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Dynamic Mechanics of Rigid 
Helicopter Systems During 
Ditching 
Mohamad Abu Ubaidah Amir Abu Zarima, Marja Azlima 
Omarb

1. INTRODUCTION

Aircraft and helicopters often fly above open waters and 
thus have to observe regulations that ensure safe water landing 
under emergency conditions, also referred to as ditching. This is 
particularly important for helicopters that are commonly used 
to support marine tasks, e.g. serve offshore platform. Ditching is 
related to controlled landing on water, and has some distinctive 
features, namely, hydrodynamic slamming loads, complex 
hydromechanics at tremendous forward speeds, and the 
interaction of multiphase fluid dynamics (air, water, and vapor). 

The study of ditching dates back to Von Karman (T. Von 
Kármán, 1929) and Wagner (H. Wagner, 1932). Numerous studies 
have since considered a two-dimensional cross-section of a 
simple shape (wedge, cone, sphere, and cylinder) assuming that 
the structure is a rigid body. The water is generally modeled 
as an incompressible, irrotational, inviscid fluid. In early days, 
slamming during ship operation was the most explored design 
problem related to water impact. 

Since slamming involves interaction between a structure 
and a free-surface fluid, research has expanded to other water 
entry problems such as water landing of solid rocket boosters 
and spacecraft, the ditching and water landing of aircraft, 
ballistic impacts on fuel tanks, and other applications (S. Abrate, 
2013). This paper emphasized only principles relevant for further 
understanding of the current knowledge of helicopter ditching. 
Further in-depth review of hull slamming and water entry is 
provided in (S. Abrate, 2013).

Aircraft and helicopter often fly above open waters and 
thus have to observe regulations to ensure safe water landing 
under emergency conditions. This practice is also referred to as 
ditching - one of several types of slamming problems that are 
under review by the current regulations of the Federal Aviation 
Administration (FAA) and the European Aviation Safety Agency 
(EASA). Ditching is related to the controlled landing on water, 
with distinctive features such as hydrodynamic slamming loads, 
complex hydromechanics at tremendous forward speeds, as well 
as the interaction of multiphase fluid dynamics (air, water, and 
vapor). This paper presents the knowledge on system mechanics 
during helicopter ditching. The discussion begins with the 
fundamental kinetics of the rigid body, and then delves into 
dynamic relations to describe the effect of forces on motions. In 
the end, the paper discusses several relevant theories to further 
contribute to the understanding of the problem of impact.
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2. BACKGROUND 

2.1. Inertial Dynamics of Helicopters

2.1.1. Reference System

The mock-up moves with six degrees of freedom (DOF). 
Thus, its motion is defined using three coordinates for translations 
and three coordinates for rotations. The axis systems considered 
are explained below (see Figure 1):
• Earth-fixed frame (0-frame) (O, Xref , Yref , Zref ) is a right-handed 
orthogonal reference frame fixed to the earth and considered 
Galilean. Positive Xref and Yref are orthogonal in the horizontal 
plane and Zref is positive towards up. Origin O is located on calm 
water surface.
• Body-fixed frame for motion equations (b-frame) This 
reference frame is fixed to the body where G is the Center of 
Gravity COG (G, xb , yb , zb ). Positive xb is pointed backwards from 
the nose, positive yb points starboard and positive zb points 
upwards. This frame is used to define the orientation of main 
particulars during free flight and impact. The translations in the 
study are monitored through the motions of G in the 0-frame.

Figure 1.
Notation and sign convention description.

2.1.2. Vector Notation

The mathematical notation that allows the identification 
of position, velocity and acceleration points of interest for the 
mock-up had to be devised to express them in different frames, 
e.g. generic point of interest p in the mock-up (in this explanation, 
p and f are only used to describe the sample notation, and are 
unrelated to any notation in Figure 1). 

• rp
f denotes the position of p with respect to frame f:

(1)rp
f = xp

f fx + yp
f fy + zp

f fz [         ] = [xp
f, yp

f, zp
f ] 

T

xp
f

yp
f

zp
f

(2)rG
0 = [         ] 

xG

yG

zG

(3)Θob
 = [       ] 

ψ
θ
Φ

• vp
f and vp

f denote the velocity and acceleration of p with 
respect to frame f.
• Θob is a vector of Euler angles that transport the 0-frame 
into the orientation of the b-frame.
• ωob

b denotes the relative angular velocity of the b-frame 
with respect to the 0-frame, decomposed in the b-frame.
• 
2.1.3. Motion Coordinates and Reference Frames

The earth-fixed position of the mock-up is defined by the 
original coordinates of the b-frame, G relative to the 0-frame: 

The mock-up attitude orientation is defined by the 
orientation of the b-frame relative to the 0-frame, which is 
presented by three intrinsic rotations that take the 0-frame into 
the b-frame defined roll Φ, pitch θ, and yaw Ψ. These rotations are 
called Tait-Bryan angles or Euler angles and are defined as:

Therefore, the position orientation vector is defined as:

(4)η = [            ] = [xG , yG , zG , ψ, θ, Φ ]TRG
0

Θ ob
b

(5)v = [            ] = [ u, v, w, p, q, r ]TvG
b

ωob
b

while the linear and angular velocity vector of the mock-up are 
conveniently expressed in the b-frame as:

where vG
b = [ u, v, w ] T is the linear velocity of point G expressed 

in the b-frame, and ωob
b = [ p, q, r ] T is the angular velocity of the 

b-frame with respect to the 0-frame expressed in the b-frame. 
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The velocity v0 of any point of the solid in the galilean frame is 
expressed with v0 = vG

b + ωob
o × rb.

2.1.4. Velocity transformations

Vector coordinates between different frames can be 
transformed by using appropriate matrices. According to (T. 
Perez, 2005), generic vector t can be depicted either in frame 0 
or in frame b as:

(6)t = [         ] 
0
 = [         ]b 

xt
0

yt
0

zt
0

xt
b

yt
b

zt
b [         ] 

0
= Rb

0 ( Θob )  = [         ]
x

.

G

y
.

G

z
.

G

u
v
w

Θ
.

ob = TΘ (Θob )· ω0b
b      or     [         ]= (TΘ Θob) [         ] 

Φ
.

Θ
.

ψ
.

p
q
r

This led to the transformation matrix with notation Rb
0 (Θob ) 

which can be expressed in the b-frame to the 0-frame as:

(7)t 0 = Rb
0 ( Θob ) . t b

(10)Rb
0 ( Θob ) = R0

b ( Θob )-1 Rb
0 ( Θob )b

(8)Rb
0 ( Θob ) = Rx, Φ Ry,θ Rz,ψ

where rotation matrix Rb
0 (Θob ) is obtained by three consecutive 

rotations around the principal axes:

where (T. Perez, 2005):

(9)

Rx, Φ = [                                   ] ,  
1 0 0
0 cΦ -sΦ
0 sΦ cΦ

Ry,θ  = [                                   ] ,  
cθ 0 sθ
0 1 0
-sθ 0 cΦ

Rz,ψ  = [                                   ] 
cψ -sψ 0
sψ cψ 0
0 0 1

Rb
0 ( Θob )  = [                                                                                         ] 

cψcθ -sψcθ+ cψsθsΦ sψsΦ+cψcθsΦ

sψcθ cψcΦ+sΦsθsψ -cψsΦ+sΦcΦsθ

-sθ cθsΦ cθcΦ 

where c=cos , s=sin and t=tan. Thus:

The transformation of velocities of the center of gravity is 
expressed in the b-frame (u,v,w), while the time derivative of the 
position in the 0-frame can be expressed as:

(11)

(12)

Angular velocity vector ωob
b in the fixed-body frame, 

b-frame related to the time rate of change of Euler angles Θob can 
be expressed as:

where TΘ (Θob ) is the transformation matrix and its inverse given 
by:

TΘ (Θob ) = [                                                        ]   
1 sθtθ cΦtθ
0 cΦ -sΦ
0 sΦ/cθ cΦ/cθ

TΘ (Θob  )
-1 = [                                                        ] 

(13)
1 sθtθ -sθ
0 cΦ cθsΦ
0 -sθ cΦ/cθ

Transformation matrix TΘ (Θob ) can be derived from (T. 
Fossen, 2002):

(14)
ω0b

b
 = [      ] = [      ]+ Rx,Φ

T [       ] + Rx,Φ
T Ry,θ

T [       ]  
0
θ

.

0

p
q
r

Φ
.

0
0

0
0
ψ

.

= TΘ (Θob  )
-1 Θob
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2.2. Linear Momentum

General definition of momentum p of the solid R is given as:

(15)p = ∫R v 0  dm

where v0 is the velocity of elementary element dm in the Galilean 
reference frame. Momentum at the center of gravity can be 
established as:

(16)p = ∫R v dm = ∫R       dm =       ( ∫R r 0 dm ) =        ( mrG
0 )

dr0

dt

d

dt

d

dt

(17)        ( mrG
0 ) = mvG

0
d

dt

where

Notice that the time derivative in Equation (16) was placed 
outside the integral whose region of integration R is time-
dependent. This intervention is justified because the center of 
gravity of a rigid body behaves as a material point, as explained 
in (O. M. O’Reilly, 2019; J. Casey,1983).

2.3. Angular Momentum and Moment of Inertia

The angular momentum of a rigid body relative to its center 
of gravity and the fixed origin of the reference 0-frame, 0 are 
denoted respectively as h and h0. By definition:

(18)

(19)

(21)

(20)

(23)

(24)

h = ∫R r b ×v 0 dm, h0 = ∫R r 0 ×v 0 dm

h = ∫R r b ×(vG
0+ ω0b

b× r b ) dm

    =∫R r b × vG
0 dm + ∫R r b × (ω0b

b × r b ) dm

    =∫R r b ×(ω0b
b × r b )dm

h = ∫R r b × (ω0b
b× r b )dm

    =∫R ((r b · r b ) ω0b
b- (r b · ω0b

b ) rb )  dm

h0 = ∫R r 0 × v0 dm=∫R (rG
0+r b ) × v 0 dm = h + rG

0× p

h = ω0b
b ∫R (xb

2+yb
2+ zb

2 ) dm+∫R r b (xb p+yb q+zb r)dm

h = Ig
b ω0b

bExpanding the angular momentum h:

Expanding the angular momentum h0:

Equation (19) can also be rewritten as:

Using

(22)rb
 = [         ] 

0bxb

yb

zb

The expression can be developed into

= ∫R [                                                                            ] ω0b
b

( yb
2+ zb

2) -xb
 yb -xb

 zb

-xb
 yb (xb

2+ zb
2) -yb zb

-xb zb -yb zb (xb
2+ yb

2)

where the matrix of inertia with respect to the center of gravity 
Ig

b appears:
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(25)

(26)

(30)

(27)

(28)

(29)

dP

dt

dh

dt

1

2

dvG
b

dt

dω0b
b

dt

2.4. Newton/ Euler Second Law

Mock-up motions in 3 degrees of freedom (DOF) were 
therefore computed by applying the standard Euler’s law to the 
b-frame with the G (G, xb , yb , zb ) coinciding with the COG. The 
inertia matrix remains constant when a reference frame is fixed 
to the body. However, the frame of reference now rotates with 
angular velocity ω0b

b, resulting in:

= m (           + ω0b
b × vG

b ) = Fb

= Ig
b (           + ω0b

b × Ig
b vG

b ) = Mb

Eks =        ∫R v 2 dm

F0 = Rb
0 ( Θ0b ) Fb

M0 = Rb
0 ( Θ0b ) Mb

v0 = Rb
0 ( Θ0b ) vG

b

Where m is mass, while Fb = ( Fx , Fy , Fz ) and Mb = ( Mx , My 

, Mz ) are the vectors of force and moment acting on the mock-
up. The vector of force, moment and translational velocity in 
the body-fixed reference b-frame can be transformed into their 
counterparts in the earth-fixed reference frame, 0-frame, as 
follows:

2.5. Energy Conservation

The definition of the kinetic energy for the solid (mock-up) 
is given by:

when preceding definitions are applied, we get:

(31)

(32)

1

2

1

2
Eks =         mvG

b . vG
b +         ω0b

b . IG
b ω0b

b

Efluid = ∫∫S T dS

2.6. Fluid Force on the Body

The force exerted on the body by the fluid is given by the 
integral of the local stress T over the surface:

This can also be expressed by using the Cauchy stress tensor:

(32)Efluid = ∫∫S σ ndS

The Cauchy stress tensor can be decomposed in  

σ = -p I + τ, with p being the local pressure, τ the viscous stress 
tensor and n is a normal pointing outward of the body.

3. SIMPLIFIED SOLUTIONS FOR WATER ENTRY OF RIGID 
BODIES

Von Karman (T. von Kármán, 1929) and Wagner (S. 
Mizoguchi and K. Tanizawa, 1996; H. Wagner, 1932) developed 
two simplified theories on the impact of rigid bodies on the free 
surface of a fluid. Both theories are widely used and have provided 
useful insight into impact dynamics. Their description of the issue 
of 2-dimensional water entry in calm waters is illustrated below.
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Figure 2.
Vertical impact.

This section examines body movement inside a fluid 
domain having volume V, limited by surface S = Sw SF Σ, where Sw 
is wetted body surface, SF is fluid surface, and Σ is a patch in the 
water. The problem is illustrated in Figure 2.

3.1. Von Karman’s Approach

When the Newton/Euler 2nd law Equation (25) is applied 
to this problem, the external forces Fb are the sum of the forces 
exerted by fluid Ffluid and the weight mg. To evaluate Ffluid using 
Equation (33) we need to know the stress across the body surface. 
Von Karman decomposed Ffluid as the sum of the hydrodynamic 
impact force FI , buoyancy force FB , steady-state drag force FD , 
and capillary force FC. The motion equation can be written using 
Newton’s second law as (S. Abrate, 2013):

(34)

(35)

(36)

(37)

dM

dζ

d

dt

d

dt

d

dt

mv = mg - FI - FB - FC - FD

F =         Mv = Mv +          v 2

[ ( m + M ) v ] = mg - FB - Fc - FD

( m + M ) v = 0

v is velocity penetration relative to undisturbed water surface, 
where an overdot stands for the time derivative. During 
penetration, virtual mass M (added mass) of the fluid is considered 
to move with the body, so that the force applied by the fluid on 
the wetted surface of the body is equal and opposite to the force 
applied by the body on the fluid. The motion of the added mass 
is governed by:

If Equation (35) is substituted with Equation (34) the 
following expression is obtained:

With respect to the water entry problem, since the impact 
is rapid, water surface elevation, the effect of surface tension 
and the effect of viscosity and gravity on hydrodynamics of the 
fluid can be assumed to be very small and hence negligible. The 
motion in Equation (36) is then deduced as follows:
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d

dt

Given that t = 0 is initial at impact, added mass M = 0,  
ζ˙(0)=v0, where v0 is initial impact velocity. Integration with 
respect to time expresses the conservation of linear momentum 
throughout the water entry:

(38)

(39)

mv0

m+M
mv0 = ( m + M ) v     or     v = 

∫t1

t2      (Mv)dt = ∫t1

t2 F dti (Mv)2 - (Mv)1 = ∫t1

t2 F dt

The development of Von Karman’s approach is shown in 
the next subsection, in term of added mass. However, the impact 
load and added mass are likely to be underestimated, particularly 
for a small deadrise angle since this model neglects water surface 
elevation, as stated in (S. Mizoguchi and K. Tanizawa, 1996).

3.1.1. In terms of added mass

Impact transfers energy from the solid body to the fluid. 
When the integration from Newton’s law is applied, the impulse-
momentum principle can be determined as:

where M is added mass. The added mass is obtained from kinetic 
energy Ekf of the fluid in motion (volume V), as follows:

2Ekf

v2

ρkf

v2
(40)M =           =           ∫∫∫V (     Φ)2 dV

-ρ

v2

∂Φ

∂n
(41)M =           ∫S Φ           dS

When the last expression is transformed using Green’s 
theorem and surface S around volume V, the following expression 
is obtained:

Given the complexity of each initial condition, defining the 
energy balance during impact is useful. The changes of kinetic 
energy exerted on the structure are as follows:

1

2

1

2

1

2

1

2

ΔEkf

ΔEks

(42)

(43)

(44)

ΔEks =      m (v0
2 - v 2) =      mv0

2

ΔEkf =      Mv 2=      mv0
2

=

m(2m+M)

(m+M2)

mM

(m+M)2

m

2m+M

while the changes of kinetic energy exerted on the fluid can be 
expressed as:

At t=0, added mass M=0 and v0 is velocity at impact.

3.2. Wagner’s Approach

Disregarding gravity and friction on the body surface, 
Wagner derived a more rational water impact theory that 
includes the hydrodynamic effect of small deadrise angles as 
discussed in (S. Abrate, 2013; S. Mizoguchi and K. Tanizawa, 1996). 
The hydrodynamic force is obtained from the pressure acting on 
the wetted surface Sw of the body as follows:

(44)Ffluid = - ∫Sw
 p ndS

where p is pressure and n is an outside normal of the body of 
the surface element dS. Fluid flow is governed by Navier-Stokes 
equations on the conservation of momentum and the continuity 
equations; both have an important connection with the fluid 
velocity field v.

During impact, flow can be considered irrotational and 
incompressible. First condition is that (    × v = 0) and velocity can 
be written in terms of potential function Φ:

(45)v =     Φ
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With Incompressibility, the continuity equation becomes  
 .v=0. Hence Equation (45) can be rewritten as a Laplace’s 
equation:

(46)    .v =      .(     Φ) =     2 Φ = 0

When Equation (45) is substituted with Navier-Stokes 
equations on the conservation of momentum, and the effects 
of viscosity and gravity are disregarded, Bernoulli’s equation is 
obtained:

(48)v.n = vb .n

P

ρ

1

2
(47)      =        -        (     Φ.     Φ)

∂Φ

∂t

which establishes a connection between pressure p and 
velocity potential Φ. However, identifying a potential function 
that meets both Laplace’s and boundary conditions (should 
consist of wetted surface Sw and free surface SF , both of which 
are unknown) is problematic. The velocity of the body vb and the 
fluid are the same in the normal direction on the wetted surface, 
thus:

On the wetted surface, the velocity of the fluid in the normal 

direction can be expressed as         = v·n. Given that the pressure 
on the free surface = 0:

∂Φ

∂n

(49)
1

2

∂Φ

∂n
          +       (     Φ.     Φ) = 0

Hence the force on the body in Equation (44) can be 
obtained using Bernoulli’s equation:

(50)
1

2

∂Φ

∂n
          +       (     Φ.     Φ)    Ffluid = - ρ ∫Sw

 (                                            ) ndS

Wagner gave us a water impact theory that takes the 
hydrodynamic effect into account (S. Abrate, 2013; S. Mizoguchi 

Figure 3.
Wedge entering the water (top) and Wagner’s expansion 
model (bottom).

In two dimensions, the body is replaced with a flat plate 
having the length 2c. The velocity vector is given as:

(52)

(51)
∂Φ

∂x

∂Φ

∂y
v =    Φ =           i +           j

While Wagner’s potential is expressed as:

Φ = -vp √( c 2 - z2 )       where     z = x + iy

The horizontal component of velocity along the plate given 
in (|x|<c,y=0) is

(53)
∂Φ

∂x
( x, 0 ) = vp

x

√( c 2-z 2 )

and K. Tanizawa, 1996). Wagner’s model is shown in Figure 3, 
where c is the half width of the wet area, β is the deadrise angle, 
and vp the velocity of the point of impact. In this model, also 
known as Wagner’s expansion model, distance c increases with 
the depth of penetration.
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(56)

(57)

π

2

v(t)

tanβ
c(t) = (       )(              )   hence             =

while the vertical component of velocity is zero along the 
bottom surface of the plate. Notice that the velocity of the fluid 
v is zero in the center (x=y=0) and becomes infinite along the 
edge (x=c,y=0). Hence, when Bernoulli’s equation is applied in 
Equation (47), pressure along the bottom plate is obtained as 
follows:

(54)

(55)

∂Φ

∂x
( vp √ c 2- x 2) -       ( vp                          )2

x

√( c 2- x 2)

1

2

p(x)

ρ
 =

dvp 

dt

dc

dt
√ c 2- x 2            +vp                                   -

c

√( c 2- x 2)

vp
2 x 2 

√( c 2- x 2)

1

2

p(x)

ρ
 =

Since the length of the bottom plate and velocity vary with time,

Examine the equation on the right-hand side; given that 
x→c, the first term tends to be zero, while the others become 
infinite. At the maximum penetration, when vp = v:

dc

dt

πvp cotβ

dt

If substituted and simplified, the following expression is obtained:

1

2
p(x) =       ρvp

2[                        -                      +          √ c 2- x 2]πcotβ

√1- x 2/ c 2

x 2/ c 2

1- x 2/ c 2

2vp 

vp
2

where c is the half width of the wet area, β is the deadrise angle, 
and vp the velocity of the expanding flat plate in the uniform flow. 
Numerous studies have been conducted based on this theory, 
but only a few explored the issue in 3-dimensions, particularly 
in ship application, which is theoretically understood. Therefore, 
there is a need for 3-dimensional ditching theories and numerical 
methods.

4. CONCLUSION

This paper has presented fundamental equations required 
to calculate force during helicopter ditching events. Fixed and 
mobile reference systems for the issue of ditching have been 
introduced, together with mechanics equations useful for 
experiment analysis. Some information on water impact theories 
available have been given, while Von Karman’s and Wagner's 
theories have been succinctly described. It was shown that 
impact load can be evaluated using the concept of added mass in 
either momentum or energy analysis without any contradiction. 
After impact, the body's mechanical energy is transferred to the 
fluid.
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