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ABSTRACT
Optical coherence tomography (OCT) images of the retina provide a structural representation
and give an insight into the pathological changes present in age-related macular degeneration
(AMD). Due to the three-dimensionality and complexity of the images, manual analysis of patho-
logical features is difficult, time-consuming, and prone to subjectivity. Computer analysis of 3D
OCT images is necessary to enable automatedquantitativemeasuringof the features, objectively
and repeatedly. As supervised and semi-supervised learning-based automatic segmentation
depends on the training data and quality of annotations, we have created a new database of
annotated retinal OCT images – the AROI database. It consists of 1136 images with annotations
for pathological changes (fluid accumulation and related findings) and basic structures (layers)
in patientswith AMD. Inter- and intra-observer errors have been calculated in order to enable the
validation of developed algorithms in relation to human variability. Also, we have performed the
automatic segmentationwith standard U-net architecture and two state-of-the-art architectures
for medical image segmentation to set a baseline for further algorithm development and to get
insight into challenges for automatic segmentation. To facilitate and encourage further research
in the field, we have made the AROI database openly available.
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Introduction

Age-related macular degeneration (AMD) is an
acquired degeneration of the retina that causes signif-
icant central visual impairment in its late-stage and is
the leading cause of irreversible blindness in people 50
years of age or older in the developed world [1]. The
estimated prevalence of any and late-stageAMD inpeo-
ple aged 45–85 years is 8.69% and 0.37%, respectively
[2]. The prevalence of late-stage AMD sharply rises to
7.1% in those 75 years or older [3]. Due to the aging of
the population, by 2040 an estimated 288million people
will be affected by AMD [2].

AMD is a progressive disease. The early and interme-
diate stages are usually asymptomatic, characterized by
the accumulation of yellow granular deposits beneath
the outermost layer of the retina, the retinal pigment
epithelium (RPE) (Figure 1(a)). Advanced or late AMD
is defined either by the development of atrophy of the
RPE and the overlying photoreceptors or by the devel-
opment of new blood vessels (neovascular membranes)
beneath or above the RPE (Figure 1(b)). These new
vessels tend to leak or rupture, with subsequent exuda-
tion or haemorrhage accumulating in different retinal
layers [4]. These two forms of advanced AMD, the for-
mer usually referred to as geographic atrophy (GA),
and the latter as exudative, wet, or neovascular AMD

(nAMD), can occur alone or together, either simul-
taneously or sequentially, and both forms can lead to
significant visual impairment [5]. There is currently no
approved treatment available for GA [6]. Intravitreal
anti-vascular endothelial growth factor (anti-VEGF)
therapy is the mainstay of nAMD treatment [7].

Optical coherence tomography (OCT) is an imag-
ing technique invaluable for diagnosing AMD and
guiding AMD treatment because it provides high-
resolution, pseudohistological cross-sectional images
of the retina and choroid. In nAMD, OCT is used to
detect and visualize specific lesions such as intrareti-
nal fluid (IRF), subretinal fluid (SRF), subretinal
hyperreflective material (SRHM), and retinal pigment
epithelial detachment (PED). These changes repre-
sent exudates (IRF, SRF, some cases of SRHM, some
forms of PED), haemorrhage (some cases of SRHM,
some forms of PED), or neovascular membranes and
fibrosis (some cases of SRHM and some forms of
PED) [8]. Previous studies have shown these lesions
can serve as OCT biomarkers for the visual func-
tion or therapy response [9–14]. In comparison to
two-dimensional analyses of central B-scans, volu-
metric analyses of these pathologic lesions in the
entire macular area might more precisely predict these
outcomes [13,14].
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Figure 1. (a) Intermediate AMD. Fundus photography showingnumerous yellowgranular deposits (drusen) in themacular area. OCT
showing the location of drusen beneath the RPE. (b) Late (neovascular) AMD. Fundus photography showing new subretinal vessels
and a wide area of exudation. OCT showing extensive structural changes in multiple retinal layers.

Automatic segmentation of retinal layers and of the
IRF, SRF, SRHM, and PED (from this point on alto-
gether referred to as fluids) is crucial for detecting and
characterization of AMD objectively and in a repro-
ducible way. A reliable automatic OCT system for seg-
mentation is crucial for further development of diag-
nosing retinal disease. Due to the quantitative analysis
of pathological changes, the therapy effectiveness could
be predicted [15,16]. The occurrence of intra- and sub-
retinal fluid is an important biomarker that plays a
major role in (re-) treatment decisions and is prognostic
of visual rehabilitation [17]. Quantitative analysis also
allows the prediction of the transition from the mid-
dle to the late phase and the prediction of whether in
the case of one diseased eye, the disease will affect the
other eye [18,19]. Recent studies confirm the correla-
tion between individual fluids and the success of anti-
VEGF therapy, making computer segmentation and
quantitative analysis even more important [20–22].

Currently, commercially available OCT software
algorithms automatically perform retinal layer segmen-
tation to a variable extent and derive basic parameters
such as inner or outer retinal thickness, RPE eleva-
tion, or central subfield thickness. Although helpful
and routinely used to inform clinical decisions, issues
of susceptibility to segmentation errors and limited
inter-device reproducibility have been raised [23,24].

However, the main issue of these algorithms is the lack
of detailed information, as these basic thickness and
elevation parameters do not distinguish specific under-
lying lesions (e.g. retinal fluids in different compart-
ments).

Despite great progress in computer vision and med-
ical image segmentation, a major shortcoming is the
lack of publicly available databases of annotated images.
In medical image segmentation supervised or semi-
supervised methods are still predominant, and their
accuracy depends on the quality and scale of anno-
tated data. Most of the published methods are devel-
oped on the datasets of images in which no significant
pathological changes are present, so it is questionable
to what extent the methods are applicable in the case
of severe disease. Also, it is difficult to evaluate and
compare different methods as there is a lack of pub-
licly available databases of manually labelled images,
and results depend significantly on the number of pro-
cessed images, quality of images (related to the type of
OCT device), present disease, etc.

In 2017, MICCAI “Retinal OCT Fluid Challenge
(RETOUCH)” was organized [25]. Considering the
same dataset and the samemetric for evaluation of seg-
mentation and detection, this was a notable improve-
ment in the evaluation of differentmethods. All applied
methods (eight teams were participating) for automatic
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segmentation and detection of fluids were based on
deep learning methods (segmentation was usually per-
formed with the popular U-net architecture [26]) in
combination with other machine learning (ML) meth-
ods and image analysis methods. Details can be found
on the challenge website [25] and in the accompa-
nying paper [27]. Besides the RETOUCH challenge
database, the only publicly available dataset, which
some authors use for evaluation of their methods, is the
DUKE dataset [28] containing 110 B-scans of 10 DME
(diabetic macular oedema) patients acquired with the
Spectralis OCT. In a recent review paper, Khan et al.
[29] gave an extensive overview of publicly available
databases in ophthalmology (up toMay 2020) in which
authors raise serious concerns about “data poverty” and
argue about challenges in data collection.

In this paper, we describe the creation of the openly
available Annotated Retinal OCT Images (AROI)
database. We give an overview and analysis of the
current state of development of the AROI database,
with plans for further improvements and new fea-
tures. It currently consists of 1136 annotated B-scans
(from24patients suffering fromnAMD) and associated
raw high-resolution images. The existing research indi-
cates that the approach in which layers and fluids are
jointly segmented aims to take advantage of the inter-
dependence of fluids and layers and thus achieves the
best possible segmentation [30–35]. Therefore, we have
provided annotations for pathological changes (fluid
accumulation and related findings) and basic struc-
tures (layers). Also, we have presented results for intra-
and inter-observer errors to enable the validation of
developed algorithms in relation to human variabil-
ity. To set a baseline for deep learning (DL) methods
we have presented results for automatic segmentation
with standard U-net architecture and two state-of-the-
art architectures (U-net-like and U-net++) in medical
image segmentation. The results indicate that there are
major challenges for automatic segmentation in the
case of severe pathologies. To the best of our knowl-
edge, there are no such publicly available datasets in
terms of scale, and with such exhaustive annotations in
patients with severe pathology and still, they are cru-
cial for the introduction of automatic segmentation into
clinical practice.

Materials andmethods

AROI database

Data collection
For the purpose of this study, we collected the database
of manually Annotated Retinal OCT Images (AROI
database). In collaboration with Sestre milosrdnice
University Hospital Center (Zagreb, Croatia), images
were collected and annotated by an ophthalmolo-
gist. Selection criteria included patients aged 60 years

and older diagnosed with nAMD, irrespective of their
anti-vascular endothelial growth factor (anti-VEGF)
therapy status, with no significant media opacities pre-
cluding adequate retinal imaging, and with no other
retinal disorders. The concurrent presence of geo-
graphic atrophy (GA) of any extentwas not an exclusion
criterion, since nAMD and GA occur simultaneously
or sequentially in a significant number of patients with
advanced AMD. From April 2018 to June 2018, 24 con-
secutive patients were included in the study. Macular
SD-OCT volumes were recorded with the Zeiss Cirrus
HD OCT 4000 device. Image quality was checked by
an ophthalmologist. Overall signal strength of 6/10 or
more and absence of any focal shadow artefacts or out
of register artefacts was a prerequisite for further analy-
sis. Each OCT volume consisted of 128 B-scans, spaced
47.24 µm apart, with a resolution of 1024× 512 pix-
els (pixel size 1.96 µm× 11.74 µm). Retinal fluids and
layers were annotated for 1136 B-scans out of a total
of 3072 B-scans for 24 patients (37% of B-scans were
annotated). Annotations were not provided for each B-
scan. The central 10 B-scans around the foveal centre
were annotated for each patient, as visual acuity mostly
depends on the pathological changes in this area, while
more eccentric B-scans were annotated at the ophthal-
mologist’s discretion: in case the adjacent B-scans were
deemed similar, the annotations were skipped (per-
formed for every 2nd to 10th scan, depending on the
extent and complexity of pathological changes). The
average number of annotated scans per patient was
47.3± 25.7.

Images within the database are available in PNG for-
mat and organized so that each filename is associated
with a patient number (1–24) and B-scan ordinal num-
ber (0–127) (e.g. patient12_123.png). All raw images,
and not just labelled ones, are available to enable 3D
automatic segmentation. At this phase, images are not
divided into training and test sets.

Data collection adhered to the tenets of the Decla-
ration of Helsinki and the standards of Good Scientific
Practice of Sestre milosrdnice University Hospital Cen-
ter (Zagreb, Croatia). All patients signed informed con-
sent, the images are anonymized and do not contain
any additional information about patients. The pre-
sented study was approved by the Ethics Committee
of the Sestre milosrdnice University Hospital Center
(EP-3272/18-11) and the Faculty of Electrical Engineer-
ing and Computing (Zagreb, Croatia).

Fluids and layers annotations
All annotations were done by one expert ophthalmolo-
gist. The lesions of interest and annotated in this study
were the intraretinal fluid (IRF), subretinal fluid (SRF),
subretinal hyperreflective material (SRHM), and reti-
nal pigment epithelial detachment (PED) (Figure 2).
Although some of these lesions can reflect processes
such as fibrotic scars or fibrovascular membranes, as
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they most often reflect exudation or haemorrhage, the
term “fluids” was liberally used here to refer to all
these lesions. Additionally, as SRF and SRHM share the
same location characteristics, and often reflect the same
exudative process, the distinction between SRF and
SRHM was not performed in this study, and they were
annotated jointly as SRF. In the future, development
of the enhanced segmentation method is planned in
order to discriminate between SRF and SRHM, as well
as between different types of SRHM. As the range of
SRHM in AMD and other macular disorders includes a
number of different lesions, such as neovascular mem-
branes, fibrosis, exudate, haemorrhage, and lipofuscin
like material, a new, more extensive dataset supported
with multimodal imaging is in preparation.

To detect IRF, SRF, and PED, the knowledge of their
location within or outside specific retinal layers can be
used to facilitate their detection anddifferentiation. The
retina is histologically divided into 10 layers: (1) inter-
nal limiting membrane (ILM), (2) retinal nerve fibre
layer (RNFL), (3) ganglion cell layer (GCL), (4) inner
plexiform layer (IPL), (5) inner nuclear layer (INL),
(6) outer plexiform layer (OPL), (7) outer nuclear
layer (ONL), (8) external or outer limiting membrane
(ELM or OLM), (9) photoreceptor layer, and (10) reti-
nal pigment epithelium/Bruch’s membrane complex
(RPE/BM). The layers visible in the OCT scan have
been correlated to these histological layers, with the
exception of a few additional zones observed in the
photoreceptor layer for which the exact histological
counterpart is not yet defined [36].

The IRF is a localized extracellular intraretinal fluid
accumulation seen as a hyporeflective area located any-
where between ILM and ELM, the SRF is a subreti-
nal fluid accumulation seen as a hyporeflective area
between photoreceptor layer and RPE (the SRHM is
seen in the same location but as a homogenously or
inhomogenously hyperreflective area), and the PED is
either a hyporeflective accumulation of fluid or hyper-
reflective accumulation of other material between RPE
and BM (the RPE/BM complex is separated in the case
of PED) [8]. However, as pathological processes such as
those in AMD can lead to extensive changes in retinal
structure, it is often impossible for a reader to deter-
mine all the layers in the OCT scan reliably. Therefore,
we traced ILM, the inner boundary of RPE, BM, and the
boundary between IPL and INL (IPL/INL), as these lay-
ers/boundaries could be readily determined in virtually
all images (Figure 2). While ILM, the inner boundary
of RPE, and BM were chosen as pertinent for IRF, SRF,
and PED localization, the IPL/INL boundary was cho-
sen as it could be used to locate the foveal centre in
case of an eccentric scan (in patients with poor fixa-
tion) or loss of normal foveal depression (in patients
with extensive foveal oedema, elevation, traction, or
parafoveal atrophy). As the foveal centre consists only
of ILM, ONL, photoreceptor layer, and RPE/BM, while
other layers taper towards the foveal centre, the centre
can be defined as the point of least distance between
the ILM and any of these other layers, including the
IPL/INL boundary. In our dataset all scanswere centred
at the fovea and this step was not needed.

Figure 2. From left to right: example of the image with annotated boundaries, an image with annotated fluids, and an image
prepared for semantic segmentation (with eight classes).
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Images prepared for semantic segmentation
As simultaneous segmentation of layers and fluids
should give better results than separate segmentation
of fluids only or layers only, images were prepared as
shown in Figure 2 thus reducing the problem of seg-
mentation to semantic segmentation with eight classes:
area above ILM (vitreous), area between ILM and
INL/IPL, area between IPL/INL and RPE, area below
the BM (choroid), and three retinal fluids (PED, SRF,
IRF).

Models for automatic segmentation

Architectures
Since its introduction in 2015, the U-net architecture
[26] and its various modifications have been the most
used architectures for medical image segmentation.
The U-net architecture consists of an encoder (contrac-
tive path), decoder (expanding path), and skip connec-
tions which enables simultaneous capturing of context
and localization as it is shown in Figure 3. We will
not explain it in detail as it is a well-known architec-
ture for medical image segmentation. We used stan-
dard U-net architecture to set a baseline for automatic
segmentation.

Although many modifications of U-net architec-
ture were proposed [34,37–39] we chose two state-of-
the-art architectures to get further insights into chal-
lenges for automatic segmentation. The groundbreak-
ing improvement in computer vision was achieved with
ResNet architecture [40] and DenseNet architecture
[41], where both reached breakthrough results in clas-
sification on the ImageNet dataset [42]. The logical step
was to improve the U-net architecture in the ResNet
and DenseNet style fashion. We opted for U-net-like
architecture [43] and U-net++ [44] as two state-of-
the-art architectures. The former combines the good
sides of U-net and ResNet architectures and the latter is
inspired with DenseNet architecture. A recent paper by

Isensee et al. [45], where they proposed a nnU-net (out-
of-the-box tool) for biomedical image segmentation
that uses U-net-like architecture was another argument
for our choice of architecture.

The U-net-like architecture is shown in Figure 4.
In the down-sampling path, residual blocks contain
convolutional filters (3× 3) followed by batch nor-
malization (BN) [46] and a ReLU activation function.
Down-sampling is accomplished bymax-pooling (MP)
which reduces image size by half. Skip connection in
the residual block is not just an identity connection
but it contains a convolutional filter (1× 1) with strides
equal to 2 and in that way is achieved down-sampling
(image size is reduced by half, same as with MP in the
main branch of the residual block). At the end of the
residual block, the outputs from the main branch (also
called a layer) and the skip connection are summarized.
Residual blocks in the decoder are implemented in a
similar manner: in a layer (the main branch) there are
transpose convolutions (3× 3), BN, activation function
(ReLU), and up-sampling (which double the size of the
image). In the skip connection, there is a convolution
(1× 1) and up-sampling.

The U-net++ architecture (a nested U-net archi-
tecture for medical image segmentation) is shown in
Figure 5. It is seen how U-net architecture is enhanced
with dense blocks and convolution layers between the
encoder and decoder. The purpose of modified skip
pathways is to reduce the semantic gap between the fea-
ture maps of the encoder and decoder before merging.
Each circle represents a set of convolution operations.
The shaded part shows the original U-net architecture,
while the rest (middle part) shows the difference from
the original architecture: dense convolution blocks on
the skip pathways and deep supervision [44].

Training
Original images size 1024× 512 pixels were resized
to 512× 256 pixels. Categorical cross-entropy loss was

Figure 3. U-net architecture [26].
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Figure 4. (a) A residual block in the encoder. (b) A residual block in the decoder. (c) The used U-net-like architecture.

Figure 5. U-net++: a nested U-net architecture [44].

used to train all models. The batch size was set to 4
(we obtained worse results with a larger batch size).
The AdaBound optimizer [47] was used (as it combines
advantages of Adaptive Moment Estimation (Adam)
and Stochastic Gradient Descent (SGD)). Number of
trainable parameters for standard U-net, U-net-like,
and U-net++ architectures are 7,764,744, 8,230,536,
and 9,041,832, respectively. Early stopping was used to
prevent overfitting.

K-fold cross-validation was used where each fold
contains images from four patients (1st fold contains
images from patients 1 to 4, 2nd fold contains images
from patients 5 to 8 and so on). K equals 6 in our
procedure since, in that way, the test set share is approx-
imately 15% as is a recommendation and common
practice in a small data regime. We do not recommend
splitting the sets of images from the same patient across
training, validation, and test set as adjacent B-scans are
similar and that would lead to overestimated validation
of the method.

The models were trained on Google Colab [48] with
a GPU. Themodels were implemented in Python, using
the Keras library with the TensorFlow backend.

Results

Inter- and intra-observer error

For the purpose of calculating inter- and intra-observer
error, annotations were additionally made for 75
B-scans (randomly chosen from the existing dataset).
To calculate intra-observer error, the same expert who
made all annotations (1st expert) made a re-annotation
with no reference to previous annotations, and with a
time delay (3 months after finishing the first annota-
tions) for the 75 B-scans. To calculate inter-observer
error, annotations were made by another expert (2nd
expert) for the same 75 B-scans. Figure 6 shows two
examples: an example of good and bad matching. Dif-
ferences of opinion among experts can be observed.
This can partly be explained by the poor quality of
images (a large amount of speckle-noise), and by the
fact that in the face of extensive disturbance of normal
retinal structure, certain OCT findings cannot be reli-
ably discerned or localized without normal anatomic
landmarks. Also, with suboptimal image quality, the
annotated changes could be confounded with other
pathological phenomena (hyperreflective foci, pseudo-
drusen, outer retinal tubulations, etc.).

Model prediction errors

Some examples of the automatic segmentation results
are shown in Figure 7. It is visible that results are good
in case there are no significant pathological changes
and deformation in retinal structure. In case there
are pathological changes, segmentation predictions are
deficient in preserving the topology. Also, fluids seg-
mentation should be enhanced. The main cause is the
low representation of pixels belonging to these classes
in the total number of pixels, especially when it comes
to IRF (not present in all patients nor in all B-scans; in
addition, it is regularly smaller than SRF and PED).
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Figure 6. From left to right: raw image, reference (annotations from 1st expert), re-annotations from 1st expert with time delay,
annotations from 2nd expert. In the first row, there is an example with good matching. In the second row, there is an example
with some differences even between annotations from the same expert (in annotations of PED and SRF) and between two experts
(different annotations for fluids). Images are cropped and only the ROI is visible.

Figure 7. Three examples of the segmentation results. First row: a case with less pronounced pathological changes. Second row: a
casewithmore pathological changes (PED and SRF are present). Third row: a casewith extensive pathological changes (PED, SRF, and
IRF are present and there is a large distortion of layers). From left to right: raw image, expert annotation (mask), the prediction from
the standard U-net architecture, the prediction from the U-net-like architecture, and the prediction from the U-net++ architecture.
Images are cropped and only the ROI is visible.
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Comparison of inter-observer error andmodel
prediction error

We use the Dice score to evaluate results as it is a sim-
ilarity measure often used as a metric in the segmen-
tation of medical images. It is calculated according to
Equation (1) where TP is true positive, FP false positive,
and FN false negative.

DSC =
2TP

2TP + FP + FN
(1)

In Table 1 there are reported Dice scores (mean and
standard deviation) for each class and for the inter- and
intra-observer error, as well as the prediction errors
from the U-net, U-net-like, and U-net++models. The
same results are shown in Figure 8 with bar graphs. We
calculated the Dice score for each patient in test fold
(that means four patients) but only for those B-scans
with a reference segmentation. In case fluids (either
SRF or IRF) were not present on a single B-scan of the
patient, the Dice score is exempted when calculating
the mean and standard deviation of Dice score for that
class and that patient. We found it more appropriate
than setting it to zero or one as it would lead to over-
estimating or underestimating the metric value. In the
case of patients in whom fluids were present on some of

the B-scans but not all, for B-scans where they were not
present the value forDice score was set to zero (theDice
score is not defined in the case of zero division which
is a common situation in the absence of the class). It
can be observed that for the inter-observer case and
in all cases of the automatic segmentation the biggest
errors occur in class 3 (surface between RPE and BM)
and in classes that represent fluids (PED, SRF, and IRF).
One of the factors that contribute to the complexities of
automatic segmentation is significant class imbalance:
the background (area above ILM and under BM) occu-
pies as much as 83.26% in the total number of pixels,
while IRF occupies only 0.12%; surface between RPE
and BM occupies 1.07%, SRF 1.05%, PED 1.5%. Fur-
ther on, out of a total of 1136 scans, PED, SRF, and IRF
are present in 1014 (89.26%), 648 (57.04%), and 229
(20.16%) B-scans, respectively.

As Dice score is not an appropriate metric in case
of high class imbalance (the Dice score for regions
above the ILM and below BM will always be close to
one), we also provided results for evaluation in case of
converting the layer-segmentation task into a bound-
ary detection problem. In Table 2 there are reported
mean square errors (MSE) with belonging standard
deviations in the inter-observer case, the intra-observer

Table 1. The Dice score (mean and standard deviation) in the inter-observer case, the intra-observer case, for standard U-netmodel,
U-net-like model, and U-net++model.

Above ILM ILM-IPL/INL IPL/INL-RPE RPE-BM Under BM PED SRF IRF

Inter-observer 0.982 (0.072) 0.950 (0.111) 0.948 (0.112) 0.699 (0.129) 0.989 (0.114) 0.860 (0.301) 0.876 (0.366) 0.735 (0.280)
Intra-observer 0.998 (0.003) 0.973 (0.008) 0.970 (0.117) 0.778 (0.092) 0.998 (0.001) 0.912 (0.242) 0.924 (0.331) 0.844 (0.140)
Standard U-net 0.995 (0.011) 0.950 (0.028) 0.923 (0.083) 0.669 (0.129) 0.988 (0.016) 0.638 (0.173) 0.513 (0.287) 0.480 (0.241)
U-net-like 0.995 (0.004) 0.899 (0.040) 0.890 (0.066) 0.476 (0.132) 0.988 (0.014) 0.533 (0.139) 0.372 (0.293) 0.037 (0.061)
U-net++ 0.992 (0.011) 0.944 (0.032) 0.924 (0.064) 0.641 (0.133) 0.986 (0.017) 0.622 (0.159) 0.487 (0.280) 0.419 (0.274)

Figure 8. The Dice scores (mean and standard error of the mean) for inter-observer variability, for standard U-net model, U-net-like
model, and U-net++model.
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Table 2. The evaluation of the layer-segmentation task as a
boundary detection problem: themean square error (MSE) with
belonging standard deviations in the inter-observer case, the
intra-observer case, for standardU-netmodel, U-net-likemodel,
and U-net++model.

ILM IPL/INL RPE BM

Inter-observer 5.87
(3.68)

20.46
(47.71)

51.74
(148.15)

12.77
(17.79)

Intra-observer 2.10
(1.43)

5.93
(4.80)

8.28
(9.33)

5.17
(6.68)

Standard U-net 6.23
(3.88)

32.55
(50.22)

60.22
(173.23)

15.88
(19.87)

U-net-like 6.51
(4.22)

40.34
(56.67)

65.47
(177.23)

24.56
(31.22)

U-net++ 6.02
(4.01)

37.13
(54.55)

61.55
(165.33)

17.11
(20.12)

case, for standard U-net model, U-net-like model, and
U-net++ model. Values are shown in pixels where
each pixel corresponds to 1.96 µm along the axial (Z)
axis.

Our research suggests that more complex architec-
tures result in only slightly enhanced outcomes, no
enhancement at all, or worse outcomes. For classes
that represent fluids, the results are noticeably worse,
compared to human error. Better results are obtained
with U-net++ architecture than with U-net-like archi-
tecture, probably because U-net-like architecture lacks
skip connections between encoder and decoder (skip
connections only exist in each residual block within
encoder/decoder) while there are dense blocks and
convolutional layers between encoder and decoder in
U-net++ architecture. Preliminary, we could conclude
that better segmentation accuracy cannot be obtained
only with more complex architectures, but rather using
some of the efficient techniques in case of distinct class
imbalance and the need for preserving the topology.
Also, due to the suboptimal quality of images, prepro-
cessing could help in achieving better accuracy.

Discussion

The AROI database contains a large sample of 1136
B-scans with exhaustive annotations (both fluids and
retinal layers were annotated by an expert ophthalmol-
ogist). As images are collected from patients suffering
from nAMD where pathologic biomarkers and large

distortion of the retinal structure are present, auto-
matic segmentation of such images presents a signifi-
cant challenge. Figure 9 shows the confusion matrix for
inter-observer error, and for model (U-net, U-net-like,
and U-net++) prediction error. In the case of auto-
matic segmentation, it is observed that IRF is often
misclassified as the surface between IPL/INL and RPE
(class 2) as it is in that area. In case the IRF is smaller
or does not differ significantly in intensity and tex-
ture from the surface between IPL/INL and RPE, the
model does not recognize it as a separate class. Also,
it is observed that in a similar way SRF is often mis-
classified as PED or surface between IPL/INL and RPE.
PED is mostly misclassified as an area under BM, and
with further inception of individual predictions, it is
apparent that it happens when Bruch’s membrane is
not clearly visible (due to geographic atrophy or some
other pathological changes). These results of automatic
segmentation for three models (standard U-net archi-
tecture and two state-of-the-art architectures) can serve
as a baseline for further development of deep learning
models.

Also, intra- and inter-observer errors were calcu-
lated to enable the validation of algorithms for auto-
matic segmentation. However, it is still not clear what
level of segmentation accuracy we need in clinical prac-
tice asmanual segmentation is rarely performed in clin-
ical practice. There is probably no universal rule, and
the required accuracy of segmentation will depend on
the purpose – whether it is a diagnosis or prediction
of the outcome of anti-VEGF therapy or prediction of
another eye disease.

We have limited ourselves to collecting images from
only one type of OCT device and from patients suf-
fering from one type of disease. However, developing
algorithms on as large and as diverse databases as pos-
sible would provide for more robust algorithms that
could be implemented in commercial OCT device soft-
ware. We hope that open access will become a com-
mon practice for the majority of research groups in
the future and that online image collections and repos-
itories will contribute to building a single database
covering various diseases, various types of devices,
and various retinal structures annotated from different
experts.

Figure 9. The confusion matrix for inter-observer error, for U-net model, U-net-like model, and U-net++model prediction error.
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As a lack of publicly available databases is one of
the major obstacles to introducing AI and deep learn-
ing to ophthalmology, we consider the development
of the AROI database as a step forward to introduc-
ing automatic segmentation in clinical practice and
thus enabling quantitative analysis and more successful
diagnosis and therapy.
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