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ABSTRACT
This paper proposes a novel two-stage method for the design of a suboptimal model-matching
controller in an output feedback closed-loop system (OFCLS) using the concept of squaredmag-
nitude function (SMF). A streamlined procedure for selection of a reference model, based on a
linear quadratic regulator (LQR) with integral action (LQRI) having optimum values for the ele-
ments of the weighting matrices and the degree of interaction is proposed. The degrees of the
numerator and denominator polynomials of the elements of the OFCLS transfer function matrix
(TFM) areobtained from thoseof theplant and the chosen controller structure. In the first stageof
the controller design, taking the LQRI-based closed-loop system (LCLS) as a referencemodel, the
OFCLS is obtained using the approximate model-matching (AMM) technique based on the SMF
concept. The approximation method involves a higher-order approximation for stable multiple-
input-multiple-output (MIMO) lower-order systems. In the second stage, controller parameters
are obtained using the exactmodel-matching (EMM)methodwith information about the OFCLS
and plant TFMs. The proposed controller design method outperforms the method presented in
the literature on integral squared error index. The simulation and experimental results illustrate
the effectiveness of the proposed method.
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1. Introduction

The design of controllers for plants with interaction
has been one of the challenges faced by researchers
in the area of multiple-input-multiple-output (MIMO)
control systems. The model-matching technique has
been a powerful methodology for controller design of
MIMO systems [1–9]. Controllers designed using the
model-matching technique have been utilized for rejec-
tion of various types of disturbances [4]. The concepts
of exact model-matching (EMM) of two-dimensional
systems using state feedback have been described in
[5]. The proposed methodology in [5] can be utilized
for the design of two-dimensional filters. A central-
ized control strategy based on the equivalent transfer
function (TF) is presented in [10]. An output feedback-
based controller design methodology for higher-order
SISO plants is presented in [11]. The methodology in
[11] applies to unstable plant TFs. Model order reduc-
tion reduce the complexity of implementation of higher
integer-order systems [12,13]. A model-order reduc-
tion method has been applied to closed-loop systems
with parameter variations [14]. An algorithm for the
design of controllers in multivariable systems using
the approximate model-matching (AMM) technique
has been proposed in [15,16]. EMM of linear time-

varying multivariable systems was presented in [17]. A
novel EMM methodology for generalized state-space
systems via pure proportional state and output feedback
was proposed in [18]. EMM has been solved using a
generalization of Wolovich’s theorem [19]. The model-
matching concept was used earlier for obtaining con-
trollers for tracking and disturbances. In the present
work, the AMM technique has been used for obtain-
ing the output feedback closed-loop system (OFCLS)
transfer function matrix (TFM), and in a following
step, the controller TFM was obtained using the EMM
technique.

Trajectory tracking has been achieved successfully
using PID controllers in different types of systems
[20,21]. Robust adaptive tracking control has been
proposed for a nonholonomic mobile manipulator
under system parameter uncertainties and external
disturbances [22,23]. Trajectory tracking using linear
quadratic regulator (LQR) techniques has been suc-
cessfully applied to different types of systems [24,25].
The weighting matrices of the LQR controller have
been determined using a genetic algorithm (GA) [26],
particle swarm optimization [27] and pole placement
[28]. The methods of determining of weighting matri-
ces described in the literature have not considered the
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interactions present in MIMO systems. Interaction, as
a specification to be preserved in the designed closed-
loop system, i.e., OFCLS, has also been considered in
the present work. The selection of reference model pro-
posed in this work focuses on obtaining the optimal
interaction factor for given desired output time-domain
specifications together with finding the optimummain
diagonal elements of the diagonal weighting matrices
to be used in the LQR with an integral action (LQRI)-
based closed-loop system (LCLS) design procedure. In
the present work, the off-diagonal elements of a refer-
ence model TFM are determined by considering the
optimum interaction present in the controlled system.

Squared magnitude continued fraction and factor-
ization techniques are utilized to derive the stability-
preserved reduced-order approximant [29]. A squared
magnitude function (SMF)-based approach has been
utilized in the approximation [30] and hardware imple-
mentation [31] of single-input-single-output (SISO)
fractional-order systems. The retention of stability and
minimum-phase characteristics has been achieved in
model-order reduction of SISO linear systems using the
concept of SMF [32]. The model-order reductions of
SISO and MIMO systems have been solved using the
method of integration of the stability equation together
with the Padé approximation method [33]. The con-
cept of SMF in the field of approximation yields a
stable approximant. In the literature, the concept of
SMF has been used for obtaining an approximation of
SISO fractional-order systems or higher integer-order
systems. The present work uses the AMM technique
based on the concept of SMF to obtain a higher-
order OFCLS representation, subsequently yielding
controller parameters.

In the model-matching techniques reported in the
literature, optimum interactions present in the OFCLS
have not been considered. In [34], the authors devel-
oped an algorithm to obtain the desired interaction
for a given degree of coupling. In the present work,
the design procedure for obtaining a reference model
incorporates the time-domain specifications and opti-
mal interaction utilizing a simultaneous GA-based
optimization procedure.

The rest of this paper is organized as follows.
Section 2 presents the problem statement. The pro-
posed method for selection of the reference model is

described in Section 3. Section 4 details the proposed
AMM algorithm based on the SMF concept. Section
5 describes the procedure to determine the controller
parameters based on the EMM technique. Simulation
and experimental results are provided in Sections 6
and 7 respectively. Finally, the concluding remarks and
future scope are included in Section 8.

2. Statement of the problem

The objective of the present work is to design a con-
troller Gc(s) for a MIMO plant GP(s) using the model-
matching technique. The controller design aims to
make the response y(t) of the OFCLS GCL(s) as close
as possible to the response yd(t) of the reference model
Gd(s). Gd(s) is chosen in such a way that it reflects
the desired closed-loop system characteristics, such as
the desired time-domain specifications and the optimal
interaction to be present in theGCL(s).Model-matching
controller design in the literature usually deals only
with one of the two types of model-matching, namely
EMM and AMM. The present work deals with both
of these model-matching techniques for the design of
Gc(s), thereby combining the advantages of both types
into one algorithm. The important aspect of the con-
troller design in the design and implementation is that
the controller structure need not be fixed. The user can
choose any controller structure to achieve the objec-
tives. In addition, the solution for the controller param-
eters need not be unique. Certain controller parameters
can be chosen, and the remaining controller parameters
can be obtained according to the developed algorithm,
resulting in a reduction in hardware compulsion. The
present work leads to the retention of the stability prop-
erty of the Gd(s) in the GCL(s), thereby yielding a sta-
bilizing Gc(s) in the second stage of the algorithm.
The block diagrams of the reference model (LCLS
model/user-defined model) and the OFCLS are shown
in Figure 1.

The plant can be represented in the s-domain as

GP(s) =
[
G(i,k)P (s)

]
= 1

dP(s)

[
n(i,k)P (s)

]
(1)

where G(i,k)P (s) , i = 1, 2, . . . , p; k = 1, 2, . . . , q repre-
sents the elements of the plant TFM relating the kth

Figure 1. Block diagram of desired and designed closed-loop system.
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input to the ith output. The numerator and denomina-
tor polynomials of each element of the plant TFM are
represented by n(i,k)P (s) and dP(s) respectively.

The problem of finding Gc(s) such that GCL(s) yields
the same response as that of Gd(s) can be stated as fol-
lows. Find Gc(s) for the given MIMO plant from the
information about the degrees of the numerator and
denominator polynomials of elements of Gc(s) with
the objective of obtaining the optimal interaction and
specified time-domain specification in GCL(s). In the
proposed method for controller design, the first stage
consists of an approximation of Gd(s) to a higher-
order TFM GCL(s). The degrees of the numerator and
denominator polynomials of each element ofGCL(s) are
obtained from those of the plant and the chosen con-
troller structure (see Appendix A). In the second stage
of the proposed method, Gc(s) is obtained by using
the concept of EMM with the knowledge of GP(s) and
GCL(s).

3. Referencemodel selection

This section proposes a streamlined procedure for the
selection of Gd(s) which reflects the optimum degree
of interaction and embodies the desired time-domain
specifications.

3.1. Conventional model selection approach

Methods based on the preservation of the pole-zero
excess of the plant [2] and specified time-domain spec-
ifications [34] have previously been utilized for Gd(s)
selection. The approach presented in [34] embodies
a specified interaction in the off-diagonal elements of
the Gd(s) TFM. The limitation of the Gd(s) selection
approaches presented in the literature is that they donot
include information about the plant dynamics.

3.2. Proposedmodel selection procedure

The proposedmethod uses the LCLSmodel asGd(s) for
the design of Gc(s). The method uses an initial model
which is utilized to compute the LCLS model. The
initial model is framed with the desired time-domain
specifications. The interaction parameters λ(i,k) of the
initial model are retained as tuning parameters. The
LCLS model is framed by tuning the elements of the
weighting matrices Q and R in the optimal state feed-
back design procedure. The interaction thus developed
in the LCLS model is mapped onto the initial model by
tuning the parameters λ(i,k). The desired time-domain
specifications of the initial model are used to tune the
elements of the weighting matrices of the LCLS model.
Thus, the LCLSmodel reflects the desired time-domain
specifications and the optimal interaction to be present
in GCL(s).

3.2.1. Initial model
The desired transient response specifications include
natural frequency, settling time, damping factor, etc.
The initial model dynamics can be expressed in the
form of TFM as

[Y(i)m (s)]p× 1 = Gm(s)[Rk(s)]q×1 (2)

where Gm(s) = [G(i,k)m (s)]. Here, each G(i,k)m (s), i =
1, 2, . . . , p; k = 1, 2, . . . , q represents an element of the
initial model TFM relating the ith output to the kth
input. The Laplace transform of the desired responses
is denoted by Y(i)m (s), with steady-state values denoted
by Si. The desired profiles of Y

(i)
m (s) can be taken in the

form of the response of a standard second-order low-
pass filter for Ri(s), taken as a step signal of amplitude
Si, i.e.,

Y(i)m (s) = Siω2
n

s(s2 + 2ζωns + ω2
n)

(3)

where ωn is the natural frequency and ζ is the damping
ratio, both of which can be determined from the desired
time-domain specifications such as settling time, over-
shoot, rise time, etc. The (i,k)th off-diagonal elements
of the initial model TFM are designed to have a pole
at s = −λ(i,k) and zero at s = ∞, which is utilized
along with Equation (3) in Equation (2) to yield the
expressions for diagonal elements of the initial model:

G(u,u)m (s) =

(
sy(u)m (s)−∑∀k

k�=u

Sk
(s+λ(u,k))

)
Su

(4)

where u = 1, 2, . . . ,min(p,q); k = 1, 2, . . . , q.
For a given desired time-domain specification, the

dynamics of Gm(s) will be a function of the parameter
λ(i,k). A given value of λ(i,k) quantifies the interaction
that can be present in the controlled dynamics. Higher
values of λ(i,k) imply a system with lesser interactions
and vice versa. In the present work, a method of obtain-
ing the optimized value of λ(i,k) along with optimized
values of the elements of the weighting matrices, is
presented in subsection 3.2.3.

3.2.2. LCLSmodel
To eliminate the steady-state error, the integrating con-
troller has full state feedback incorporated. The dif-
ference between the reference input and the output is
integrated and the outputs of the integrators are con-
sidered as additional states. The combined structure is
as given in [35].

In the combined structure, x ∈ R
n×1, u ∈ R

q×1,
y, xi, r ∈ R

p×1 are the state, input, output, additional
state and reference vectors respectively. The numbers of
inputs, outputs and states present in the plant dynamic
model are denoted by q, p and n respectively. The
state-space representation of the plant GP(s) shown in
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Figure 2. Flow diagram of the proposed reference model selection procedure.

Equation (1) can be given as

ẋ = Ax + Bu, and y = Cx, (5)

where the constant matrices A ∈ R
n×n,B ∈ R

n×q,C ∈
R
p×n, K ∈ R

q×n, and Ki ∈ R
q×p are the state, input,

output, state feedback gain and integral gain matri-
ces respectively. Elimination of steady-state offset is
achieved by incorporation of the integrator into the
controlled system [35]. The overall TFM representing
the LCLS model can be obtained by

Gd(s) = Cag(sI(n+p) − (Aag − BagKop))
−1E (6)

where the optimal state feedback gain matrix is given
byKop = −[K Ki],Kop ∈ R

q×(n+p),Aag =
[

A On×p
−C Op×p

]
,

Bag =
[

B
Op×q

]
, Cag = [COp×p] and E =

[
On×p
Ip

]
.

Kop is obtained by solving the algebraic Riccati
equation for a given weighting matrices Q and R
[25,26]. In the present work, the weighting matrices are
obtained using the optimization procedure explained in
the following subsection.

3.2.3. Weightingmatrices and degree of interaction
The set of optimal weighting matrices and the degree
of interaction have been determined byminimizing the
difference in step response of Gm(s) and Gd(s). In the
present work, the weighting matrices Q and R of the
LQRI are assumed to be diagonal matrices. Hence, the
aim of the optimization process is defined as follows.

Find themain diagonal elements of diagonal weight-
ingmatrices of LQRI and the off-diagonal pole location
of the initial model TFM to

minimize

J1 =
p∑

i=1

( q∑
k=1

(
τ∑
α=0

[(y(i,k)m (α�t)− y(i,k)d (α�t))
T

(y(i,k)m (α�t)− y(i,k)d (α�t))]

))
(7)

subject to the constraints that the weighting matrices
Q and R should be positive semi-definite, and positive
definite matrices, respectively.

where the step responses of TFs relating the ith out-
put to the kth input of Gm(s) and Gd(s) are represented
by y(i,k)m (·) and y(i,k)d (·) respectively. The sample time
and final time for the evaluation of the step response are
�t and τ �t respectively. The superscriptT denotes the
transpose of the matrix.

The solution of the optimization problem leads to
an optimized value of λ(i,k) and optimized values of
the elements of the weighting matrices. The selection
of the LCLS model over the initial model for Gd(s)
as an input to the first stage of the proposed model-
matching-based controller design procedure guaran-
tees two major advantages. Firstly, the LCLS model is
formulated by considering the dynamics of the plant.
Secondly, the degrees of the numerator and denomina-
tor polynomials of elements of the LCLS model TFM
will be closer to those of the OFCLS TFM in compar-
ison to those of initial model TFM. The overall proce-
dure for obtaining the optimal LCLS model from the
information in the initial model can be illustrated in the
form of a flow diagram as shown in Figure 2.

4. AMM technique based on SMF concept

This section presents the development of the proposed
approximation algorithm for MIMO systems based on
the concept of SMF. As part of the first stage of the pro-
posed algorithm, an LCLSmodel TFM is approximated
to the OFCLS TFM using SMF. If the degrees of the
numerator and denominator polynomials of elements
of the LCLSmodel TFMare same as those of theOFCLS
TFM, the Gc(s) parameters may be obtained directly
using EMM by taking the LCLS model itself as the
OFCLS. In all other cases, the SMF-based approxima-
tion plays a role in the determination of OFCLS TFM.

4.1. Formulation of non-homogeneous
simultaneous equations

This section describes the procedure for constructing
non-homogeneous simultaneous equations, which are
solved with the objective of finding parameters of SMF
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of OFCLS. Let Gd(s), obtained in the form of TFM via
Equation (6), be expressed as

Gd(s) =
[
G(i,k)d (s)

]
(8)

where G(i,k)d (s) , i = 1, 2, . . . , p; k = 1, 2, . . . , q repre-
sents the elements of the Gd(s) TFM relating the kth
input to the ith output. Elements of the TFM of Gd(s)
can be represented as

G(i,k)d (s) =
a(i,k)0 + a(i,k)1 s + a(i,k)2 s2 + · · · + a(i,k)

m(i,k)1
sm

(i,k)
1

b0 + b1s + b2s2 + · · · + bn1sn1
(9)

where a(i,k)α , α = 0, 1, . . . , m(i,k)1 and bβ , β = 0, 1, . . . ,
n1 are the numerator and denominator polynomial
coefficients of the (i,k)th element of the LCLS model
TFM respectively, having m(i,k)1 ≤ n1. Gd(s) is to be
approximated to a higher-order OFCLS TFM GCL(s).
Let GCL(s) be represented in TF domain as

GCL(s) =
[
G(i,k)CL (s)

]
= 1

dCL(s)

[
n(i,k)CL (s)

]
(10)

where G(i,k)CL (s) , i = 1, 2, . . . , p; k = 1, 2, . . . , q, repre-
sents the elements of OFCLS TFM relating the kth
input to the ith output. The numerator and denomina-
tor polynomials of each element of the OFCLS TFM are
represented by n(i,k)CL (s) and dCL(s), respectively. Each
element of the OFCLS TFM can be represented as

G(i,k)CL (s) =
d(i,k)0 + d(i,k)1 s + d(i,k)2 s2 + . . .+ d(i,k)m(i,k)s

m(i,k)

c0 + c1s + c2s2 + . . .+ cn−1sn−1 + sn
(11)

whered(i,k)η ,η = 0, 1, . . . , m(i,k) and cμ,μ = 0, 1, . . . ,
n − 1 are the numerator and denominator polynomial
coefficients of the (i,k)th element of the OFCLS TFM
respectively, having m(i,k) ≤ n. Each element in the
SMF of the OFCLS TFM, P(i,k)CL (s

2), can be represented
as

P(i,k)CL (s
2) = G(i,k)CL (s) ∗ G(i,k)CL (−s) (12)

The right-hand side of Equation (12) can be represented
as a ratio of two even polynomials. Hence,

P(i,k)CL (s
2) =

D(i,k)0 + D(i,k)1 s2 + D(i,k)2 s4

+ . . .+ D(i,k)m(i,k)s
2m(i,k)

C0 + C1s2 + C2s4 + . . .

+Cn−1s2(n−1) + s2n

(13)

The numerator and denominator polynomial coeffi-
cients of P(i,k)CL (s

2) are represented by D(i,k)η and Cμ
respectively. The coefficientsD(i,k)η and Cμare functions
of d(i,k)η and cμ as given in Equation (11). The OFCLS
TFM is designed with the objective that the frequency
response of its SMF matches that of the LCLS model

at certain frequency points, s = jωh, within a desired
frequency range. i.e.,

P(i,k)d (s2)|s2=−ω2
h

= f (i,k)h = P(i,k)CL (s
2)|s2=−ω2

h
(14)

where P(i,k)d (s2) is the SMF of Gd(s) and ωh, h = 1,
2, . . . , nx, are nx frequency points along the positive
imaginary axis in the s-plane. The value of nx is com-
puted using a ceiling function, as

nx = �nnd/(pq)	 (15)

where nnd is the number of the unknown numerator
and denominator coefficients in the SMF of the OFCLS
TFM. The numerator polynomials of the SMF of the
OFCLS in Equation (13) can be denoted inmatrix form
as

n(i,k)CL (s
2) = S(i,k)D X(i,k)D (16)

where S(i,k)D = [s2m
(i,k)

s2(m
(i,k)−1) . . . s21], and X(i,k)D

=
[
D(i,k)m(i,k)D

(i,k)
(m(i,k)−1) . . .D

(i,k)
1 D(i,k)0

]T
(17)

Similarly the denominator polynomial in Equation (13)
can be denoted in matrix form as

dCL(s2) = s2n + ScXc (18)

where SC = [s2(n−1) . . . s2 1], and XC

= [Cn−1Cn−2 . . .C0]T (19)

Then, combining Equations (14), (16) and (18), the
following matrix equation can be formed:

[S(i,k)D −f (i,k)h SC]|s=jωh

[
X(i,k)D XC

]T =
(
f (i,k)h s2n

)
|s=jωh ,
(20)

where h = 1, 2, . . . , nx. In general, for each frequency
point ωh, Equation (20) leads to the formation of pq
equations. The pq set of matrix equations can be cas-
caded in the form

AhX = Bh (21)

where

X =
[
X(1,1)D X(1,2)D · · · X(1,q)D X(2,1)D X(2,2)D

· · · X(2,q)D · · · X(p,1)D X(p,2)D · · · X(p,q)D XC

]T
(22)

For a 2× 2 MIMO system, the matrices Ah and Bh can
be shown as in Equations (23) and (24) respectively.

Ah =

⎡
⎢⎢⎢⎢⎢⎣

S(1,1)d O1×(m(1,1)+1) O1×(m(1,1)+1)

O1×(m(1,2)+1) S(1,2)d O1×(m(1,2)+1)

O1×(m(2,1)+1) O1×(m(2,1)+1) S(2,1)d

O1×(m(2,2)+1) O1×(m(2,2)+1) O1×(m(2,2)+1)
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O1×(m(1,1)+1) −f (1,1)h Sc

O1×(m(1,2)+1) −f (1,2)h Sc

O1×(m(2,1)+1) −f (2,1)h Sc

S(2,2)d −f (2,2)h Sc

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣
s=jωh

(23)

where O1×(m(i,k)+1) represents the null matrix of
dimension 1 × (m(i,k) + 1), i = 1, 2, k = 1, 2 and

Bh =
[
f (1,1)h f (1,2)h f (2,1)h f (2,2)h

] T × (s2n|s=jωh) (24)

The matrices Ah and Bh obtained at each frequency
point are cascaded to form the resultant A and Bmatri-
ces respectively. The resulting set of non-homogeneous
simultaneous linear equations are obtained in the form

AX = B (25)

The least squares solution of Equation (25) yields the
values for the unknown parameters in vectorX as given
in Equations (17), (19) and (22), thereby obtaining the
SMF of OFCLS.

4.2. Closed-Loop system steady-statematching

The present work considers the steady-state matching
ofGd(s) withGCL(s), while the input signal is a unit step
using the relation

lim
s→0

Gd(s) = lim
s→0

GCL(s) (26)

Let f (i,k)hz be the value of f (i,k)h given in Equation (14) at
the origin of the s-plane. Then, equating the value of
SMF of the OFCLS at the origin of the s-plane to that
of the LCLS using Equations (13) and (14) respectively,
yields

D(i,k)0 = f (i,k)hz C0 = G(i,k)d (s2)|s=0C0 (27)

As a result of Equation (27), the number of unknown
coefficients nnd to be determined is reduced by the
product pq for a p × q MIMO system. Hence the
total number of frequency points to be optimized dur-
ing the approximation procedure is also reduced. In
the present work, Equation (27) is incorporated into
Equation (25) to ensure steady-state matching between
Gd(s) and GCL(s), while the input signal is a unit step
signal.

Figure 3. (a) Right wheel velocity profile. (b) Left wheel velocity profile. (c) The circular trajectory.
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4.3. Factorization and selection of roots of the
numerator and denominator polynomials of SMF

The numerator and denominator polynomials of the
SMF of OFCLS P(i,k)CL (s

2) will be distributed symmetri-
cally with respect to the real and imaginary axes of the
s-plane. The poles and zeros of the SMF of the OFCLS
are determined via the factorization of polynomials
n(i,k)CL (s

2) and dCL(s2).
The present work incorporates the possibility of

complex poles and complex zeros of PCL(s2). The real
and complex conjugate pair roots of PCL(s2) present in
the LHP are retained in theOFCLS using Equation (28),
to form the real coefficients in the numerator and/or
denominator polynomials of G(i,k)CL (s).

G(i,k)CL (s) =
√
D(i,k)m(i,k)

m(i,k)l r∏
ϕ=1

(
s + σ

(i,k)
zϕ

)m(i,k)l r +m(i,k)l c
2∏

ϕ=m(i,k)lr +1(
s + σ

(i,k)
zϕ ± jω(i,k)zϕ

)
nlr∏
ψ=1

(s + σpψ )
nlr+ nlc

2∏
ψ=nlr+1

(s + σpψ ± jωpψ )

(28)

where m(i,k)lr and m(i,k)lc denote the number of real and
complex zeros present in the LHP respectively. The
number of real and complex poles present in the LHP
is represented by n(i,k)lr and n(i,k)lc respectively.

The retention of LHP poles and zeros of PCL(s2)
as presented in Equation (28) fails if the roots of the

numerator and/or denominator polynomials of PCL(s2)
are on the imaginary axis of the s-plane. The present
work tackles the problem of having purely complex
roots of the numerator and/or denominator polynomi-
als of PCL(s2) with the help of an optimization frame-
work. The objective of optimization is to minimize an
objective function subject to the constraint that the set
of chosen frequency points avoids the case in which any
poles/zeros of PCL(s2) become purely imaginary.

4.4. Selection of optimal frequency points

The problem of choosing optimal frequency points is
formulated in an optimization framework where the

Table 1. The minimum value of the objective function
obtained in the optimization procedure for the chosen
controller structure.

Degrees of numerator and
denominator polynomials of elements
of OFCLS TFM

Chosen controller
structure m(1,1) m(1,2) m(2,1) m(2,2) n J2min

PI 8 8 8 8 10 1.0483e−06
Classical PID 9 9 9 9 10 2.3065e−06
PID having
low-pass filter

10 10 10 10 12 6.5690e−07

PID2 having
low-pass filter

12 12 12 12 14 6.1883e−11

Lag 8 8 8 8 10 6.0703e−11
Type-I 7 7 7 7 10 5.9688e−11
Type-II 9 9 9 9 12 5.9691e−11
Type-III 11 11 11 11 14 5.9832e−11

Figure 4. (a)–(d) Comparison of step responses of optimal LCLS model TFM to that of initial model TFM.
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Figure 5. (a)–(h) Comparison of the frequency response of LCLS to that of OFCLS.
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fitness function is constructed by calculating the sum
of squared differences in the corresponding real and
imaginary parts of the frequency responses between the
LCLS model and the OFCLS, within the desired band-
width. Hence, the aim of the optimization process is
defined as follows.

Find the frequency points, ωh, h = 1, 2, 3, . . . nx to
minimize

J2 =
p∑

i=1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q∑
k=1

⎛
⎜⎜⎜⎜⎜⎜⎝

M∑
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝

[[Re{G(i,k)d (jωr)} − Re{G(i,k)CL (jωr)}]
T

[Re{G(i,k)d (jωr)} − Re{G(i,k)CL (jωr)}]]+
[[Im{G(i,k)d (jωr)} − Im{G(i,k)CL (jωr)}]

T

[Im{G(i,k)d (jωr)} − Im{G(i,k)CL (jωr)}]]

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(29)

where ωr, r = 1, 2, . . . ,M are equally spaced frequency
points within the desired frequency range of interest.
Re{·} and Im{·} denote the real part and imaginary part
respectively,

subject to the constraints that the roots of the numer-
ator and/or denominator polynomials of the SMF of
the OFCLS should not lie on the imaginary axis of
the s-plane. The optimization problem presented in
Equations (7) and (29) was solved using GA.

Table 2. Computational time of the proposed algorithm.

Stage Computational time (s)

I 270.573443
II 0.140385

Figure 6. (a), (b) Comparison of desired and actual trajectories. (c), (d) Desired and actual temporal variations in X-position. (e), (f )
Desired and actual temporal variations in Y-position.
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5. Determination of controller parameters
based on EMM technique

This section presents the procedure for determining
controller parameters based on the EMMmethod with
knowledge of the OFCLS and plant TFMs.

Let Gc(s) be represented in TF domain as

Gc(s) = [G(i,k)c (s)] = 1
dc(s)

[n(i,k)c (s)] (30)

where G(i,k)c (s) , i = 1, 2, . . . , p; k = 1, 2, . . . , q repre-
sents elements of Gc(s) relating the kth controller input
to the ith controller output. The numerator and denom-
inator polynomials of each element of Gc(s) are repre-
sented by n(i,k)c (s) and dc(s) respectively. The OFCLS
TFM shown in Figure 1 can be expressed as a function
of Gp(s) and Gc(s) as

GCL(s) = [I + GP(s)Gc(s)]−1GP(s)Gc(s) (31)

i.e.,GCL(s) = GP(s)Gc(s)[I − GCL(s)] (32)

6. Simulation results

6.1. Example 1

The proposed suboptimal controller design method is
illustrated for the design of a model-matching con-
troller with the objective of tracking the desired circular
trajectory of a wheeled mobile robot (WMR), namely,

QBot 2. Details of themodelling of theWMRdynamics
are as presented in [34].

Let Coe[·] stand for “coefficients of the polynomial
in descending power of s”. The parameters of the plant
are then obtained as shown below:

Coe[n(1,1)P (s)] = [1.399e04, 1.437e07, 1.891e08],
Coe[n(1,2)P (s)] = [2588, 2.658e06, 0], Coe[n(2,1)P (s)]
= [2588, 2.658e06, 0], Coe[n(2,2)P (s)] = [1.399e04,
1.437e07, 1.891e08], and Coe[dP(s)] = [1, 2054,
1.082e06, 2.874e07, 1.891e08].

6.1.1. Determination of parameters of the initial
model and LCLSmodel forWMR
This section presents the development of optimal
parameters of the initial and LCLS models for the
WMR. The settling time and ζ of the wheel velocity
profiles of theWMRare taken as 3 s and 1.1 respectively.
In the present work, S1and the desired radius of the cir-
cular trajectory are set at 0.2m/s and 0.3525m respec-
tively. The value of S2 is then calculated as 0.1m/s [34].
Directions for implementing the optimization tech-
nique in the determination of the LCLSmodel using the
global optimization toolbox of MATLAB are presented
in Appendix B.

The comparisons of the right and left wheel veloc-
ity profiles due to the step of 0.2m/s and the step of
0.1m/s respectively of an initial model to those of the
tuned LCLS model, are presented in Figure 3(a,b). The

Figure 7. (a)–(d). Comparison of step responses of the user-defined reference model to that of the OFCLS.
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Table 3. The deviations in response of OFCLS (max(i,k)ad : the
maximum absolute deviation in unit step response of (i, k)th
element of OFCLS).

Method J2 max(1,1)ad max(1,2)ad max(2,1)ad max(2,2)ad

S.B. Quinn Jr [2] 0.2055 0.0114 0.0187 0.0052 0.0188
Proposed method 0.1556 0.0144 0.0180 0.0053 0.0114

comparison of the resultant trajectories of the WMR is
presented in Figure 3(c). Figure 4 shows the compar-
ison of the step responses of the optimal LCLS model
with those of the initial model. From the Figure 4 it

can be seen that the desired time-domain specification
has been embodied in the LCLS model with weighting
matricesQ and R chosen optimally. The response of the
off-diagonal elements of the LCLS model TFM is close
to that of the corresponding elements of initial model
TFM with a maximum error of the order of 10−3 m/s.

The present work evaluates the objective function in
Equation (7) during a time intervalT2, which is the time
taken by the WMR to complete two revolutions along
the desired circular trajectory. The parameter τ can be
calculated as τ = T2/(�t). In the present work, �t is
taken as 10−2 s. The time taken for two revolutions of

Figure 8. (a), (b) Desired and actual circular trajectories. (c), (d) Desired and actual temporal variations in X position. (e), (f ) Desired
and actual temporal variations in Y position.
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the WMR along the desired trajectory is calculated as
29.531 s [36].

The tuning of the weighting matrices presented in
[25,26] is performed with the objective of mapping the
desired time-domain specifications as a certain combi-
nation of weights of states and inputs. In the present
work, the tuning of the weighting matrices considers
the mapping of the interaction present in the initial
model onto the LCLS model, in addition to the desired
time-domain specifications.

6.1.2. Determination of OFCLS TFM
The present work illustrates the proposed algorithm for
differentGc(s) structures as given in Table 1. The design
of a practical PID using the proposed method is car-
ried out by incorporating a low-pass filter along with
the differentiator [37–39].

The LCLS model is approximated to a TFM hav-
ing the degrees of the numerator and the denomina-
tor polynomials as decided by the chosen controller
structure, as shown in Table 1. In the present work,
the desired frequency band of approximation and the
value of M are taken as (10−3−102) rad/s and 700
respectively. Optimal frequency points obtained in the
case of each chosen controller structure are given in
Appendix C. Equation (32) is utilized in the EMM tech-
nique to obtain the unknown controller parameters (see
Appendix D).

6.1.3. Comparison of frequency responses
The performance index J2 in the first stage was min-
imized with the objective of matching the frequency
response of the OFCLS to that of the LCLS model. The
set of figures given in the first column of Figure 5 shows
the comparison of the frequency response of theOFCLS
with that of the desired LCLS model for PID-based
controller structures, whereas the set of figures in the
second column shows the comparison with lag-based
controller structures.

From Figure 5, it can be concluded that the fre-
quency responses of Gd(s) and GCL(s) match well.

6.1.4. Trajectory tracking
Figure 6(a,b) show the comparison of the trajectory of
the WMR obtained by OFCLS TFM with that obtained
with the desired LCLSmodel TFM, for PID-basedGc(s)
structures and lag-based Gc(s) structures respectively.

Figure 6(c,d) show the variation of the x-coordinates
of the WMR for PID and lag-based Gc(s) structures
respectively. Figure 6(e,f) show the variation of the y-
coordinates of the WMR for PID and lag-based Gc(s)
structures respectively. Figure 6 shows that the actual
trajectory of the WMR using the designed controllers
satisfactorily matches the desired trajectory. The com-
putational time taken for each stage of the algorithm is
shown in Table 2. The computational times shown are

for MATLAB R2015b software running on a 3.3 GHz
Intel(R) Core(TM) i5-4590 processor with 8 GB RAM.

6.2. Example 2

The proposed method has been utilized to design a
decentralized Gc(s) for a 10th order MIMO plant taken
from the literature [2]. The Gd(s) in the first stage
of the algorithm for this example has been selected
based on pole-zero excess as described in [2]. With this
Gd(s), the algorithm is started using the AMM pre-
sented in Section 4. The step response of the Gd(s)
is compared with that of GCL(s), obtained using the
proposed method and the method presented in the lit-
erature [2], as shown in Figure 7. Comparisons of the
minimum value of the objective function (Equation
(29)) and maximum absolute deviation obtained using
the method presented in the literature [2] with the val-
ues obtained using the proposedmethod, are presented
in Table 3. Table 3 shows that the proposed method of
controller design is better in comparison to the method
reported in [2] on integral squared error index. The
Gc(s) parameters obtained using the proposed method
are presented in Appendix 5.

7. Experimental results: Example 1

The operation of the WMR is based on the commu-
nication between the host computer and the target,
QBot 2 [40]. The Gc(s) having the chosen structure
and designed using the proposed algorithm is imple-
mented on the host computer using the MATLAB-
based Simulink software. The real-time control soft-
ware, QUARC downloads real-time code generated
from the host computer to the embedded computer
mounted on the QBot 2 platform [40]. Figure 8(a,b)
show the comparisons of the trajectory of the WMR
obtained by OFCLS TFM with that obtained using
the desired LCLS model TFM for PID-based Gc(s)
structures and lag-based Gc(s) structures respectively,
obtained in an experimental set-up. Figure 8(c,d) show
the variation of x-coordinates of WMR for PID-based
Gc(s) structures and lag-based Gc(s) structures respec-
tively, obtained in an experimental set-up. Figure 8(e,f)
show the variation of the y-coordinates of WMR for
PID-based Gc(s) structures and lag-based Gc(s) struc-
tures respectively. Snapshots of the experimental output
are presented in Figure 9(a–e). The blue circular tra-
jectory is the desired trajectory, and the centre of the

Figure 9. (a)–(e). Real-time performance of WMR during circu-
lar trajectory tracking.
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axle of the WMR tracks this trajectory. The deviations
present in the experimental results are greater than
those of the simulation results; this may be due tomod-
elling errors incorporated during formulation of the
mathematical representation of the plant dynamics.

8. Conclusion

In this paper, a novel methodology for the design of
suboptimalmodel-matching controllers forMIMOsys-
tems based on the SMF concept is presented. The con-
ventional formulation of the reference model depends
on the experience and prior knowledge of the designer
about the requirement and performance of the plant.
The advantage of the proposed reference model selec-
tion is that it involves the dynamics of the plant. The
design procedure during the selection of the reference
model encounters two problems. Firstly, interactions
to be present in the designed closed-loop system are
difficult to quantify as a specification. Secondly, in the
LQRI design procedure, it is difficult to associate the
desired time- or frequency-domain specifications with
the elements of weighting matrices Q and R. The pro-
posed reference model selection procedure addresses
these two problems by formulating the problem as an
optimization problem. The developed controller design
algorithm is also compatible with user-defined refer-
ence models as illustrated in the second example.

As a part of the procedure in the first stage, a higher-
order approximation method for MIMO lower-order
systems based on the SMF concept is proposed. The
LCLS model requires information regarding all the
states for the purposes of implementation. The per-
formance of the designed higher-order OFCLS mimics
that of the lower-order LCLSmodel. Thus, the designed
OFCLS can be termed suboptimal. The OFCLS is
designed to have same denominator polynomial in all
the elements of its TFM which results in its mini-
mum realization. The developed algorithm also incor-
porates the complex poles and/or zeros in the SMFof an
approximant. The SMF-based approximation ensures
the steady-state matching of the reference model and
OFCLS. The approximation procedure also ensures the
stability of the OFCLS. Analysis of the closed-loop sys-
tem can be performed at the end of the first stage
itself.

In the second stage, the controller parameters are
obtained using the EMMmethod with the information
of the OFCLS and plant TFMs. In the EMM method,
some of the unknown controller parameters can be
assumed, taking into consideration the availability of
hardware components during implementation. The rest
of the controller parameters can be obtained by the
solution of the resulting simultaneous equations. In this
work, the filter coefficient present in the practical PID
is kept constant at a value of 100, and the rest of the
parameters are obtained as described. The proposed

method for the controller design is illustrated by tak-
ing two examples from the literature. Work has also
been carried out on utilizing the proposed algorithm
for the design of fractional-order controllers forMIMO
systems. This work will be reported elsewhere.
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Appendices

Appendix A. Determination of the Degree of
the Numerator and Denominator Polynomials
of the Elements of OFCLS TFM

Let Deg(i,k)n [·] stand for “degree of the numerator polyno-
mial of (i,k)th element of the TFM” and Deg(i,k)d [·] stand for
“degree of the denominator polynomial of (i,k)th element of
the TFM”.

LetDeg(i,k)n [GP(s)] = m(i,k)P ,Deg(i,k)d [GP(s)] = nP,Deg
(i,k)
n

[Gc(s)] = m(i,k)c , Deg(i,k)d [Gc(s)] = nc, Deg(i,k)n [GCL(s)] =
m(i,k)CL andDeg(i,k)d [GCL(s)] = nCL. Then,Deg

(1,1)
n [GP(s)Gc(s)]

= m(1,1)Pc = max(m(1,1)P + m(1,1)c ,m(1,2)P + m(2,1)c ), Deg(1,2)n

[GP(s)Gc(s)] = m(1,2)Pc = max(m(1,1)P + m(1,2)c ,m(1,2)P +
m(2,2)c ),Deg(2,1)n [GP(s)Gc(s)] = m(2,1)Pc = max(m(2,1)P + m(1,1)c ,
m(2,2)P + m(2,1)c ),Deg(2,2)n [GP(s)Gc(s)] = m(2,2)Pc = max(m(2,1)P
+ m(1,2)c ,m(2,2)P + m(2,2)c ), and Deg(i,k)d [GP(s)Gc(s)] = nPc =
nP + nc.

The degrees of the numerator and denominator polyno-
mials of the elements of OFCLS TFM are formulated as

Deg(1,1)n [GCL(s)] = m(1,1)CL = max(nPc + m(1,1)Pc ,m(1,2)Pc +
m(2,1)Pc ),Deg(1,2)n [GCL(s)] = m(1,2)CL = max(nPc + m(1,2)Pc ,m(1,2)Pc
+ m(2,2)Pc ),

Deg(2,1)n [GCL(s)] = m(2,1)CL = max(m(1,1)Pc + m(2,1)Pc , nPc +
m(2,1)Pc ), Deg(2,2)n [GCL(s)] = m(2,2)CL = max(m(1,2)Pc + m(2,1)Pc ,
nPc + m(2,2)Pc ), andDeg(i,k)d [GCL(s)] = nCL = max(2nPc,m

(1,2)
Pc

+ m(2,1)Pc ).

Appendix B. Direction for Obtaining LCLS
Model: Example 1

AB.1. Settings of GA

The weighting matrices Q ∈ R
(n+p)×(n+p) and R ∈ R

q×q of
LQRI were taken as the diagonal matrices. The dynamic
model of the plant [34] had n ( = 4) states and together
with the p ( = 2) additional states of LQRI, the total states
present in the LQRI becomes n+ p ( = 6). Hence the num-
ber of parameters to be optimized for the weighting matrices
Q and R were obtained as 8. Together with the pole location
of off-diagonal elements of the initial model, the total num-
ber of parameters to be optimized nvars becomes nine. The
set of optimal parameters ν(1)op has been chosen by utilizing
MATLAB function “ga”. The optimal parameters obtained
in this paper were obtained by selecting the lower and upper
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bound for the weighting matrices Q and R as zero and infin-
ity respectively. The lower and upper bounds for the degree
of interaction λ were set as 100 and 4500 respectively.

AB.2. Determination of the initial model and the
LCLSmodel from ν

(1)
op

The optimized values of the initial model and the LCLS
model parameters obtained by using GA are λ = 3167.6,
Q = diag(0.1454, 0.0086, 36.6894, 36.7116, 57.8158, 59.0674)
and R = diag(0.0285, 114.1767).

The optimal gain matrix Kop =[ 2.8358 - 0.1306 35.7622 0.0004 - 45.0098 0.4337
- 0.0012 0.0109 8.8187e - 08 0.4798 - 0.0068 - 0.7192

]
The parameters of the initial model are obtained as shown

below:
Coe[n(1,1)m (s)] = [−0.5, 0.1359, 4653],Coe[d(1,1)m (s)]= [1,

3170, 8448, 4654], Coe[n(1,2)m (s)]= Coe[n(2,1)m (s)]= [1],
Coe[d(1,2)m (s)]= Coe[d(2,1)m (s)] = [1, 3167.6],Coe[n(2,2)m (s)]=
[−2, −3.864, 4651], Coe[d(2,2)m (s)]= [1, 3170, 8448, 4654],

where the numerator and denominator polynomials of
G(i,k)m (s) are denoted by n(i,k)m (s) and d(i,k)m (s) respectively.

The parameters of the LCLS model are obtained as shown
below:

Coe[n(1,1)d (s)] = [6.297e05, 3.912e09, 1.116e10, 6.119e09],
Coe[n(1,2)d (s)] = [−4205, 6.822e08, 3.998e08, −7.103e-07],
Coe[n(2,1)d (s)] = [1.166e05, 7.591e08, 3.914e08,0], Coe[n(2,2)d
(s)] = [8939, 3.884e09, 1.115e10, 6.119e09], Coe[Dd(s)] =
[1, 3.929e05, 2.4e09, 1.412e10, 2.81e10, 2.231e10, 6.119e09],
where the numerator and denominator polynomials of
G(i,k)d (s) are denoted by n(i,k)d (s) and Dd(s) respectively.

Appendix C. Direction for Obtaining OFCLS:
Example 1

The lower and upper bounds for the frequency points were
determined as presented in [31]. The optimal frequency
points ν(2)op obtained during the approximation procedure for
different chosen controller structures are presented in Table
A1.

The determination of ν(2)op is followed by finding the solu-
tion of Equation (25), to obtain the coefficients of the SMF
of OFCLS TFM. Now the stability preserving root selection
strategy as mentioned in subsection 5.3 can be utilized to
obtain the OFCLS TFM.

Appendix D. EMM technique for controller
design

For a 2× 2MIMO system, the Equation (32) is represented as
a function of the corresponding numerator and denominator

polynomials as

⎡
⎢⎢⎢⎢⎣
n(1,1)P dCL − n(1,1)P n(1,1)CL −n(1,1)P n(2,1)CL

−n(1,1)P n(1,2)CL n(1,1)P dCL − n(1,1)P n(2,2)CL

n(2,1)P dCL − n(2,1)P n(1,1)CL −n(2,1)P n(2,1)CL

−n(2,1)P n(1,2)CL n(2,1)P dCL − n(2,1)P n(2,2)CL

n(1,2)P dCL − n(1,2)P n(1,1)CL −n(1,2)P n(2,1)CL

−n(1,2)P n(1,2)CL n(1,2)P dCL − n(1,2)P n(2,2)CL

n(2,2)P dCL − n(2,2)P n(1,1)CL −n(2,2)P n(2,1)CL

−n(2,2)P n(1,2)CL n(2,2)P dCL − n(2,2)P n(2,2)CL

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
n(1,1)c
n(1,2)c
n(2,1)c
n(2,2)c

⎤
⎥⎥⎥⎦

= dPdc

⎡
⎢⎢⎢⎣
n(1,1)CL
n(1,2)CL
n(2,1)CL
n(2,2)CL

⎤
⎥⎥⎥⎦ (A1)

The degrees of numerators and denominators on both sides
of Equation (D.1) will be same. After cross multiplying,
the coefficients of like terms are equated to form the non-
homogeneous equation, the solution of which yields the
unknown Gc(s) parameters.

Appendix E. Controller parameters obtained
using the proposedmethod

AE.1. Example 1

The numerators and denominator of the obtained controller
TFM for different chosen structures are as follows:

• PI

n(1,1)c (s) = −0.08569s + 0.5224, n(1,2)c (s) = 0.00197s +
0.0244, n(2,1)c (s) = 0.003418s + 0.02505, n(2,2)c (s) =
−0.08593s + 0.5215, and dc(s) = s.

• Classical PID

n(1,1)c (s) = 0.02357s2 − 0.1256s + 0.5425, n(1,2)c (s) =
−0.003118s2 + 0.007242s + 0.02176,n(2,1)c (s) = −0.003898s2

+ 0.01002s + 0.02175, n(2,2)c (s) = 0.02376s2 − 0.1263s +
0.5417, and dc(s) = s.

• PID having low-pass filter

n(1,1)c (s) = 2.237s2 − 12.03s + 54.26,n(1,2)c (s) = −0.3014s2 +
0.7437s + 2.171, n(2,1)c (s) = −0.3762s2 + 1.021s + 2.169,
n(2,2)c (s) = 2.255s2 − 12.09s + 54.19, and dc(s) = s2 + 100s.

Table A1. Optimal frequency points obtained during the first stage of the proposed algorithm.

Chosen controller Optimal frequency points

PI [ 0.3125,0.3250,0.4, 1.1625,1.1326,1.9249,1.2003,1.4,1.6001,1.9250,2.0007]
Classical PID [0.0021,0.1704,0.4105,0.3593,0.8459,0.8764,0.9941,1.2726,1.684,2.0588,1.2392,1.2943]
Practical PID [0.0003,0.1746,0.5515,0.5844,0.6666,0.8343,1,1.1666,1.3355,2,1.6666,1.8335,2]
Practical PID2 [0.0030,0.1386,0.3337,0.4606,0.5483,0.8707,0.9557,1.2909,1.1451,1.6234,1.9909,1.5935, 197.2722,358.4262,555.6729,779.2029]
Lag [0.4676,0.7512,75.7339,206.4056,311.3577,143.6814,226.6049,7.71469,625.1723,876.6793,988.1373]
Type-I [0.1971,1.6911,0.5079,129.5588,158.1566,219.9116,202.0150,181.5280,222.3132,197.1013]
Type-II [0.0024,0.9436,0.9594,103.0708,124.9799,237.5691,124.8871,79.6406,203.7030,394.4710,311.3046, 118.3724]
Type-III [0.0043,0.1284,0.4591,0.6258,0.6707,1.080,1.5780,1.9264,1.8489,66.7960,43.2133,259.9185, 275.5172,548.7076,229.9250]
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• PID2 having low-pass filter

n(1,1)c (s) = 0.8037s3 + 0.5335s2 − 10.22s + 53.35, n(1,2)c (s)
= −0.1117s3 + 0.023s2 + 0.4043s + 2.3, n(2,1)c (s) =
−0.1389s3 + 0.02329s2 + 0.6031s + 2.329, n(2,2)c (s) =
0.8105s3 + 0.5326s2 − 10.26s + 53.26, anddc(s) = s3 + 100s.

• Lag

n(1,1)c (s) = −0.08609s + 0.5088, n(1,2)c (s) = 0.00394s
+ 0.02289, n(2,1)c (s) = 0.005704s + 0.0234, n(2,2)c (s) =
−0.08648s + 0.508, and dc(s) = s - 0.03173.

• Type-I

n(1,1)c (s) = 0.4537, n(1,2)c (s) = 0.0263, n(2,1)c (s) = 0.02822,
n(2,2)c (s) = 0.4525, and dc(s) = s.

• Type-II

n(1,1)c (s) = 0.1374s + 1.515, n(1,2)c (s) = 0.03844s +
0.06288, n(2,1)c (s) = 0.0464s + 0.06298, n(2,2)c (s) = 0.135s +
1.513, and dc(s) = s2 + 2.751s.

• Type-III

n(1,1)c (s) = 0.1204s2 + 1.98s + 4.649, n(1,2)c (s) =
−0.001187s2 + 0.2315s + 0.1666, n(2,1)c (s) = 0.001138s2 +
0.2632s + 0.163, n(2,2)c (s) = 0.1197s2 + 1.968s + 4.643, and
dc(s) = s3 + 5.878s2 + 8.456s.

AE.2. Example 2

n(1,1)c (s) = 0.0002189s2 + 3.184s + 0.8242, d(1,1)c (s) =
0.2003s2 + 4.902s, n(2,2)c (s) = 0.06077s2 + 1.791s + 0.4536,
and d(2,2)c (s) = 0.3664s2 + 2.802s.
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