
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

Advancing natural language processing (NLP)
applications of morphologically rich languages
with bidirectional encoder representations from
transformers (BERT): an empirical case study for
Turkish

Akın Özçift, Kamil Akarsu, Fatma Yumuk & Cevhernur Söylemez

To cite this article: Akın Özçift, Kamil Akarsu, Fatma Yumuk & Cevhernur Söylemez (2021)
Advancing natural language processing (NLP) applications of morphologically rich languages
with bidirectional encoder representations from transformers (BERT): an empirical case study for
Turkish, Automatika, 62:2, 226-238, DOI: 10.1080/00051144.2021.1922150

To link to this article: https://doi.org/10.1080/00051144.2021.1922150

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 05 May 2021.

Submit your article to this journal Article views: 1395

View related articles View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2021.1922150
https://doi.org/10.1080/00051144.2021.1922150
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2021.1922150
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2021.1922150
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2021.1922150&domain=pdf&date_stamp=2021-05-05
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2021.1922150&domain=pdf&date_stamp=2021-05-05

AUTOMATIKA
2021, VOL. 62, NO. 2, 226–238
https://doi.org/10.1080/00051144.2021.1922150

REGULAR PAPER

Advancing natural language processing (NLP) applications of morphologically
rich languages with bidirectional encoder representations from transformers
(BERT): an empirical case study for Turkish

Akın Özçift , Kamil Akarsu, Fatma Yumuk and Cevhernur Söylemez

Hasan Ferdi Turgutlu Technology Faculty, Software Engineering Department, Manisa Celal Bayar University, Manisa, Turkey

ABSTRACT
Language model pre-training architectures have demonstrated to be useful to learn language
representations. bidirectional encoder representations from transformers (BERT), a recent deep
bidirectional self-attention representation from unlabelled text, has achieved remarkable results
in many natural language processing (NLP) tasks with fine-tuning. In this paper, we want to
demonstrate the efficiency of BERT for a morphologically rich language, Turkish. Traditionally
morphologically difficult languages require dense language pre-processing steps in order to
model the data to be suitable for machine learning (ML) algorithms. In particular, tokenization,
lemmatization or stemming and feature engineering tasks are needed to obtain an efficient data
model to overcome data sparsity or high-dimension problems. In this context, we selected five
various Turkish NLP research problems as sentiment analysis, cyberbullying identification, text
classification, emotion recognition and spam detection from the literature. We then compared
the empirical performance of BERT with the baseline ML algorithms. Finally, we found enhanced
results compared to base ML algorithms in the selected NLP problems while eliminating heavy
pre-processing tasks.

ARTICLE HISTORY
Received 4 May 2020
Accepted 21 April 2021

KEYWORDS
Bidirectional encoder
representations
transformers; language
pre-processing;
morphologically rich
language; natural language
processing; Turkish

1. Introduction

There are many sources and types of information
such as social media posts, micro-blogs, news and
customer reviews that accumulates data progressively
[1,2]. The automated analysis of particularly the large
amount of text data is predominantly handled with
machine learning (ML) techniques applied to natu-
ral language processing (NLP) domain. ML techniques
and recently deep learning (DL) models are applied to
various language analysis problems such as text catego-
rization, sentiment identification, emotion recognition,
fake news identification and spam detection etc.[3–7].

Conventionally, to applyMLmethods on NLP prob-
lems, the first step is to transform texts into a con-
venient format such as bag-of-words (BoW) in which
text is represented as or Vector Space Model (VSM).
More formally, any document in term space can be
modelled with d = (w1, . . . ,wn), where n denotes the
term space or feature size. The effectiveness of the
stated model is frequently enhanced with the use of
N-grams or term weighting schemes such as term
frequency-inverse document frequency (tf or tf-idf)
[8,9]. Rather than sparsity or high-dimensional nature
of BoW models, another problem is that these repre-
sentations ignore their syntactic and semantic informa-
tion [10]. In simpler words, the contextual meaning of
words are ignored with BoWmodels. Therefore, newer

text representations, i.e. word embedding models, have
been developed to overcome this issue. A word embed-
ding is basically defined as a real-valued vector that is
extracted from the context of the corresponding doc-
ument. The contextual information capturing ability
of word embedding models is explained with the “dis-
tributional hypothesis”. The theory was explained as
“words which are similar in meaning occur in simi-
lar contexts” [11] and “words with similar meanings
will occur with similar neighbours if enough text mate-
rial is available” [12]. Hence, it can be expected that
the words having semantic or syntactic similarity will
be closer to each other compared to relatively dissim-
ilar words in vector space. It is evident that the stated
relatedness or similarity is exclusively dependent on
the corpus which is used to obtain word embeddings
[13]. This concept is first introduced in [14] by Ben-
gio et al. and formally a word embedding scheme is
implemented as ε : words → R

p to transform words
into dense vectors. In general, p value in the represen-
tation is chosen between 50 and 500. The two sample
vectors for words “orange” and “glass” may be rep-
resented as ε(′orange′) = (0.056,−0.170,−0.011, . . .)
and ε(′glass′) = (−0.075, 0.087,−0.315, . . .) [15]. Since
the efficiency of the embedding models rely on large
vocabulary [12] and they need an excess amount
of computational power, the emergence of the prac-
tical word embedding models, i.e. Word2Vec [16],

CONTACT Akın Özçift akin.ozcift@cbu.edu.tr
© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2021.1922150&domain=pdf&date_stamp=2021-06-10
http://orcid.org/0000-0003-2840-1917
mailto:akin.ozcift@cbu.edu.tr
http://creativecommons.org/licenses/by/4.0/

AUTOMATIKA 227

GloVe [17] and fastText [18], has delayed until 2013.
Word2Vec, GloVe or fastText embedding models
depend on co-occurrence statistics of corpus used for
pre-training. Though these models are more eligible
to comprehend semantic or syntactic information, the
models are context independent and they generate
only one vector embedding for each word. Further-
more, another weakness of these language models is
that they only make use of left or right context. How-
ever, since language understanding is improved with
bi-directional learning [19], new neural language mod-
els, i.e. Embeddings from Language Models (ELMo)
[20] and Bidirectional Encoder Representations from
Transformers (BERT) [19], are developed. Concisely,
ELMo, being a contextualized word/character embed-
dingmodel, uses a bi-directional RecurrentNeuralNet-
work (RNN) that takes into account both bi-directional
positions of words in a sentence. Similarly, BERT,
being another contextualized learning language model,
benefits multilayer bi-directional transformer-encoder
having parallel attention layers rather than sequen-
tial recurrence [13,21,22]. Overall, bi-directional mod-
els process words in relation to the other words
in a sentence and therefore they are closer to an
intended understanding with the use of rich contextual
information.

Conventional NLP pipelines, in general, consist of
basic preprocessing tasks such as tokenization, stop-
word removal, stemming or lemmatization and possi-
bly a feature engineering task. In particular, as opposed
to English which is a widely researched language, the
mentioned tasks are not straightforward for morpho-
logically rich languages, i.e. Turkish, Arabic, Czech,
Hungarian, Finnish, Hebrew, Korean, etc., due to their
nature of complexity [23]. The mentioned preprocess-
ing steps, in particular stemming, lemmatization and
feature engineering need complicated analysis tasks
because of their agglutinative or inflectional morpholo-
gies. For example Turkish, having agglutinative mor-
phology, has a vocabulary size of 474,957 and English
has vocabulary size of 97,734. However, if the root
forms of Turkish words are obtained, this vocabulary
size becomes as 94,235. It is clearly observed that on the
average five different words may be derived using the
same root [24] and this is an issue from stemming point
of view. Moreover, the mentioned language processing
tasks affect the performance of ML algorithms [25–27].
In this context, BERTmay seem to be a solution to com-
prehend contextual meaning of morphologically com-
plicated words [28–30] without mentioned language
processing tasks. This is one of the first motivations
of this study. Furthermore, morphologically rich lan-
guages are also probably low-resource languages that
have limited research and data sources compared to
English [31]. Although Turkish is a widely spoken lan-
guage, it has limited computational language studies. To
the best of our knowledge, this is the first study that uses

BERT neural languagemodel for Turkish and this is the
second motivation of the current study.

This empirical study compares the traditional BoW
(or VSM) based ML algorithms and newly proposed
BERT in terms of empirical achievement. In order
to evaluate performances of the two approaches, we
chose diverse six datasets from literature as cyberbul-
lying identification [32], sentiment analysis of Turkish
movie and hotel reviews [33], spam Short Message Ser-
vice (SMS) detection [34], a text classification dataset
of six news categories [35] and emotion recognition
dataset with six emotion categories [36]. In particu-
lar, the mentioned Turkish datasets are studied in the
literature and they have morphological language pro-
cessing steps with corresponding BoW-ML results as
baseline. Therefore, we are able to evaluate those results
to make an empirical comparison. The results of this
study will probably help the morphologically rich lan-
guage researchers particularly for Turkish language, in
terms of applicability of BERT neural language model
to the other real-world NLP tasks.

This study provides the following contributions:

• A novel approach is presented for Turkish language
analysis with the use of BERT.

• Detailed experiments were carried out to demon-
strate efficiency of BERT over traditional Turkish
language analysis pipeline.

• An analysis roadmap is presented for Turkish lan-
guage.

• An extensive number of experiments on various
Turkish datasets were evaluated. This is the largest
empirical study for Turkish to validate the efficiency
of novel language transformers.

This paper has been organized as follows: Section 2
presents computational modelling challenges of Turk-
ish based on its morphological complexity. While, in
Section 3, we explain traditional Turkish language pro-
cessing pipeline with frequently used ML algorithms,
we define the BERT architecture in Section 4. The NLP
problems discussed in this study is explained in Section
5. The article presents the detailed experimental results
in Section 6 and ends with Conclusion in Section 7.

2. Turkish languagemodelling challenges
based on its morphological complexity

Morphologically rich languages, particularly Turkish,
have their own language difficulties while generat-
ing a computational NLP model [37,38]. As opposed
to English, being an analytical language, Turkish-
like morphologically rich languages have agglutinative
complexity. As the simplest member of the language,
i.e. the word, basically consists of a stem and inflec-
tional suffixes generating the context such as time
(tense), locality (place) and arity (singular or plural).

228 A. ÖZÇİFT ET AL.

English-like analytical languages make use of separate
prepositions to generate this context and naturally their
analysis is easier compared to morphologically lan-
guages such as Turkish. More clearly, even one single
Turkishword is generatedwithmorphemes (stems, pre-
fixes and affixes) and that word will have many corre-
sponding inflectional forms [39]. Interestingly, Oflazer
has shown this enormous word generation ability of
Turkish and “its challenges for language processing” in
his detailed study [40]. According to the study, it is pos-
sible to derive about 1.5 million different words from
a Noun [masa (table)] and from a Verb [oku (read)]
only with the use of derivational morphemes [40]. The
morphological structure of Turkish word is shown in
Figure 1 [41].

Some samples for morphological productivity of
Turkish language are provided in Table 1 [41]. As it is
obvious from Table 1, the number of suffixes and their
imaginable combinations that can be added to a word
generate a serious language analysis problem to obtain
actual stem from possible derivations.

From the above discussion, we may state that Turk-
ish NLP studies has to deal with language processing
tasks before modelling a solution to the target problem.
In general, most-words are composed of many mor-
phemes and they may occur only once on the training
data that generates the so called data-sparsity and curse
of dimensionality problems [42,43] from computational
modelling point of view. It is important to observe that
this complexity constrains implementation of state-of-
the-art models and algorithms developed for example
for English. In order to overcome data-sparsity in Turk-
ish, dense pre-processing tasks such as stemming or
lemmatization (possibly followed with a feature selec-
tion step) should be introduced before NLP pipelines
[44]. Both stemming and lemmatization has goal to
reduce inflectional or derivational forms of words into
a common base form. While stemming is a heuristic

Figure 1. Morphological structure of a Turkish word.

Table 1. Stems and surface form examples derived from teh
stem “göz” (eye).

Word (surface form) Root Stem
Inflectional
suffixes

göz/ler-im (my eyes) göz göz ler-im
göz/ün-de (in the eye) göz göz ün-de
göz/cü (observer) göz gözcü -
göz/lük (eyeglass) göz gözlük -
göz/lük-çü (optician) göz gözlükçü -
göz/lük-çü-y-dü (he/she was optician) göz gözlükçü -y-dü

process that chops off the ends of the derived words to
obtain a base form, lemmatizationmakes use of a vocab-
ulary and morphological analysis to obtain dictionary
form, i.e. lemma, of the word [45]. However, the two
methods are not interchangeable and it should be care-
fully examined which one is better for the correspond-
ing language problem. For example, the Turkish words
göz (eye), gözlük (eyeglasses), gözlükçü (optician) and
gözlem (observation) may all be stemmed from a sin-
gle word “göz (eye)” losing the semantical information
[41,46]. Interestingly, it is apparent that the given Turk-
ish words have distinct English equivalents and this
may be a concise comparison of two languages in terms
of analysis complexity. The aforementioned language
processing tasks require specialized software [47] and
related lexicons. Other than stemming and lemmatiza-
tion traditional pre-processing tasks may also include
stop-word removal, lower-case conversion and tok-
enization tasks. Stop-words are the common words
that are filtered out in language processing. Preposi-
tions, pronouns and conjunctions are stop-words and
bu (that), orda (there) are some example Turkish stop-
words. And lexically, tokenization is defined as the pro-
cess of splitting the input text string into meaningful
pieces (tokens) such as words or phrases. Though, we
will not make a detailed discussion, we will recap the
importance of feature engineering tasks in Turkish [48].
Many Turkish NLP tasks also make use of several fea-
ture processing strategies to obtain an enhanced ML
model. Practically, traditional ML algorithms devel-
oped for morphologically rich languages needs token-
based language models that obtained through pre-
processing steps. For example, Czech language has five
different inflectional variants for English word “king”
as král (king), krále (of king), králi (kings), králem
(king), králové (kings) and the corresponding token
forms through heavy language pre-processing tasks
are required for conventional ML models. Another
example from German language is that regen (rain)
may generate various forms as regenschirm (umbrella),
regenschirmhersteller (umbrella manufacturer), regen-
schirmherstellergewerkschaft (umbrella manufacturer’s
trade union). Even if the token-based models are gen-
erated after pre-processing steps, the aforementioned
data-sparsity problem is another issue. In other words,
since morphological processing tasks produces word
forms that are very rare or probably non-existent in
training corpus, the performance of the ML algorithms
will decrease in prediction phase [67].

As a summary, it can be observed that Turkish
NLP problems needs several pre-processing steps in
order to obtain efficient ML models while recruiting
data-sparsity and related problems. Moreover, other
morphologically rich languages will also require mor-
phological processing tasks similar to Turkish while
generating efficient ML models. The promising solu-
tion or answer to the overall discussion is possibly the

AUTOMATIKA 229

evaluation of bi-directional neural language models or
BERT for our case study.

3. Frequent Turkish language processing
pipeline andML algorithms

Computational modelling of Turkish to solve NLP
problems usually require a suitable vector representa-
tion accompanied with pre-processing tasks such as
tokenization, stop-word removal, stemming/
lemmatization and feature engineering. This refined
representation of textual information is then feed into
ML algorithms to obtain the target identification. This
frequent NLP analysis approach is shown in Figure 2.

For pre-processed raw texts, a mathematical rep-
resentation such as BoW needs to be generated. In
particular, BoW reduces a text into a simplified repre-
sentation based on a criterion such as word frequency.
In this model, while raw text is represented as a word
bag, the semantic relationships are ignored between
words. Since BoW encodes every word in a one-hot-
encoding scheme, the model may fast converge to a
sparse vector. Term-frequency is the simplest technique
to obtain features in BoW. In order to decrease effect
of common frequent words in the corpus, a weighting
scheme, i.e. tf-idf, is frequently used while obtaining
features from text. Mathematically, tf-idf is represented
in the following way:

W(d, t) = TF(d, t) ∗ log
(

N
df(t)

)
(1)

where N denotes number of documents in the cor-
pus, df(t) denotes the number of documents containing
the term t [49]. Since BoW models are just unordered
sequence of words, they are unaware of the semantic
relations that may enrich contextual information to be
extracted. One solution to this problem is the use of N-
gram model that preserves the relation between words
based on the occurrence of N − 1 previous words [45].
The whole pre-processing pipeline may have a high-
dimension problem that may reduce performances of
ML algorithms. In order to deal with this problem,
another important step that is known as feature engi-
neering (possibly a filtering) should possibly be applied

Table 2. Confusion matrix.

Predicted class

Actual class Positive Negative
Positive TP FP
Negative FN TN

to the resultant model. Though there are filters, wrap-
pers, and embedded feature selection methodologies,
the most versatile feature selection group is feature fil-
ters. In the NLP literature, the Information Gain (IG),
Chi-Square (CHI) and Gini Index (GI) are some of the
frequently used feature filtering algorithms [50].

Once completed the text representation pipeline,
then the language problem needs an ML approach in
terms of train/validate/test scheme. There are many
ML algorithms used in the NLP problems frequently.
Explicitly, Naïve Bayes (NB), Support Vector Machines
(SVM), k-Nearest Neighbours (k-NN) Random Forests
(RF) ensemble approaches such as Boosting and Bag-
ging are to name a few. Recently, DL algorithms, i.e.
Convolutional Neural Networks and Recurrent Neural
Networks have also gained great popularity as emerging
ML algorithms for NLP domain. An important point
to remind here is that the performance of the algo-
rithms may be compared based on some widely used
metrics such as Accuracy, Recall, Precision, and F1-
measure [51]. The evaluation metrics are derived from
the confusion matrix given in Table 2.

Accuracy, Recall, Precision, F1-measure from con-
fusion matrix are defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(2)

R = TP
TP + FN

(3)

P = TP
TP + FP

(4)

F1 − measure = 2 × P × R
(P + R)

(5)

where TP, FP, FN and TN denotes True Positive, False
Positive, False Negative and True Negative, respectively.
Furthermore, we underline two additional significant
metrics which are used two evaluate the performance

Figure 2. Frequent Turkish language processing pipeline.

230 A. ÖZÇİFT ET AL.

and statistical validation of ML algorithms: Matthews
Correlation Coefficient (MCC) and Kappa (κ).

MCC is a correlation coefficient between target and
prediction whose value varies between 1 and −1 to
inform perfect agreement and disagreement, respec-
tively. Since MCC estimates the strength of an ML
algorithm with all four results of confusion matrix,
it is a comprehensive metric. Therefore, it provides a
balanced performance assessment even in imbalanced
data applications and it is given as follows:

MCC =
(TP × TN) − (FP × FN)

(TP × FP) × (TP × FN) × (TN × FP)

×(TP × FN)

(6)

Based on the inclusiveness, we also made use of MCC
metric to evaluate performance of BERT experiments.

Kappa, i.e. κ , is a statistic metric which measures
inter-rater reliability for categorical items. Inter-rater
reliability is defined as the degree of agreement among
the raters. This statistical score measures the consen-
sus degree based on the decisions of predictors. In other
words, it measures the agreement between two predic-
tors who each classify N items into exclusive categories
and κ is defined as follows:

κ = (Po − Pe)
(1 − Pe)

(7)

where Po is given below and it is also identical to
accuracy.

Po = TP + TN
TP + FP + TN + FN

In Equation (7), Pe is defined as the number of nki times
a rater i predicted category k with N observations and
it is given as

Pe = 1
N2

∑
k

nk1nk2

and it is also calculated with the following relation in
terms of confusion matrix terms.

Pe = (TP + FP)

(TP + FP + TN + FN)

× (TP + FN)

(TP + FP + TN + FN)

× (FN + TN)

(TP + FP + TN + FN)

× (FP + TN)

(TP + FP + TN + FN)

The overall score of κ varies between −1 and 1. The
obtained score is a statistical measure of how the
obtained results far from occurring by chance. More
empirically, while values smaller than 0.40 show fair
agreement, the values between 0.40 and 0.60 show
moderate agreements. Simply, for a confident clas-
sification performance evaluation, we should obtain

0.60–0.80 for good agreement and higher than 0.80
for the perfect agreement [51]. Therefore, we calcu-
lated κ metric in the experiments to evaluate statistical
confidence of obtained results.

4. Problem definition and BERT architecture

In the preceding section, we summarized Turkish lan-
guage pre-processing steps to obtain a refined vec-
tor representation while overcoming data-sparsity and
high-dimension problems.Wehave alsomade a concise
reminding of ML algorithms and frequently used eval-
uationmetrics. ThementionedML algorithms are used
in many Turkish NLP problems and the mentioned
algorithmswill be used as a baselinewhilemaking com-
parison of the results from literature and the results of
the BERT model obtained. First we define the prob-
lem and then we explain BERT architecture used in the
experiments to realize our tasks.

4.1. Definition of the problem

The basic classification task is the automated assign-
ment of a text into predefined categories. Formally,
for a given set of text with set of categories a model
Y = f (T, θ)+ ∈ is constructed. In this model, while T
is a text representation scheme, θ denotes the set of
unknown parameters of classifier model f that should
be estimated during training. The last parameter in the
model, i.e. ∈, is the error of the classification. Since f
is simply an approximation of an unknown function
h with representation of Y = h(T), the efficiency of
the classification task becomes better for smaller val-
ues of error term ∈. The value of Y varies over a set of
discrete integers that are denoting corresponding cate-
gories. For example, Y may take values of +1 and −1
for a binary sentiment identification task or for spam
detection problem denoting to be spam or not [52].

4.2. BERT architecture

BERT is a recent attention-based model with a bidirec-
tional Transformer network that was pre-trained on a
large corpus. This pre-trained model is then effectively
used to solve various language tasks with fine-tuning
[53,54]. In brief terms, the task-specific BERT archi-
tecture represents input text as sequential tokens. The
input representation is generated with the sum of the
token embeddings, the segmentation embeddings and
the position embeddings [54]. For a classification task,
the first word in the sequence is a unique token which is
denoted with [CLS]. An encoder layer is followed with
a fully-connected layer at the [CLS] position. Finally,
a softmax layer is used as the aggregator for classifica-
tion purposes [53]. If the NLP task has pair of sentences
as in question-answer case, the sentence pairs may be
separated with another special token [SEP].

AUTOMATIKA 231

BERT has mainly two versions as base and largewith
heavy parameter settings of 110M and 340M respec-
tively. While the BERT-base has 12 number of Trans-
former blocks and 768hidden layer size, the BERT-large
has 24 Transformer blocks and 1024 hidden layer size.
As it is obvious BERT-large requires more GPU mem-
ory, we decided to use BERT-base-multilingual model
for our evaluations.

4.3. BERT unsupervised pre-training tasks

Recently, most of the neural language modelling
approaches make use of the concept of borrowing
the learned knowledge from the other tasks. In this
context, modern NLP systems prefer pre-trained lan-
guage models such as BERT over embeddings learned
from scratch [55]. While using pre-trained language
models to down-stream NLP tasks, there are two
approaches: feature-based and fine-tuning. ELMo uses
the first approach including pre-trained representa-
tions as additional features for the corresponding NLP
problem. On the other hand, generative pre-trained
transformer is trained for downstream-tasks while fine-
tuning all the pre-trained parameters. The drawback
of the two approaches is that they make use of a uni-
directional language model to obtain language repre-
sentations. In other words, the unidirectional language
modelling may reduce efficiency of the transformers
while handling down-stream NLP tasks. The reason
is that the directional models proceed with reading
text sequentially in left or right direction that limits
to grasp the contextual meaning of the words depend-
ing on all surroundings. However, the transformer-
encoder strategy of BERT digest a complete sequence
at once that helps it to acquire the context of a word
in relation to all of the neighbours in either left or
right (so-called bidirectional). At this point, BERT hav-
ing bi-directional language representation comes into
play enhancing efficiency NLP tasks with fine-tuning
scheme. BERT unravelled the unidirectional limitation
with masked language model (MLM). This model first
masks some percentage of the input tokens randomly

and then it continues with the prediction of the masked
words depending on its context [54].

BERT model is trained end-to-end under two unsu-
pervised tasks: (i)MLM(also known asCloze Task [56])
and (ii) the Next Sentence Prediction (NSP) [57].

As it was mentioned, BERT operates over vocabu-
lary represented as discrete token sequences and a set
of specialized tokens: SEP, CLS andMASK. For an input
token, the input embedding is obtained with the sum-
mation of token-specific learned embeddings and cor-
responding encodings for position and segment. While
the position defined to be the index of the token in the
sequence, the segment is the index of the sentence of
the particular token [57]. BERT input representation is
shown in Figure 3 [58].

The MLM task is realized by dividing input tokens
into disjoint sets: masked and observed. About 15%
of tokens are masked (replaced) with the following
scheme: (i) Masked tokens are replaced with MASK
token 80%of the time, (ii) replacedwith a randomword
with 10% percentage and (iii) and they are retained
unchanged for 10% of portion. Following the masking
process, the BERT model is trained to reconstruct the
masked tokens based on the observed set [57].

The second unsupervised task, i.e. NSP, is particu-
larly important for the tasks that require understanding
the relation between two sentences such as question-
answering and natural language inference. This binary
NSP task is generated from any monolingual corpus as
follows: If the sentences A and B are chosen for each
pre-training case, 50% of the time B is the genuine next
sentence labelled with IsNext. For the remaining 50%
percentage, B is a random sentence from the corpus
with labelNotNext. The two tasks are given in Figures 4
and 5, respectively.

4.4. Fine-tuning BERT in down-streamNLP tasks

As it was stated, pre-trained BERT model can be
fine-tuned for various NLP tasks by just additional
single output layer without substantial modifications
to its main architecture [54]. This approach allows

Figure 3. BERT input representation. Sum of segment, position and token embeddings is the input embedding.

232 A. ÖZÇİFT ET AL.

Figure 4. BERT unsupervised MLM task.

Figure 5. BERT unsupervised next sentence prediction task.

BERT to accomplish state-of-the-art results on vari-
ous down-stream (supervised learning tasks from pre-
trained models [59]) NLP tasks such as Named Entity
Recognition (NER), Question Answering (QA), Senti-
ment Analysis (SA) and Text Classification (TC).

Basically fine-tuning is defined as follows: The
default BERTmodel is a sequence classifier. In this con-
text, final hidden state of the first word ([CLS]) from
BERT is introduced to a fully connected layer for soft-
max evaluation [60]. More formally, lets h denote the
final hidden state of the first token [CLS]. Then the
prediction of label c [55] is calculatedwith Equation (8).

p(c|h) = softmax(Wh) (8)

where W is the task-specific weight matrix. BERT
parameters are all fine-tuned mutually with W maxi-
mizing the log-probability of the correct label [55].

Self-attention mechanism in the Transformer allows
BERT to model many NLP tasks by exchanging the

proper inputs and outputs. Simply, task-specific input
and outputs are plugged into BERT and all parame-
ters are fine-tuned on an end-to-end principle [54].
For a text classification task, a single-layer feed-forward
neural network with softmax output is put on top of
the fine-tuned BERTmodel. A sample binary sentiment
classification scheme is shown in Figure 6.

Having overviewed BERT pre-training and fine-
tuning strategies, we first explain the variousNLP prob-
lems in Turkish. Then the performances of baseline
ML algorithms and BERT-base-multilingual architec-
ture are compared in Section 6.

5. NLP problems from Turkish language
literature

In order to showefficiency of BERTempirically, we have
selected diverse datasets from Turkish NLP domain. In
this section, we will present the selected NLP problems

AUTOMATIKA 233

Figure 6. BERT Fine-tuning pipeline for a sample sentiment identification task.

Table 3. Statistical properties of six datasets with maximum sentence lengths in terms of words.

Dataset Classes Sample size Type Max lengths

Cyberbullying Identification 2 1500 sample in each category Social Networking 25
News Text Classification 6 600 sample in each category Topic 891
Emotion Recognition 6 3000–5000 in each category Emotion 56
Spam SMS 2 normal 188 spam 329 Spam 10
Sentiment Hotel 2 5800 sample in each category Sentiment 124
Sentiment Movie 2 26,700 sample in each category Sentiment 166

and their corresponding results belong to ML mod-
els. While we handle the corresponding literature for
datasets, we mainly focus on Turkish language and
we add recent samples from corresponding literature
where suitable.Wemade a search on theWeb of Science
and Google Scholar using appropriate keywords and to
the best of our knowledge, this is the first study applying
BERT neural language model to solve various Turkish
language problems. We have studied five types of prob-
lems with six datasets from Turkish language domain
and the statistical properties of datasets are provided in
Table 3.

(1) Cyberbullying Identification: In the literature, this
problem is researched as hate speech detection,
harassment detection, cyberbullying identification
and detection of offensive language usage. The lat-
est sample research from literature that uses BERT
was realized in [61] for Arabic (a morphologi-
cally rich language) offensive Tweets. For SVM
baseline, they applied data cleaning, normaliza-
tion, tokenization, varying n-gram feature mod-
els and stemming pre-processing steps. On the
other hand, their BERT approachwas a fine-tuning
scheme to obtain the identification of offensive
and inoffensive Tweets [61] without mentioned
pre-processing tasks. The latest study for Turkish
cyberbullying identification was experimented in
[32] with the use of tokenization, word n-grams,
tf-idf modelling on top of Artificial Neural Net-
work (ANN) and they obtained 91% in terms of
F-measure score as their best value. Since we used
the same dataset in our BERT evaluations, there-
fore we choose their best result as baseline in our
evaluation.

(2) Text Classification: A recent study for Urdu, i.e.
a low-resource language, made use of BERT in

comparison to SVM for text categorization prob-
lem is given in [62]. Traditionally for SVM classifi-
cation pipeline, they used preprocessing steps such
as cleaning, stop-word removal, tokenization and
lemmatization together with ten feature filtering
algorithms. They obtained SVM and BERT-base
text classification results to be similar in terms
of F-measure. Text categorization is also a stud-
ied topic in Turkish language and we selected the
recent TTC-3600 news dataset [35] with economy,
culture-arts, health, politics, sports and technology
categories. The authors used stop-word filtering,
stemming and feature elimination approaches to
process data before ML classifiers. They used NB,
SVM, J48-tree and RF to evaluate the dataset and
they obtained 91.03% accuracywithRF classifier to
be their best performance. We annotate this result
later to evaluate with our BERT experiment.

(3) Sentiment Identification: Detection of polarity
from user reviews is a widely studied research
area to improve the quality of services. In a cur-
rent study [63], a financial sentiment-index for
Hong Kong stock exchange market was devel-
oped with RNN, LSTM and BERT. The authors
compared the performances of three architectures
for Chinese sentiment analysis and they obtained
comparable results. Sentiment polarity detection
also is in general a widely studied research topic
for Turkish. As a baseline, we selected a hotel
and movie datasets collected for Turkish senti-
ment research [33]. The collection recently studied
with Ersahin et. al. [64] using SVM, NB and J48
tree algorithms on top of substantial preprocessing
steps: normalization, tokenization, lemmatization
and lexicon-based feature generation and feature
filtering. Their best sentiment identification result
was obtained with NB 88.68% in movie reviews

234 A. ÖZÇİFT ET AL.

and with SVM 92.26% in hotel reviews in terms of
accuracy. The two results are to be used as baselines
while experimenting BERT model.

(4) Spam SMS Identification: An unsolicited message
from a sender to a user mostly for commercial
purposes is known as spam SMS. The importance
of developing advanced spam filtering services is
obvious. In their empirical study, Houlsby et al.
made use of BERT-base to identify spam SMS and
they obtained a significant accuracy of 95.1% for
English language [65]. In case of Turkish, a recent
study evaluating spam SMS detection research
was done by Kaya et al. in [34]. The researchers
used a sliding-window basedmotif discovery tech-
nique in tandem with feature selection strategies
to obtain a data model. Then they used various
classifiers RF, SVM, ANN and LR with the best
classification result belonging LR to be 93.76% in
terms of accuracy. We made use of the dataset
collected with the researchers as our baseline and
we will present the corresponding results later in
experiments section.

(5) Emotion Identification: Detection of emotions
from textual data is important particularly for
potential applications in marketing, political sci-
ence, and human–computer interaction etc. In
the study by Huang et al., the three emotions
(happy, angry, sad) were classified with BERT-
large and LSTM ensemble. They found the 77.09%
average F-score for SemEval-2019 “EmoContext”
dataset [66]. In the recent Turkish emotion detec-
tion study, Tocoglu et. al. collected a dataset called
TREMO [36] and they experimented the dataset
with various stemming preprocessing steps. They
obtained four stemmed versions to detect hap-
piness, fear, anger, sadness, disgust and surprise
with SVM, J48 and NB. The best average accuracy
was obtained with SVM to be 86.29%. As we will
make use of the collected dataset, this result is our
baseline for the comparison.

6. Experimental study

In this section, we made use of mentioned datasets and
their corresponding best predictive performances from
literature to evaluate equivalent results obtained with
BERT. We start with explanation of BERT fine-tuning
parameters and we give details of the specifications of
hardware used for experiments. Then, we will present
and interpret the results of the experiments conducted.

6.1. BERT fine-tuning parameter selection

The designers of BERT in their article [54] recommends
to keep all parameters constant except the batch-size,
learning rate (Adam) and epoch-size. The recommended
values for the parameters are as follows:

• Batch-size: 16,32
• Learning Rate: 5e-5, 3e-5, 2e-5
• Epoch-size: 2,3,4

We selected batch-size, learning rate and epoch-
size 16, 2e-5 and 4, respectively, in all the experi-
ments and we kept them constant. For our tasks, we
selected pre-trained BERT-base-multi-language hav-
ing number of Transformer blocks of 12, the hidden
layer size of 768 and self-attention head of 12. BERT
has single-language model devoted to English or Chi-
nese and multi-language model that support 100 lan-
guages including Turkish. The BERT pipeline formulti-
language applications does not require a specific tuning
task. In particular, for multi-language version of BERT,
no specific parameter tuning strategy was applied for
Turkish other than the mentioned fine-tuning values.

Whilewe carrying out experiments, wemade use of a
Personal Computer (PC) having 128 GB of RAM, Intel
Core i9 9900X CPU and GeForce RTX 2080 Ti GPU
having 11 GB of memory.

6.2. BERT architecture experiments

We mentioned the datasets from Turkish language
studies literature and we summarize the pre-processing
steps conducted in the corresponding studies in Table 3.
However, being an essential operation of every text pro-
cessing step, we did not include removal of punctuation,
lower-case conversion and removal of ambiguous char-
acters, etc. steps in Table 4. For the sake of convenience,
we use symbolization of datasets as follows: cyberbul-
lying (CYB), news text categorization (NEWS), emo-
tion identification (EMOT), spam SMS (SPAM), sen-
timent hotel and sentiment movie (SHTL and SMOV)
respectively.

It is observed from Table 4 that any Turkish lan-
guage analysis problem makes use of pre-processing
steps that can affect the performance of the ML algo-
rithms. The empirical studies show this performance
variation depending on the mentioned language pro-
cessing tasks. It is observed that most of the studies
of morphologically rich languages make use of these
steps in some way to obtain a sufficient ML model.
However, from BERT point of view, no such preprocess-
ing step is required and the analyses of most tasks are
conducted with state-of-the-art results. We present the

Table 4. Language pre-processing steps conducted in baseline
studies.

Pre-processing steps CYB NEWS EMOT SPAM SHTL SMOV

Stop-word removal +
Tokenization + + + + +
N-gram representation +
Stemming or lemmatization + + + +
Feature engineering + + + + +
TF-IDF representation + + +
Lexicon-based processing + + +

AUTOMATIKA 235

Table 5. Comparison of performances of BERT and ML
Algorithms.

Dataset Baseline ML
Performance
Acc or F-1 BERT Acc

Performance
comparison

CYB ANN 91.00 98.27 +7.27
NEWS RF 91.03 98.12 +7.09
EMOT SVM 86.29 93.63 +7.34
SPAM LR 93.76 92.51 –1.25
SHTL SVM 92.26 99.01 +6.75
SMOV NB 88.68 97.28 +8.60

Table 6. Evaluation of BERT experiments in terms of various
metrics.

DAT ACC F1 Precision Recall MCC K

CYB 0.9827 0.9826 0.9819 0.9834 0.9653 0.9650
NEWS 0.9812 0.9829 0.9811 0.9848 0.9620 0.9620
EMOT 0.9363 0.9401 0.9350 0.9453 0.8721 0.8720
SPAM 0.9251 0.9300 0.9384 0.9217 0.8497 0.8500
SHTL 0.9901 0.9901 0.9901 0.9901 0.9802 0.9800
SMOV 0.9728 0.9742 0.9722 0.9761 0.9445 0.9450

performances of the baseline algorithms and the result
of BERT experiments in Table 5. Since the datasets are
balancedweuseAcc or F-1 score interchangeablywhich
one is supported in the corresponding article.

Inspection of Table 5 in comparison with the best
baseline performances show that the BERT generates
enhanced prediction performances in five out of six
datasets. Particularly, overall increase in the perfor-
mances in average is about 7.5% except spam data. This
empirical performance increase in various Turkish lan-
guage is significant as a possible research direction.
We demonstrate the resultant benchmark in Figure 7
visually.

The performance increase in the mentioned Turk-
ish language problems is obvious. We now give more
detailed results of BERT experiments in terms of Acc,
F1-measure, Precision, Recall, MCC and κ are in
Table 6.

From the above table, it is observed that the
obtained Acc and F1 are meaningful and they are pos-
itively correlated with each other without showing any
skewness.

In a ML analysis, Recall-Precision metrics produces
important information about the quality of the predic-
tions. The two metrics are needed to be minimized for
an efficient classification task. However, there is a trade-
off between them and they cannot be minimized both
at the same time. In particular, for different unbalanced
problem domains (for example health-diagnosis cases)
minimizing one metric may be preferred. In our prob-
lems, the datasets used are balanced and the generated
Recall-Precision pairs are in balance in terms of val-
ues. The Recall-Precision pair values are provided in
Figure 8.

Inspection of Figure 8 shows that there is a corre-
lation between Recall-Precision values. Therefore, it is
reasonable to infer BERT architecture is successful to
predict the categories of the tested problems.

MCC and κ are the other important metrics to
demonstrate the efficiency of BERT neural model in
the prediction tasks of the mentioned problems. As a
reminder, we note that a successfulMLmodel hasMCC
and κ values that tend to 1. In particular MCC for all
experiments have value of above 0.85 that is an adequate
performance criterion. This numerical observation is
shown in Figure 9.

Furthermore from Figure 9, we may also observe
that κ values are also reasonable having significantly
higher values above baseline of 0.4. The smallest κ

is 0.85 and the calculated values prove the statistical
validation of BERT predictions.

As the last evaluation of experimental results of
BERT model is the elapsed time while carrying out the
experiments. The elapsed time on the abovementioned
hardware for each of the tasks with 4 epoch are CYB: 2 h
4min, NEWS: 2 h 34min, EMOT: 1 h 46min, SPAM:

Figure 7. Comparison of BERT and base ML Algorithms.

236 A. ÖZÇİFT ET AL.

Figure 8. Recall-precision curve for all datasets.

Figure 9. MCC and κ evaluation for BERT architecture.

23min, SHTL: 7 h 45min and SMOV: 34 h 26min.
In particular, for relatively larger datasets the training
times to complete the tasks become enormous.

7. Conclusion

Morphologically rich languages are analysed with the
use of various pre-processing techniques that affect per-
formance of the resultant ML model. The combina-
tions or variations of these steps change the obtained
outcomes in terms of prediction efficiency. The men-
tioned pre-processing tasks need dense software-based
steps and they are not applied in a strictly well-defined
pipeline. On the other hand, BERT neural model has
relatively straightforward application to solve vari-
ous language tasks. Furthermore, even with its multi-
language version, BERT may generate remarkable out-
comes in NLP problems.

We used BERT to analyse five types of problems
and six datasets from Turkish language domain and

compared the obtained results with the best predic-
tions of base-line ML algorithms from literature. It was
empirically shown that BERT enhanced the prediction
performances in all of the sets except spamdataset. And
it is observed that the performance increase in BERT
predictions are remarkable compared to base-line algo-
rithms. The performance advances from 6.75 to 8.60%
numerically.

The empirical evaluation of various datasets from
Turkish NLP domain shows that morphologically rich
languagesmay benefit fromBERT-multi-language neu-
ral model in two significant points: (i) elimination of
need for intimidating pre-processing language steps
and (ii) enhancing the prediction ability. Although the
required training time becomes larger even for a fine-
tuning task, it could be possible to decrease the elapsed
time with the use of light versions of BERT or some
other pre-trained models.

Although we merely conducted a few Turkish lan-
guage problems, it is expected that BERTmulti-language

AUTOMATIKA 237

model may similarly be applied to morphologically
rich and low-resource languages such as Arabic, Czech,
Hungarian, German and Finnish.

As a future direction, we plan to use lighter versions
of BERT-like architectures to decrease training time
periods while keeping prediction performances high.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

ORCID

Akın Özçift http://orcid.org/0000-0003-2840-1917

References

[1] Batbaatar E, Li M, Ryu KH. Semantic-emotion neu-
ral network for emotion recognition from text. IEEE
Access. 2019;7:111866–111878.

[2] Wang D, Su J, Yu H. Feature extraction and analysis of
natural language processing for deep learning English
language. IEEE Access. 2020;8:46335–46345.

[3] Khan W, Daud A, Khan K, et al. Part of speech tag-
ging inUrdu: comparison ofmachine and deep learning
approaches. IEEE Access. 2019;7:38918–38936.

[4] Dong M, Li Y, Tang X, et al. Variable convolution and
pooling convolutional neural network for text senti-
ment classification. IEEE Access. 2020;8:16174–16186.

[5] Kaliyar RK, Goswami A, Narang P, et al. FNDNet–A
Deep convolutional neural network for fake news detec-
tion. Cogn Syst Res. 2020;61:32–44.

[6] Sailunaz K, Alhajj R. Emotion and sentiment analysis
from twitter text. J Comput Sci. 2019;36:101003.

[7] Ren Y, Ji D. Neural networks for deceptive opin-
ion spam detection: An empirical study. Inf Sci (Ny).
2017;385–386:213–224.

[8] Samant SS, Bhanu Murthy NL, Malapati A. Improv-
ing term weighting schemes for short text classifi-
cation in vector space model. IEEE Access. 2019;7:
166578–166592.

[9] Lan M, Tan CL, Su J, et al. Supervised and traditional
term weighting methods for automatic text categoriza-
tion. IEEE Trans Pattern Anal Mach Intell. 2009;31(4):
721–735.

[10] Rudkowsky E, Haselmayer M, Wastian M, et al. More
than bags of words: sentiment analysis with word
embeddings. Commun Methods Meas. 2018;12(2–3):
140–157.

[11] RubensteinH,Goodenough JB. Contextual correlates of
synonymy. Commun ACM. 1965;8(10):627–633.

[12] Schütze H, Pedersen JO. Information retrieval based on
word senses. 1995.

[13] Khattak FK, Jeblee S, Pou-Prom C, et al. A survey of
word embeddings for clinical text. J Biomed Inform X.
2019;4:100057.

[14] Bengio Y, Ducharme R, Vincent P, et al. A neu-
ral probabilistic language model. J Mach Learn Res.
2003;3:1137–1155.

[15] GuoB, ZhangC, Liu J, et al. Improving text classification
with weighted word embeddings via a multi-channel
text CNN model. Neurocomputing. 2019;363:366–374.

[16] Mikolov T, Chen K, Corrado G, et al. Efficient
estimation of word representations in vector space.
ArXiv:1301.3781 [Cs]. September 6, 2013.

[17] Pennington J, Socher R, Manning C. Glove: global vec-
tors for word representation. Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP); Doha, Qatar: Association
for Computational Linguistics. 2014:1532–1543.

[18] Mikolov T, Grave E, Bojanowski P, et al. Advances in
pre-training distributed word representations. ArXiv:
1712.09405 [Cs]. December 26, 2017.

[19] Devlin J, Chang M-W, Lee K, et al. BERT: Pre-training
of deep bidirectional transformers for language under-
standing. In: J Burstein, C Doran, T Solorio, editors.
Proceedings of the 2019Conference of theNorthAmer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume
1 (Long and Short Papers). Association for Computa-
tional Linguistics; 2019. p. 4171–4186.

[20] Peters ME, Neumann M, Iyyer M, et al. Deep contex-
tualized word representations. ArXiv:1802.05365 [Cs].
March 22, 2018.

[21] Hao J, Wang X, Yang B, et al. Modeling recurrence for
transformer. ArXiv:1904.03092 [Cs]. April 5, 2019.

[22] Li F, Jin Y, Liu W, et al. Fine-tuning bidirectional
encoder representations from transformers (BERT)–
based models on large-scale electronic health record
notes: an empirical study. JMIRMed Inform. 2019;1–13.

[23] Alhaj YA, Xiang J, Zhao D, et al. A study of the effects of
stemming strategies on Arabic document classification.
IEEE Access. 2019;7:32664–32671.

[24] Demir H, Özgür A. Improving named entity recog-
nition for morphologically rich languages using word
embeddings. 2014 13th International Conference on
Machine Learning and Applications. 2014:117–122.

[25] Uysal AK, Gunal S. The impact of preprocessing on text
classification. Inf Process Manag. 2014;50(1):104–112.

[26] Mulki H, HaddadH, Ali CB, et al. Preprocessing impact
on Turkish sentiment analysis. 2018 26th Signal Pro-
cessing and Communications Applications Conference
(SIU). 2018:1–4.

[27] Ebert S, Müller T, Schütze H. LAMB: a good shepherd
of morphologically rich languages. EMNLP. 2016. Pro-
ceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing: 742–752.

[28] Romanov V, Khusainova A. Evaluation of morpholog-
ical embeddings for English and Russian languages.
Proceedings of the 3rd Workshop on Evaluating Vec-
tor Space Representations for NLP; Minneapolis, USA:
Association for Computational Linguistics. 2019:77–81.

[29] Belinkov Y, Durrani N, Dalvi F, et al. On the linguistic
representational power of neural machine translation
models. ArXiv:1911.00317 [Cs]. November 1, 2019.

[30] Jawahar G, Sagot B, Seddah D. What does BERT learn
about the structure of language? Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computa-
tional Linguistics. 2019:3651–3657.

[31] Zhu Y, Heinzerling B, Vulić I, et al. On the importance
of subword information for morphological tasks in
truly low-resource languages. ArXiv:1909.12375 [Cs].
September 26, 2019.

[32] Bozyiğit, Alican, Semih Utku, and Efendi Nasiboğlu.
Cyberbullying detection by using artificial neural
network models. 2019 4th International Conference
on Computer Science and Engineering (UBMK).
2019:520–24.

[33] Ucan A, Naderalvojoud B, Sezer EA, et al. SentiWord-
Net for new language: Automatic translation approach.

http://orcid.org/0000-0003-2840-1917

238 A. ÖZÇİFT ET AL.

2016 12th International Conference on Signal-Image
Technology Internet-Based Systems (SITIS). 2016:
308–15.

[34] Özdemir C, Yılmaz K. A new approach to filtering spam
SMS: motif patterns. GUJSC. 2018;6(2):436–450.

[35] Kılınç D, Özçift A, Bozyigit F, et al. TTC-3600: A new
benchmark dataset for Turkish text categorization. J Inf
Sci. 2017;43(2):174–185.

[36] Tocoglu MA, Alpkocak A. TREMO: A dataset for emo-
tion analysis in Turkish. J Inf Sci. 2018.

[37] Sak H, Güngör T, Saraçlar M. Resources for Turkish
morphological processing. LangResour Eval. 2011;45(2):
249–261.

[38] Vylomova E, Cohn T, He X, et al. Word representation
models for morphologically rich languages in neural
machine translation. Proceedings of the First Work-
shop on Subword and Character Level Models in NLP.
Copenhagen, Denmark: Association for Computational
Linguistics. 2017:103–108.

[39] Hans K, Milton RS. Improving the performance of neu-
ral machine translation involving morphologically rich
languages. ArXiv:1612.02482 [Cs]. January 8, 2017.

[40] Oflazer K. Turkish and Its challenges for language pro-
cessing. Lang Resour Eval. 2014;48(4):639–653.

[41] Kışla T, Karaoglan B. A hybrid statistical approach
to stemming in Turkish: an agglutinative language.
AnadoluUniv J Sci TechnolAppl Sci Eng. 2016;401–412.

[42] Abudukelimu H, Liu Y, Chen X, et al. Learning Dis-
tributed Representations of Uyghur words and mor-
phemes. CCL. 2015; 202–211.

[43] Wolk K. Machine Learning in Translation corpora pro-
cessing. 1st ed. CRC Press; 2019.

[44] Nuzumlalı MY, Özgür A. Analyzing stemming
approaches for Turkish multi-document summariza-
tion. Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguis-
tics. 2014:702–706.

[45] Mogotsi I, Christopher C, Manning D, et al. Intro-
duction to information retrieval. Inf Retr Boston.
2010;13(2):192–195.

[46] Tantuğ AC, Adali E, Oflazer K. Machine transla-
tion between Turkic languages. Proceedings of the
45th Annual Meeting of the Association for Com-
putational Linguistics Companion Volume Proceed-
ings of the Demo and Poster Sessions. Prague, Czech
Republic: Association for Computational Linguistics.
2007:189–192.

[47] Vuckovic K, Bekavac B, Silberztein M, et al. Automatic
Processing of various levels of linguistic phenomena:
selected papers from the NooJ 2011 International Con-
ference.

[48] Akdoğan Ö, Ayşe Özel S. Nitelik Çıkarımı Yöntem-
lerinin Türkçe Metinlerin Sınıflandırılmasına Etkisi.
ÇukurovaÜniversitesiMühendislik-Mimarlık Fakültesi
Dergisi. September 30, 2019:95–108.

[49] Kowsari K, Meimandi KJ, Heidarysafa M, et al.
Text classification algorithms: a survey. Information.
2019;10(4):150.

[50] Uysal AK, Gunal S, Ergin S, et al. The impact of feature
extraction and selection on SMS spam filtering. 2013.

[51] Tahir M, Haq AU, Asghar S, et al. A classification model
for class imbalance dataset using genetic programming.
IEEE Access. 2019;7:71013–71037.

[52] Kobayashi VB, Mol ST, Berkers HA, et al. Text classifi-
cation for organizational researchers: a tutorial. Organ
Res Methods. 2018;21(3):766–799.

[53] Gao Z, Feng A, Song X, et al. Target-dependent sen-
timent classification with BERT. IEEE Access. 2019;7:
154290–154299.

[54] Devlin J, Chang M-W, Lee K, et al. BERT: Pre-training
of deep bidirectional transformers for language under-
standing. ArXiv:1810.04805 [Cs]. May 24, 2019.

[55] Sun C, Qiu X, Xu Y, et al. How to fine-tune BERT for
text classification? ArXiv:1905.05583 [Cs]. February 5,
2020.

[56] TaylorWL. ‘Cloze procedure’: a new tool for measuring
readability. Journalism Q. 1953;30(4):415–433.

[57] Lu J, BatraD, ParikhD, et al. ViLBERT: Pretraining task-
agnostic visiolinguistic representations for vision-and-
language tasks. ArXiv:1908.02265 [Cs]. August 6, 2019.

[58] Wu X, Lv S, Zang L, et al. Conditional BERT contextual
augmentation. December 17, 2018.

[59] McCann B, Bradbury J, Xiong C, et al. Learned in trans-
lation: contextualized word vectors. ArXiv:1708.00107
[Cs]. June 20, 2018.

[60] Ma G. Tweets classification with BERT in the Field Of
DisasterManagement | Semantic Scholar. AccessedMay
4, 2020.

[61] Mubarak H, Rashed A, Darwish K, et al. Arabic offen-
sive language on twitter: Analysis and experiments.
ArXiv:2004.02192 [Cs]. April 5, 2020.

[62] Asim MN, Ghani MU, Ibrahim MA, et al. Bench-
mark performance of machine and deep learning based
methodologies for Urdu text document classification.
ArXiv:2003.01345 [Cs]. March 3, 2020.

[63] Hiew J, Git Z, Huang X, et al. BERT-based financial sen-
timent index and LSTM-based stock return predictabil-
ity. ArXiv:1906.09024 [q-Fin]. June 21, 2019.

[64] Erşahin B, Aktaş Ö, Kilinç D, et al. A hybrid sentiment
analysis method for Turkish. Turk JElec EngComp Sci.
2019;27(3):1780–1793.

[65] Houlsby N, Giurgiu A, Jastrzebski S, et al. Parameter-
efficient transfer learning for NLP. ArXiv:1902.00751
[Cs, Stat]. June 13, 2019.

[66] Huang C, Trabelsi A, Zaïane OR. ANA at SemEval-
2019 Task 3: contextual emotion detection in con-
versations through hierarchical LSTMs and BERT.
ArXiv:1904.00132 [Cs]. May 31, 2019.

[67] Botha JA. Probabilistic modelling of morphologi-
cally rich languages. ArXiv:1508.04271[Cs]. August 18,
2015.

	1. Introduction
	2. Turkish language modelling challenges based on its morphological complexity
	3. Frequent Turkish language processing pipeline and ML algorithms
	4. Problem definition and BERT architecture
	4.1. Definition of the problem
	4.2. BERT architecture
	4.3. BERT unsupervised pre-training tasks
	4.4. Fine-tuning BERT in down-stream NLP tasks

	5. NLP problems from Turkish language literature
	6. Experimental study
	6.1. BERT fine-tuning parameter selection
	6.2. BERT architecture experiments

	7. Conclusion
	Disclosure statement
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

