 0, 255 0.6138

… … … …
3  3 0, 255, 50 0, 0, 50 0.6138

… … … …
5  4 0, 0, 255 0, 255, 255 0.8432

… … … …
6  6 255, 255, 255 255, 255, 255 1

This can be shown as Eq. (2) and the mechanism as

such enables the calculation of the similarity between two
images.

*

1

* :1 :
w h

w h d sim   

The entire number of pixels can be identified by

multiplying the horizontal pixel w by the vertical pixel h of
the image. If the similarity of the relevant pixels is 1, the
images should have the same color information. The color
similarity between two images can be measured by
dividing the sum of d calculated using the color distance
similarity algorithm by the total number of pixels. Here, the
present study excludes the information of pixels with RGB:
0, 0, 0, i.e., the color of the white color, in both images.
This is because only the color information of edges is
needed from action images where malicious behaviors
appear, and other information should be excluded. Since all
other areas in the images except for edges are in white
color, if all of the areas are used in similarity calculation,
the similarities obtained may be inaccurate with too high
values.

For the same reason as the reason why white color is
excluded as mentioned above, nodes and nodes labels are
excluded in the case of action images. Because color
similarities are calculated, the colors of nodes and node
labels may deteriorate the accuracy of similarities. In
addition, since API nodes are composed of absolute paths,
the shapes of edges are the same so that only color
information is available. Therefore, the exclusion of nodes
and node labels from the calculation of similarities
enhances the accuracy.

4 EXPERIMENT AND DISCUSSION
4.1 Malicious Behavior Pixel Images and Similarity

In the present study, malware is made into 25  25
pixel images and the similarities are calculated.

In the present study, the similarities of different pieces
of malware will be verified based on the similarities of the
images of the relevant pieces of malware. The pieces of
malware adopted for the verification of similarities are
malware variants with similar malicious behaviors. The
sets of malware variants classified into the same categories
are called malware families. In the present study, the
similarities of those pieces of malware that are in the

malware families will be verified based on image based
similarities.

In the present study, three pieces of malware in three
families, which are Zusy, Conficker, and Deborm, will be
randomly selected and the similarities will be verified.

Figs. 6 to 8 show the malicious behavior of three
malware families, Zusy, Confiker, and Deborm, made into
pixel images.

Figure 4 Gen: Variant.Zusy family visualization

Figure 5 W32/Confiker.worm family visualization

Figure 6 W32/Deborm.worm family visualization

It can be seen that Zusy uses complex APIs because

the pixels are evenly distributed. However, compared to
Zusy, Confiker and Deborm show intensively distributed
pixels on some parts. This malicious behavior pixel image
can be used as a basic data to grasp the malicious behavior
through the API. Based on the malicious behavior pixel
images as such, the APIs being mainly used can be
identified and the results can be used as basic data to
understand malicious behaviors.

Table 9 Gen: Variant.Zusy similarity

 Zusy.260481 Zusy.210164 Zusy.Elzob
Zusy.260481 1 79.1471 76.933
Zusy.210164 1 75.550
Zusy.Elzob 1

Table 10 W32/Confiker.worm similarity

 Conficker.C2 Conficker.A1 Conficker.Z.03
Conficker.C2 1 82.561 86.392
Conficker.A1 1 83.543

Conficker.Z.03 1

Table 11 W32/Deborm.worm similarity

 Deborm.Q Deborm.AQ Deborm.CG
Deborm.Q 1 82.561 80.183

Deborm.AQ 1 82.126
Deborm.CG 1

Jihun KIM et al.: Malware Visualization and Similarity via Tracking Binary Execution Path

Tehnički vjesnik 29, 1(2022), 221-230 227

In the present study, the similarities of the malicious
behavior pixel images shown in Figs. 6 to 8 were measured
using the Color-Distance method proposed in this paper.
The results are as shown in Tabs. 9 to 11.

First, with regard to Zusy, although the pixels are
evenly distributed, it can be seen that the positions and
colors of the pixels in three pieces of malware are shown
to be similar. Therefore, the similarities were calculated to
be at least 75%. In the case of Confiker and deborm, the
fact that the positions the pixels indicated by the colors are
intensive and the colors are similar can be seen through the
calculated similarity, 82%.

4.2 Similarities of Malware Families

In the present study, the similarities of other pieces of

malware than the three malware families experimented as
explained in section 4.1 will be measured.

Tab. 12 lists the malware families experimented in the
present study. A total of 12 malware families and 930
malware samples were experimented. In the present study,
all the malware samples include Import Address Table
(IAT) because binary analysis based APIs are collected to
analyze malicious behaviors.

Table 12 Malware family sample data set

Type Family Data Set

Gen.Variant
Zusy 192
Kazy 170
Buzy 82

Gen:Heur

MSIL.Krypt 74
Conjar 28

KS 28
Naffy 24

W32.Trojan
Graftor 149
Clicker 24

W32.Virus Sality 37
Win32.Worm Allaple 75

Trojan:Downloader Barys 47
Total 12 930

Table 13 Malware family similarity

Type Family Min Sim Max Sim Avr Sim

Gen.Variant
Zusy 67.203 78.382 73.192
Kazy 66.645 79.128 72.961
Buzy 77.016 84.071 74.896

Gen:Heur

MSIL.Krypt 73.772 79.837 73.689
Conjar 70.338 89.734 76.661

KS 73.396 85.676 75.789
Naffy 71.903 83.845 73.874

W32.Trojan Graftor 68.912 75.845 72.651

W32.Virus
Clicker 73.554 82.612 79.213
Sality 65.537 88.343 72.568

Win32.Worm Allaple 72.192 86.695 73.182
Trojan:Downloader Barys 79.612 85.791 75.977

Tab. 13 shows the minimum, maximum, and average

similarities of the malware families.
For all the families, average similarities not lower than

73% are shown. However, the growth rate of malware is
currently increasing exponentially, and analysis for
discrimination of new malware variants is necessary. To
that end, in the present study, 10 randomly selected pieces
of malware were made into pixel images and compared
with the pixel images of malicious behaviors experimented
earlier to experiment the detection of malware variants.

In the present study, 10 pieces of malware were
randomly selected and were applied with the method

proposed in this paper. Randomly selected 10 pieces of
malware were finally made into pixel images and
compared with the malware families experimented earlier
in the present study. The results are shown in Tab. 14.

Table 14 Random malware similarity

Sample
No.

Most
Similarity

Family

Similarity
Score

Detection Result
Verifi-
cation

1 Heur 73.038 Gen:Variant.FakeAlert.2 O

2 Heur 66.982 Gen:Variant.Zusy.3043 X

3 Krypt 81.098 Gen:Heur.MSIL.Krypt.2 O

4 Razy 79.778 Gen.Variant.Razy.90433 O

5 Graftor 77.391
Gen.Variant.Graftor.1856

58
O

6 Kazy 69.192 Backdoor.Fluxay.B X

7 Razy 81.748 Gen.Variant.Razy.112591 O

8 Kazy 80.112 Gen:Variant.Kazy.28577 O
9 Kazy 83.799 Gen:Variant.Kazy.26444 O
10 Allaple 74.132 Win32.Worm.Allaple.Gen O

In the table, the right end shows the detection results.

In this experiment, 8 out of 10 pieces of malware were
classified to coincide with their families. However, two
pieces of malware were classified differently from the
detection results. This is due to the fact that analysis
samples for the relevant malware families were not
prepared. In addition, the reason why the results of
classification of these two families were shown to be Zusy
and Kazy is that among the family samples experimented
earlier in the present study, the numbers of samples in Zusy
and Kazy families were overwhelmingly large. However,
this is a limitation that can be resolved by preparing
analysis samples for malware families. Although not so
many family analysis samples were prepared in the present
study due to difficulties in the collection of malware
samples, the accuracy will be enhanced through continuous
sample collection and analysis sample data construction.

4.3 Efficiency of Analysis

Many previous studies have calculated similarities

between different pieces of malware to verify the
similarities of malware families and variants. In the present
study, three previous methods for measuring malware
similarities and the method proposed in the present study
will be compared in terms of analysis and time. The first
similarity verification method is one that uses the Jacquard
index [31], which measures the similarity between two
sets. In the case of this method, the more identical the two
sets are to each other, the closer to 1 the value is, and the
less identical the two sets are to each other, the closer to 0
the value is. The relevant method enables finding similar
objects based on known data and can become a base for
resolving multiple data mining works. The second
similarity verification method is the Normalized
Compression Distance (NCD) [32, 33], which uses the
compression algorithm to measure the similarity of two
objects. Usually, compression algorithms attempt to
compress the sequence to a shorter length for compression.
The NCD uses the Sequence property of compression
algorithms as such. That is, the NCD verifies how much
the compressed length of the sequence made by combining
two sequences has been shortened compared to the sum of

Jihun KIM et al.: Malware Visualization and Similarity via Tracking Binary Execution Path

228 Technical Gazette 29, 1(2022), 221-230

the lengths of the two sequences compressed separately
and the resultant value is closer to 0 when the two lengths
are more similar. The last similarity verification method is
the nearest neighbor search [34] algorithm. Since malware
has been increasing very fast recently, many researchers
apply machine learning algorithms to analysis for
automation of analysis. The nearest neighbor search
algorithm can be said to be a representative one, which is
intended to find the point closest to the target object
through learning using Euclidean distance calculation and
linear search, etc.

In the present study, three similarity verification
methods, that is, Jacquard Index, the NCD, and the nearest
neighbor algorithm, are applied to the 930 samples
experimented in the present study in the same system to
analyze the proposed method and evaluate the time
performance of the method. Here, the NCD measures
similarities based on files, and the Jacquard Index and the
nearest neighbor algorithm measure similarities based on
codes. All the four methods including the proposed method
indicate higher similarities when the values are closer to
100 and indicate the average values of similarities.

Fig. 7 is a graph of the statistics of detection rates
compiled by applying the four similarity verification
methods to 12 malware families.

Figure 7 Detection efficiency

First, in the case of the NCD method, similarities were

calculated as being in a range of 65% ~ 75% in all families.
This is because the relevant method is based on the method
of measuring the file based similarities excluding the
internal codes. In addition, unlike other methods, the
nearest neighbor search measured similarities based on
codes and the similarities calculated using the relevant
method were similar to the similarities calculated using the
method proposed in the present study. Furthermore, the
similarities measured using this method were 1% ~ 3%
higher than those measured using the method proposed in
the case of the Conjar and Clicker families but the accuracy
cannot be easily verified in that precise similarities cannot
be calculated because the relevant families consist of small
numbers of samples in a range of 20 ~ 30. As can be
identified in Fig. 7, the similarities of the Conjar, KS,
Nafty, and Clicker families consisting of not more than 40
samples were calculated to be up to 20% higher compared
to other families. On the other hand, the similarities of
families with at least 100 samples such as Zusy, Kazy, and
Graftor were calculated to be 70% ~ 73% and the method

proposed in the present study showed higher similarities
than other methods. This can highlight efficiency in
automating the analysis of a large number of malware by
calculating similarity to other similarity methods even for
a family of large numbers of samples. This means that the
method proposed in the present study will calculate
similarities to be higher than other similarity verification
methods even in the case of families consisting of many
samples highlighting its efficiency in automation for
analysis of massive malware.

5 CONCLUSION

As mentioned at the beginning of this paper, research
on effective analysis methods is important because the
amount of malicious code to be analyzed is too large.
Therefore, in this paper, a method of visualizing and
analyzing malicious code, which is a method different from
the existing method, is proposed.

In the present study, malware was analyzed at the code
level using static execution path searches. Although the
basic analysis method is static analysis, the effect of
dynamic analysis can be expected because the method
proposed in the present study searches the execution paths
and the mutual actions of the APIs collected during
analysis and the frequency numbers are used to analyze
malicious behaviors. In the present study, APIs were
nodalized and the mutual actions of APIs were visualized
as edges and the colors of the edges. Graphs based on the
foregoing can be applied as data for clear judgment of
malicious behaviors. In the present study, attempts were
made to measure similarities based on the image
information visualized as such. However, the images made
into graphs had many constraints that can degrade the
accuracy of measurement of the similarities of the colors
of the edges, which represent the mutual relations of APIs.
To solve this problem, the mutual actions of APIs and the
frequency numbers were again made into matrices and
malware was made into 25  25 pixel images based on the
matrices. Since the 25  25 pixel images are composed of
very intuitive images, they are useful for comparison of
colors on images being compared. In the present study, the
Euclidean distance algorithm was applied to measure color
similarities and the similarities of mutual malicious
behaviors are calculated based on the final values of
Euclidean distances. Finally, the similarities calculated
based on such methods were compared with the similarities
calculated using existing similarity calculation methods
and it was found that the similarities were calculated to be
5% ~ 10% higher on average by such methods.

Improvements and advantages of the method proposed
in this paper were confirmed when compared to the
existing method, but there are also disadvantages while
conducting the research. The method proposed in the
present study spends a lot of time in deriving resultant
values because it analyzes samples, visualizes the samples,
and calculates the similarities of the visualized samples.
Therefore, it requires a lot of time for analysis of 10 000 or
more malware samples. As a result, when performing
analysis, it is necessary to divide the sample into less than
10 000 malicious code samples at a time to achieve better
performance than the existing method. When conducting
future research, we plan to come up with a plan to

Jihun KIM et al.: Malware Visualization and Similarity via Tracking Binary Execution Path

Tehnički vjesnik 29, 1(2022), 221-230 229

overcome the difficulties of analysis due to the mass
production of malicious codes by optimizing the analysis
method to compensate for these limitations. Future work
will compare accuracy and performance by analyzing large
amounts of data with various classification methods. In
addition, in this paper, although previously known
malicious codes and families are used, a method for
detecting new malicious codes or new variants of malicious
codes will be studied.

Acknowledgements

This research was supported by the Yeungnam
University Research Grant.

6 REFERENCES

[1] Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J. D.,

& Penix, J. (2008). Using static analysis to find bugs. IEEE
software, 25(5), 22-29. https://doi.org/10.1109/MS.2008.130

[2] Moser, A., Kruegel, C., & Kirda, E. (2007, December).
Limits of static analysis for malware detection. Twenty-Third
Annual Computer Security Applications Conference
(ACSAC 2007), 421-430.
https://doi.org/10.1109/ACSAC.2007.21

[3] Vetter, J. S. & De Supinski, B. R. (2000, November).
Dynamic software testing of MPI applications with Umpire.
SC'00: Proceedings of the 2000 ACM/IEEE Conference on
Supercomputing, 51-51.
https://doi.org/10.1109/SC.2000.10055

[4] Idika, N. & Mathur, A. P. (2007). A survey of malware
detection techniques. Purdue University, 48(2).

[5] Huabiao, L., Xiaofeng, W., & Jinshu, S. (2013). SCMA:
Scalable and Collaborative Malware Analysis using System
Call Sequences. International Journal of Grid and
Distributed Computing, 6(2), 11-28.

[6] Ďurfina, L., Křoustek, J., Zemek, P., Kolář, D., Hruška, T.,
Masařík, K., & Meduna, A. (2011). Design of a Retargetable
Decompiler for a Static Platform-Independent Malware
Analysis. International Journal of Security and Its
Applications, 5(4), 91-106.

[7] Farhana Hordri, N., Azurati Ahmad, N., Sophiayati Yuhaniz,
S., Sahibuddin, S., Fadillah, A., Ariffin, M., Afifah Mohd
Saupi, N., Ahmad, N., Zamani, Y. J., & Efendy Md Senan,
M. F. (2018). Classification of Malware Analytics
Techniques: A Systematic Literature Review. International
Journal of Security and Its Applications, 12(2), 9-18.
https://doi.org/10.14257/ijsia.2018.12.2.02

[8] Griffin, K., Schneider, S., Hu, X., & Chiueh, T. C. (2009,
September). Automatic generation of string signatures for
malware detection. International workshop on recent
advances in intrusion detection, 101-120.
https://doi.org/10.1007/978-3-642-04342-0_6

[9] Bilar, D. (2007). Opcodes as predictor for malware.
International journal of electronic security and digital
forensics, 1(2), 156-168.
https://doi.org/10.1504/IJESDF.2007.016865

[10] Santos, I., Brezo, F., Nieves, J., Penya, Y. K., Sanz, B.,
Laorden, C., & Bringas, P. G. (2010, February). Idea:
Opcode-sequence-based malware detection. International
Symposium on Engineering Secure Software and Systems,
35-43. https://doi.org/10.1007/978-3-642-11747-3_3

[11] Griffin, K., Schneider, S., Hu, X., & Chiueh, T. C. (2009,
September). Automatic generation of string signatures for
malware detection. International workshop on recent
advances in intrusion detection, 101-120.
https://doi.org/10.1007/978-3-642-04342-0_6

[12] Santos, I., Penya, Y. K., Devesa, J., & Bringas, P. G. (2009).
N-grams-based File Signatures for Malware Detection.
ICEIS (2), 9, 317-320.
https://doi.org/10.5220/0001863603170320

[13] Santos, I., Brezo, F., Ugarte-Pedrero, X., & Bringas, P. G.
(2013). Opcode sequences as representation of executables
for data-mining-based unknown malware detection.
Information Sciences, 231, 64-82.
https://doi.org/10.1016/j.ins.2011.08.020

[14] Choi, Y. H., Han, B. J., Bae, B. C., Oh, H. G., & Sohn, K.
W. (2012, August). Toward extracting malware features for
classification using static and dynamic analysis. 8th
International Conference on Computing and Networking
Technology (INC, ICCIS and ICMIC), 126-129.

[15] E. Elhadi, A. A., Maarof, M. A., Bazara, I., & Barry, A.
(2013). Improving the Detection of Malware Behaviour
Using Simplified Data Dependent API Call Graph.
International Journal of Security and Its Applications, 7(5).
https://doi.org/10.14257/ijsia.2013.7.5.03

[16] Fan, C. I., Hsiao, H. W., Chou, C. H., & Tseng, Y. F. (2015,
July). Malware detection systems based on API log data
mining. 39th annual computer software and applications
conference, 3, 255-260.
https://doi.org/10.1109/COMPSAC.2015.241

[17] Firdausi, I., Erwin, A., & Nugroho, A. S. (2010, December).
Analysis of machine learning techniques used in behavior-
based malware detection. Second international conference
on advances in computing, control, and telecommunication
technologies, 201-203. https://doi.org/10.1109/ACT.2010.33

[18] Mulder, S. A., Blount, J., & Tauritz, D. (2011). Adaptive
Rule-Based Malware Detection Employing Learning
Classifier Systems: A Proof of Concept (No. SAND2011-
2448C). Sandia National Lab.(SNL-NM), Albuquerque, NM
(United States).

[19] Wagner, M., Fischer, F., Luh, R., Haberson, A., Rind, A.,
Keim, D. A., & Aigner, W. (2015). A survey of visualization
systems for malware analysis. Eurographics Conference on
Visualization (EuroVis),105-125.

[20] Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S.
(2011, July). Malware images: visualization and automatic
classification. Proceedings of the 8th international
symposium on visualization for cyber security, 1-7.
https://doi.org/10.1145/2016904.2016908

[21] Trinius, P., Holz, T., Göbel, J., & Freiling, F. C. (2009,
October). Visual analysis of malware behavior using
treemaps and thread graphs. 6th International Workshop on
Visualization for Cyber Security, 33-38.
https://doi.org/10.1109/VIZSEC.2009.5375540

[22] Lyda, R. & Hamrock, J. (2007). Using entropy analysis to
find encrypted and packed malware. IEEE Security &
Privacy, 5(2), 40-45. https://doi.org/10.1109/MSP.2007.48

[23] Vinod, P., Jaipur, R., Laxmi, V., & Gaur, M. (2009, March).
Survey on malware detection methods. Proceedings of the
3rd Hackers' Workshop on computer and internet security
(IITKHACK'09), 74-79.

[24] Karnik, A., Goswami, S., & Guha, R. (2007, March).
Detecting obfuscated viruses using cosine similarity
analysis. First Asia International Conference on Modelling
& Simulation (AMS'07), 165-170.
https://doi.org/10.1109/AMS.2007.31

[25] Jang, J., Brumley, D., & Venkataraman, S. (2011, October).
Bitshred: feature hashing malware for scalable triage and
semantic analysis. Proceedings of the 18th ACM conference
on Computer and communications security, 309-320.
https://doi.org/10.1145/2046707.2046742

[26] Newsome, J. & Song, D. X. (2005, February). Dynamic
Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software.
NDSS, 5, 3-4.

Jihun KIM et al.: Malware Visualization and Similarity via Tracking Binary Execution Path

230 Technical Gazette 29, 1(2022), 221-230

[27] King, J. C. (1976). Symbolic execution and program testing.
Communications of the ACM, 19(7), 385-394.
https://doi.org/10.1145/360248.360252

[28] Hafner, J., Sawhney, H. S., Equitz, W., Flickner, M., &
Niblack, W. (1995). Efficient color histogram indexing for
quadratic form distance functions. IEEE transactions on
pattern analysis and machine intelligence, 17(7), 729-736.
https://doi.org/10.1109/34.391417

[29] Jaccard, P. (1912). The distribution of the flora in the alpine
zone. 1. New phytologist, 11(2), 37-50.
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x

[30] Kim, J. H., Lee, S. W., & Youn, J. H. (2021). Malware
Visualization and Similarity via Tracking Binary Execution
Path. International Journal of Smart Home, 15(1).

[31] Kim, J. & Lee, S. (2021). Malicious Behavior Detection
Method Using API Sequence in Binary Execution Path.
Tehnički vjesnik, 28(3), 810-818.
https://doi.org/10.17559/TV-20210202132203

[32] Bennett, C. H., Gács, P., Li, M., Vitányi, P. M., & Zurek, W.
H. (1998). Information distance. IEEE Transactions on
information theory, 44(4), 1407-1423.
https://doi.org/10.1109/18.681318

[33] Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M.,
Jahanian, F., & Nazario, J. (2007, September). Automated
classification and analysis of internet malware. International
Workshop on Recent Advances in Intrusion Detection, 178-
197. https://doi.org/10.1007/978-3-540-74320-0_10

[34] Jegou, H., Douze, M., & Schmid, C. (2010). Product
quantization for nearest neighbor search. IEEE transactions
on pattern analysis and machine intelligence, 33(1), 117-
128. https://doi.org/10.1109/TPAMI.2010.57

Contact information:

Jihun KIM, MSc
Department of Computer Engineering, Yeungnam University,
280 Daehak-Ro, Gyeongsan, Gyeongbuk, Republic of Korea
E-mail: f13521@naver.com

Sungwon LEE, MSc
Department of Computer Engineering, Yeungnam University,
280 Daehak-Ro, Gyeongsan, Gyeongbuk, Republic of Korea
E-mail: noke15@ynu.ac.kr

Doosan CHO, PhD, Professor
(Corresponding author)
Electrical & Electronic Engineering, Sunchon National University,
Suncheon, Jeollanam-do, South Korea
E-mail: dscho@scnu.ac.kr

Jonghee YOUN, PhD, Professor
(Corresponding author)
Department of Computer Engineering, Yeungnam University,
280 Daehak-Ro, Gyeongsan, Gyeongbuk, Republic of Korea
E-mail: youn@yu.ac.kr

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

