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controller for quadcopter attitude and altitude control

Mohamad Norherman Shauqee, Parvathy Rajendran and Nurulasikin Mohd Suhadis

School of Aerospace Engineering, Universiti Sains Malaysia Nibong Tebal, Malaysia

ABSTRACT
A quadcopter control system is a fundamentally difficult and challenging problem because its
dynamics modelling is highly nonlinear, especially after accounting for the complicated aero-
dynamic effects. Plus, its variables are highly interdependent and coupled in nature. There are
six controllers studied and analysed in this work which are (1) Proportional–Integral–Derivative
(PID), (2) Proportional-Derivative (PD), (3) Linear Quadratic Regulator (LQR), (4) Proportional-
Linear Quadratic Regulator (P-LQR), (5) Proportional-Derivative-Linear Quadratic Regulator
(PD-LQR) and lastly (6) the proposed controller named Proportional-Double Derivative-Linear
Quadratic Regulator (PD2-LQR) controller. The altitude control and attitude stabilization of the
quadcopter have been investigated using MATLAB/Simulink software. Themathematical model
of the quadcopter using the Newton–Euler approach is applied to these controllers has illu-
minated the attitude (i.e. pitch, yaw, and roll) and altitude motions of the quadcopter. The
simulation results of the proposed PD2-LQR controller have been compared with the PD, PID,
LQR, P-LQR, and PD-LQR controllers. The findings elucidated that the proposed PD2-LQR con-
troller significantly improves the performance of the control system in almost all responses.
Hence, the proposed PD2-LQR controller can be applied as an alternative controller of all four
motions in quadcopters.
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1. Introduction

In recent years, the popularity of the small-scale
Unmanned Aerial Vehicle (UAV) such as quadcopter
has drastically increased due to its advantages and wide
range ofmilitary and civilian applications. For instance,
wildfire surveillance [1], search and rescue mission,
and hazardous environmentmonitoring [2].With these
UAVs, the risk of human lives in a dangerous scenario
can beminimized or avoided [3]. Compare to the fixed-
wing UAV, a quadcopter has the ability to do a vertical
take-off and landing (VTOL), or short take-off and
landing (STOL) and hovering flight capabilities. With
these capabilities, the quadcopter does not require a
runaway for take-off and landing like a fixed-wingUAV,
it just simply directs vertical take-off and landing in a
limited space, plus the hovering capability give a great
advantage if static image capturing is needed [4].

However, to control the quadcopter is difficult and
challenging since the system is strongly coupled and
nonlinear [5]. In addition, it is also severely under-
actuated since it has six degrees of freedom (three trans-
lational and three rotational) that need to be controlled
by only four independent inputs (rotor speeds), which
brings about the complexity in its position and attitude
control [3,6,7]. The precise controller design is needed
to control the quadcopter system because of its high

maneuverability capability. Parameter perturbation and
model uncertainties have brought another difficulty
with the quadcopter control system. Besides, stabiliza-
tion within a short period with an acceptable precision
level is needed for all parameters due to quadcopter’s
fast dynamics.

Before the controller can be designed, first, the
dynamicsmodel of the quadcoptermust be derived and
studied. Basically, there are several types of formulism
can be used for the derivation, but the most commonly
used by the researchers are based on the Newton–Euler
or Euler–Lagrange formulism [8]. Thus, in this paper,
the dynamic modelling of the quadcopter was done
using the Newton–Euler formulation approach. The
system that was modelled by any approach can be con-
trolled by various methods such as PID control [8–10],
LQR control [11–13], for the linear controller or Back-
stepping Control (BC) [14,15], Sliding Mode Control
(SMC) [16–18] for the nonlinear controller to name a
few. However, the linear controller like PID is the most
commonly used for the quadcopter control and stabi-
lization due to its simplicity, easy to design, and can
provide sufficient performance [19].

Li and Li [20] designed a PID controller to analyse
the dynamic characteristics of the quadrotor. The con-
troller was used to control the position and orientation

CONTACT Parvathy Rajendran aeparvathy@usm.my School of Aerospace Engineering, Universiti Sains Malaysia, Engineering Campus, 14300
Nibong Tebal, Pulau Pinang, Malaysia

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2021.1981527&domain=pdf&date_stamp=2021-10-23
http://orcid.org/0000-0002-7430-1389
http://orcid.org/0000-0002-2695-8167
mailto:aeparvathy@usm.my
http://creativecommons.org/licenses/by/4.0/


416 M. N. SHAUQEE ET AL.

of the quadrotor in 3D space. The simulation con-
ducted found that the PID controller can achieve a
stable and good response in all the states. It produces a
fast response with almost zero steady-state error. How-
ever, the system experiences a slight overshoot in all the
states. In order to test the robustness of the controller
against the disturbance, an actual experiment was con-
ducted, and it shows that the PID controller can adjust
the changes in the state when disturbed by wind or
other disturbances.

Pan et al. [21] conducted a study of an optimal PID
controller based on Qball-X4 quadrotor developed by
Quanser company as the experimental platform for tra-
jectory tracking control. They designed a correspond-
ing Kalman Filter to estimate the target trajectory in
consideration of tracking error and delays. The finding
shows that the system can reach desired altitude height
in an acceptable period without steady-state error but
produce a high overshoot. The tracking error under
the disturbance greatly improved when the Kalman fil-
ter was added. In another work by Tanveer et al. [22],
the PID controller with Extended Kalman Filter was
used to control and stabilize the quadrotor’s altitude
and attitude angle. Extended Kalman Filter was used to
filter out the sensor noise and system noises to stabi-
lize the quadrotor’s altitude and attitude angle. In their
findings, the controller can quickly stabilize the altitude
of the quadrotor within 3.8 s. It can also work, han-
dle disturbance very well, and promptly stabilize the
quadrotor’s attitude angle within 5.8 s.

Ahmad et al. [23] presented a comparative study of
two classical PD and PID controllers for controlling
quadrotor’s altitude and attitude angle. The simulation
result shows that both controllers have a fast response
within approximately less than 1 s in all states. Still, the
PD controller gives a better response in attitude con-
trol in terms of settling time, which is 2 s, while the
PID controller is 11 s with slight overshoot. However,
the PID controller gives a better result in altitude con-
trol with zero steady-state error, while the PD controller
has a 1.25% steady-state error. Both controllers exhibit
approximately a 5% overshoot in altitude motion.

Burggräf et al. [9] presented mathematical mod-
elling of the quadrotor based on the cross configuration.
They stated that cross structure allows the quadrotor to
have six DOF movements while commanded by only
four given inputs. In this paper, they implemented a
cascaded P-PID controller to control and stabilize the
quadrotor attitude. The simulation result shows that the
system’s overshoot is less than 25% in roll, pitch, and
yaw motion, respectively, and the controller produces
a very fast settling time around 1.3 s. Other than that,
they also perform an experimental study to test the con-
troller’s robustness against external disturbances such
as wind and collision. They found that the controller
can stabilize the quadrotor in just 2.2 s after being
exposed to the external disturbance.

Zhi et al. [24] proposed an optimal LQR controller
combine with Kalman Filter to control the quadro-
tor’s attitude angle. They conducted the simulation
for noise-free and under noise conditions to appreci-
ate Kalman Filter’s performance in rejecting the noise.
The performance of the LQR controller is then com-
pared with the classical PID controller. The simula-
tion result shows that both controllers can meet the
system’s requirement under the noise-free condition
with no steady-state error. However, the LQR controller
does not produce an overshoot and smoother response,
while PID has a slight overshoot up to 0.2°. Under the
noisy condition, the LQR controller with Kalman Fil-
ter can maintain its performance quality than the LQR
controller without Kalman Filter. The attitude response
error can be reduced from ±0.6° to +0.2: −0.3° when
Kalman Filter is added.

Hernandez-Martinez et al. [25] performed a study
of trajectory tracking control of the quadrotor using a
two-level control strategy, which consists of an external
loop to control the translational dynamics and generate
the desired trajectories of the attitude orientation con-
trolled by the inner loop. In order to achieve the max-
imum flight control time, energy-saving is addressed
in designing the optimal control laws. The simulation
result shows that the quadrotor can follow the desired
trajectory with the desired attitude angle value. The
tracking error converges to zero within an acceptable
time.

Okyere et al. [11] presented a step-by-step design of
the LQR controller for controlling the altitude motion
of the quadrotor. In this paper, the authors demon-
strated the effect of the weighting matrices Q and R
on the controller’s gain K values that simultaneously
affect the system’s state response. They found that if
R is high, K will be small, and the response will be
slower and vice-versa. If Q is high, then K will be
high, and the response will be faster and vice-versa.
The simulation result shows that when K is lower, the
state response time will become slower to reach zero,
but the controller response becomes faster, and it will
produce overshoot and steady-state error. When K is
higher, the state responsewill be faster to reach zero, but
the controller response becomes slower and produce a
steady-state error. Therefore, choosing a suitable gain
value K is vital to get a good system performance. In
this paper, the controller gain is settled on [1 1.7321]
since it has no overshoot, no steady- state error, and the
system was good.

In another work by Martins et al. [12], an optimal
LQR controller with an Integral action is proposed for
trajectory tracking control of the quadrotor. A Kalman
Filter is added to estimate the quadrotor state that relies
on the measurement from motion sensors installed
onboard. In this paper, the quadrotor’s dynamicmodels
based on X-configuration were derived and linearized
for the trim position. The simulation result shows that
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good trajectory trackingwas achieved, and the response
converges to the desired point without error. However,
some error was observed in the yaw response, but it
does not exceed 1/100°. More than that, some devi-
ation within the acceptable range has occurred when
implementing in the actual system.

Shah et al. [13] provided a study of trajectory track-
ing control for the quadrotor using Gain Scheduled
Integral LQR. The integral term is added to improve
the tracking performance of the quadrotor by min-
imizing the steady-state error of the system. In this
paper, several trajectories were performed with signif-
icant variation of yaw angle. In order to appreciate
the performance of the proposed controller, two sim-
ulations were conducted: (1) tracking without integral
term and (2) tracking with the integral term. Based
on their findings, the continuous gain control law can
overcome the chattering and discontinuity problem.
The tracking error can be minimized. The yaw angle’s
steady-state error improved by 95% (4.3854–0.222) and
56.6% (0.0865–0.0037) for cases 1 and 2, respectively.
For altitude response, 94.8%decreased (0.1155–0.0059)
for case 1 and a slight increase by 4% (0–0.04) for case 2.

Kumar et al. [26] presented a differential flatness-
based hybrid controller for the quadrotor trajectory
tracking problem. In the paper, the combination of the
conventional PID and LQR controller was designed.
The author indicates that the hybrid controller could
balance the stability and maneuvrability of the quadro-
tor, which makes it suitable for the complex trajectory
tracking problem. For validation purposes, a compar-
ative study between conventional PID and LQR con-
trollers was made by the author. The simulation results
reveal that the quadrotor could track the desired tra-
jectory with a satisfactory performance when using
the hybrid controller compared to the other controller,
especially the PID controller, where it cannot accurately
follow the desired trajectory. The error of the position
and the attitude angle is very minimal for the hybrid
controller.

A hybrid P-LQR controller has been proposed by Yit
and Rajendran [27]. In this paper, the hybrid P-LQR
controller was designed to improve the UAV’s longitu-
dinal motion performance over the PID and LQR con-
trollers. The simulation results show that this approach
improved the rise time, settling time, and RMSE, but
the overshoot and steady-state error slightly increases,
still within the acceptable limit constraint. ThePD-LQR
is another type of hybrid controller that being studied
by Yit et al. [19]. The simulation result shows that the
hybrid PD-LQR controller performs with great success.
The controller’s improvement in rising time, settling
time, RMSE, and steady-state error is 95.6%, 95.5%,
49.3%, and 0%, respectively. In terms of overshoot, the
hybrid PD-LQR controller still lags behind the hybrid
P-LQR controller with just a 0.001% difference, and the

LQR controller has the highest percentage of overshoot
with 0.351%.

In summary, this section has provided several liter-
atures that perform a linear control technique for the
UAV control and stabilization. The main objectives of
all of these works are that to design an appropriate con-
trol technique to improve the performance of the UAV.
For this particular reason, in this paper, we proposed
a hybrid controller by combining the Proportional-
Double Derivative (PD2) controller with the LQR con-
troller to become the PD2-LQR controller. As far as
we know, there are no such hybrid controller are being
designed and applied to the quadcopter control and sta-
bilization application in the literatures. The work that
we find almost similar to our work is that proposed by
[19], which using a PD-LQR controller that was applied
for the fixed-wing UAV. Besides, it was proven through
the simulation that by using this combination the per-
formance of the quadcopter can be further improved.
Through this work, the simulation was done by using
the MATLAB/Simulink software, and all the essen-
tial parameter needed to design the dynamic model
of the quadcopter was determined and collected. A
comparative study of the response characteristic of the
proposed controller with the conventional controller,
namely PD, PID, LQR, and hybrid controller, namely
P-LQR, and PD-LQR was presented and analysed to
highlight the performance of the proposed controller.
Four PD2-LQR controllers were designed for altitude
(z) and attitude (roll, pitch, and yaw) motion. Based
on the simulation results, the developed hybrid PD2-
LQR controller is best-suited to control and stabilize the
states of the quadcopter with a better dynamic perfor-
mance in terms of rising time, settling time, percentage
overshoot, steady-state error, and RMSE.

The rest of this paper is arranged as follows; in
Section 2, the dynamic modelling of the quadcopter
based on the Newton–Euler approach and its associ-
ated parameters are presented. The development of the
control design techniques are presented in Section 3. In
Section 4, the technique for the simulation is described.
In Section 5, the simulation results are discussed. Lastly,
a concluding remark based on the proposed controller
is presented in Section 6.

2. Dynamic modelling of quadcopter

The first step in designing the dynamic model of the
quadcopter is to define the inertial frame and body
frame in the three-dimensional space, each with its
defined right-handed coordinate system, as shown in
Figure 1. In this way, the attitude and the position of the
quadcopter can be controlled in a three-dimensional
space. The inertial frame or earth frame, denoted by E,
is used to describe the absolute position in the space.
The origin of the coordinate system E is fixed on a
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Figure 1. Structure model of the quadcopter with a reference frame [20].

ground surface or a specific point in space and the
initial position of the quadcopter.

The designation of the quadcopter heading is in
the positive direction of the OX-axis and perpendicu-
lar to the OYZ plane. The OY-axis is perpendicular to
the OXZ plane and the OZ-axis perpendicular to the
OXY plane and pointing vertically upward. The rela-
tive movement of the ground and the quadcopter is
studied using this coordinate system. The centre of the
quadcopter is the origin of the quadcopter coordinate
system OXYZ denoted by B. The positive OX-axis is
pointing toward rotor 1, the positive OY-axis is point-
ing toward rotor 4 and OZ-axis is pointing vertically
upward against the gravity. These two coordinate sys-
tems can be converted to each other through transition
matrix R.

Based on this reference frame, [xyz]T is defined as
the translational position and [φθψ]T is defined as
an angular position. The location of the quadcopter
to the inertial frame is indicated by the translational
position. The angular position is defined by the Euler
angle. Roll angle, φ, is referred to rotating angle around
the OX-axis, pitch angle, θ , is refer to rotating angle
around the OY-axis and yaw angle, ψ , is refer to rotat-
ing angle around the OZ-axis. Thus, the rotational
matrixs Rx, Ry, and Rz from the body frame B to the
inertial frame E can be obtained as in the following
equations [20]:

Rx =
⎡
⎣1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎤
⎦ (1)

Ry =
⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ (2)

Rz =
⎡
⎣cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤
⎦ (3)

Bymultiplying these three rotationalmatricesRx,Ry,
and Rz, we finally can obtain the rotational matrix R of
the body frame relative to the inertial frame as in the
following equation [20]:

R = Rx.Ry.Rz =
⎡
⎣cosψ cosφ cosψ sin θ sinφ
sinψ cos θ sinψ sin θ sinφ

− sin θ cos θ sinφ

cosψ sin θ cosφ + sinψ sinφ
sinψ sin θ cosφ − sinφ cosψ

cos θ cosφ

⎤
⎦ (4)

Similarly, the relationship between the Euler rate
(φ̇, θ̇ , ψ̇) in the inertial frame and the angular veloc-
ity in the body frame (p, q, r) can be determined
through the transformation matrix given in the follow-
ing equation [28]:

T =
⎡
⎣1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

⎤
⎦ (5)

On the other hand, for transforming the angular
velocity from the body frame to the inertial frame, an
inverse transformation matrix of Equation (5) can be
performed. Around the hover position, the angle of φ
and θ is close to 0; thus, the transformation matrix T
can be approximate as a unit matrix. In this case, the
relation between the Euler rate and the angular velocity
in the body frame can be approximated as linear as in
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the following equation according to Reizenstein [29]:
⎡
⎣φ̇θ̇
ψ̇

⎤
⎦ ∼=

⎡
⎣p
q
r

⎤
⎦ (6)

2.1. Mathematical derivation

Before the derivation of the mathematical model of the
quadcopter can bemodelled, the following assumptions
need to be made [20]. The assumptions are (1) the
structure of the quadcopter is symmetrically rigid, (2)
the geometric centre and centroid of the quadcopter are
in the same position with the origin of the inertial coor-
dinate system, (3) flight altitude and other factors do
not affect the resistance and gravity of the quadcopter
and (4) thrust and drag forces are proportional to the
square of the propeller speed.

2.2. Kinematic equation

Using Newton and Euler equations for the three-
dimensional motions of a rigid body, the mathemat-
ical equation of the quadrotor will be presented. The
vector that contains the linear and angular position
of the quadrotor in the inertial frame is defined as
[XYZφθψ]T and the vector that holds the linear and
angular velocity of the quadrotor in the body frame
is defined as [uvwpqr]T . The relationship between the
body frame and the inertial frame of the quadrotor in
the three-dimensional space are linked by the following
equations [30]:

v = R.vB (7)

ω = T.ωB (8)

where

v = [ẋẏż]T ∈ R
3

ω = [φ̇θ̇ ψ̇]T ∈ R
3

vB = [uvw]T ∈ R
3

ωB = [pqr]T ∈ R
3

By solving Equations (7) and (8), the kinematics
equation of the quadrotor is obtained as given in the
following equation [31]:

ẋ = w[sinφ sinψ + cosφ cosψ sin θ]

− v[cosφ sinψ − cosψ sinφ sin θ]

+ u[cosψ cos θ]

ẏ = v[cosφ cosψ + sinφ sinψ sin θ]

− w[cosψ sinφ − cosφ sinψ sin θ]

+ u[cos θ sinψ]

ż = w[cosφ cos θ] − u[sin θ] + v[cos θ sinφ]

φ̇ = p + r[cosφ tan θ] + q[sinφ tan θ]

θ̇ = q[cosφ] − r[sinφ]

ψ̇ = r
cosφ
cos θ

+ q
sinφ
cos θ

(9)

2.3. Dynamic equation

The dynamics equation of the quadrotor has two com-
ponents, which are translational components and rota-
tional components. In translational components, it con-
sists of the Z altitude, the X position, and Y position,
while in rotational components, it consists of the roll
(φ), the pitch (θ) and the yaw (ψ)motion. The deriva-
tion is done as according to the assumption stated
before, and the general formalism of the Newton–Euler
equation is presented as follows [31]:[ ∑

F∑
M

]
=

[
mI 0
0 I

] [
v̇
ω̇

]
+

[
ω × mv
ω × Iω

]
(10)

where is the mass of the quadrotor, I is the inertia, v
is the linear velocity, ω is the angular velocity, F is the
forces acting on the centre of the quadrotor’s body, and
M is the torque acting on the quadrotor’s body.

2.3.1. Translational dynamic equation
Since the quadrotor is considered as a rigid body,
according to Newton’s second law of motion, the total
forces acting on the centre of gravity of the quadrotor
in the body frame can be represented as the following
equation [31]:

FB = mv̇B + ωB × mvB (11)

where m is the mass of the quadrotor, and FB =
[FxFyFz]T ∈ R

3 are the total forces acting on the centre
of gravity of the quadrotor. Thus, solving Equation (11)
yield the following equation:

Fx = m(u̇ + qw − rv)

Fy = m(v̇ − pw + ru)

Fz = m(ẇ + pv − qu) (12)

2.3.2. Rotational dynamic equation
Likewise, according to Euler’s equation, the total
torques acting on the centre of gravity of the quadrotor
in the body frame can be represented as follows [31]:

MB = I.ω̇B + ωB × (I.ωB) (13)

where MB = [MxMyMz]T ∈ R
3 are the total torques

acting on the centre of gravity of the quadrotor, and
I is the diagonal inertia matrix due to the assumption
that quadrotor’s structure is symmetrical. Thus, solving
Equation (13) yield the following equation:

I =
⎡
⎣Ix 0 0
0 Iy 0
0 0 Iz

⎤
⎦ ∈ R

3×3 (13.1)
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Mx = ṗIx − qrIy + qrIz
My = q̇Iy + prIx − prIz
Mz = ṙIz − pqIx + pqIy (14)

These equations are valid as long as the origin of the
body frame’s axes coincides with quadrotor’s centre of
gravity.

2.3.3. Forces Applied on the quadcopter
The gravitational force naturally exists in the inertial
frame and acts at the centre of quadrotor’s centre of
gravity. This force only exists in the Z-axis and pointing
in the downward direction and defined as follows:

Fg =
⎡
⎣ 0

0
−mg

⎤
⎦ (15)

To transform the gravitational force from inertial
frame to body frame, Equation (15) is multiplied with
the rotation matrix R and represented as follows:

FBg = REB

⎡
⎣ 0

0
−mg

⎤
⎦ = −mg

⎡
⎣ − sin θ
sinφ cos θ
cosφ cos θ

⎤
⎦ (16)

where m is the mass of the quadrotor and g is the
gravitational acceleration.

The second force exerted on the quadrotor is the
thrust force. Thrust force is the lifting force produced
by the rotation of the propellers that move the quadro-
tor in the positive vertical direction of the Z-axis. Since
the quadrotor has four rotors that drive the vehicle, and
to achieve a vertical motion, all rotorsmust produce the
same amount of thrust, and the total thrust produce is
simply the addition of the thrust in each rotor. The total
thrust is defined as follows:

FT =
4∑

i=1
Ti = T1 + T2 + T3 + T4 (17)

where Ti is the thrust produced by the ith propeller.
Since the thrust is generated from the rotation speed of
the propellers, thus the equation of the thrust is defined
as follows [31]:

Ti = CTρAr2�2
i (18)

However, since the quadrotor is flying at a lim-
ited altitude, the air density can be considered con-
stant, and to comply with the assumption stated earlier,
Equation (18) can be simplified as follows [32]:

Ti = b�2
i (19)

where CT is the thrust coefficient, ρ is the air density, A
is the area of the blade, r is the radius of the blade, �i
is the angular speed of the ith rotor, and b is the thrust

factor. Therefore, the total thrust force expressed in the
body frame is as follows:

FT = b�2
1 + b�2

2 + b�2
3 + b�2

4

= b(�2
1 +�2

2 +�2
3 +�2

4) (20)

2.3.4. Torque Applied on the quadcopter
Since the rotor is located at a certain distance from
quadrotor’s centre, it will create torque in a different
rotation axis. As seen in Figure 2, each rotor will cre-
ate a moment in the direction opposite to the rotor’s
rotation.

Around the x-axis, by using the right-hand rule with
the axis of rotation, rotors 1 and 3 did not produce any
moment on the x-axis, but rotors 2 and 4 did. Thus,
the total moment about the x-axis can be expressed as
follows:

Mroll = −lT2 + lT4 = −lb�2
2 + lb�2

4

= lb(−�2
2 +�2

4) (21)

Around the y-axis, by using the right-hand rule with
the axis of rotation, rotors 2 and 4 did not produce any
moment on the y-axis, but rotors 1 and 3 did. Thus,
the total moment about the y-axis can be expressed as
follows:

Mpitch = −lT1 + lT3 = −lb�2
1 + lb�2

3

= lb(−�2
1 +�2

3) (22)

where l is the distance of the rotor to the centre of grav-
ity of the quadrotor. Around the z-axis, the moment
generated is the result of the rotation of the rotors itself
and not because of the thrust force produce by the pro-
pellers. The reaction torque of the rotor is given as
follows:

Qi = d�2
i (23)

Figure 2. Forces and moments acting on the quadrotor.
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Thus, the total moment about the z-axis can be
expressed as follows:

Myaw = T1 − T2 + T3 − T4

= d�2
1 − d�2

2 + d�2
3 − d�2

4

= d(�2
1 −�2

2 +�2
3 −�2

4) (24)

where d is the drag factor.
The gyroscopic moment is a physical effect pro-

duced by the propellers’ rotation and the rotation of
quadrotor’s body. The gyroscopic moment is given by

MG = ω × Jr

⎡
⎣ 0

0
−(1)i�i

⎤
⎦ =

⎡
⎣ qJr�r

−pJr�r
0

⎤
⎦ (25)

where ω is the propeller’s speed, Jr is the rotor’s inertia,
and�r is the resultant angular velocity defined as�r =
−�1 +�2 −�3 +�4.

2.4. Final quadcoptermodel

The complete quadrotormathematicalmodel including
the control input vector is presented in this subsection.

2.4.1. Control input vector, U
By controlling the rotational speed of the rotor, one
can control the movement of the quadrotor. The rota-
tional speed of the rotor is chosen as the input to the
quadrotor system. Four control inputs that controlled
the quadrotor system are defined as follows:

U =

⎡
⎢⎢⎣

U1
U2
U3
U4

⎤
⎥⎥⎦ (26)

where

U1 = Ft = b(�2
1 +�2

2 +�2
3 +�2

4)

U2 = Mroll = lb(−�2
2 +�2

4)

U3 = Mpitch = lb(−�2
1 +�2

3)

U4 = Myaw = d(�2
1 −�2

2 +�2
3 −�2

4) (27)

The control inputs in Equation (27) can be repre-
sented in matrix form as

⎡
⎢⎢⎣

U1
U2
U3
U4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b b b b
0 −lb 0 lb

−lb 0 lb 0
d −d d −d

⎤
⎥⎥⎦

⎡
⎢⎢⎣
�2

1
�2

2
�2

3
�2

4

⎤
⎥⎥⎦ (28)

From the above matrix Equation (28),U1 is the con-
trol input responsible for the altitude motion of the
quadrotor, consisting of the four rotors’ speed which
caused the upward thrust force. U2 is the control input
responsible for the roll motion of the quadrotor; it is the

difference in thrust between rotor 2 and rotor 4. U3 is
the control input responsible for the pitchmotion of the
quadrotor; it is the difference in thrust between rotor 1
and rotor 3. Finally, U4 is the control input responsible
for the yaw motion of the quadrotor; it is the difference
in torque between the pair of clockwise rotating rotors
and the pair of counter-clockwise rotating rotors. If the
rotor’s speed is required to be calculated from the con-
trol inputs, an inverse relationship between the rotor’s
speed and control input can be performed by inverting
the above matrix Equation (28) and can be represented
as follows:

⎡
⎢⎢⎢⎣
�2

1
�2

2
�2

3
�2

4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4b

0 − 1
2b

1
4d

1
4b

− 1
2b

0 − 1
4d

1
4b

0
1
2b

1
4d

1
4b

1
2b

0 − 1
4d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
U1

U2

U3

U4

⎤
⎥⎥⎥⎦ (29)

2.4.2. Translational equation ofmotion
The complete translational dynamics equation, after
considering the gravitational force and thrust force is
become,

∑
F = ma = m

⎡
⎣Ẍ
Ÿ
Z̈

⎤
⎦ = Fg + FT (30)

Substituting the value for Fg and FT from Equations
(16) and (20) into Equation (30), the following equation
is obtained:

m

⎡
⎣Ẍ
Ÿ
Z̈

⎤
⎦ =

⎡
⎣ 0

0
−mg

⎤
⎦ + RBE

⎡
⎢⎢⎢⎣

0
0

b
4∑

i=1
�2

i

⎤
⎥⎥⎥⎦ (31)

Finally, rewriting Equation (31) and solve for the
linear acceleration, we can obtain in the following
equation:

Ẍ = (cosφ cosψ sin θ + sinφ sinψ)
U1

m

Ÿ = (cosφ sin θ sinψ − sinφ cosψ)
U1

m

Z̈ = (cos θ cosφ)
U1

m
− g (32)

2.4.3. Rotational equation ofmotion
The complete rotational dynamics equation, after con-
sidering the torque acting on the quadrotor and the
gyroscopic effect is become,

∑
M = Iω̇ + ω × Iω = MB + MG (33)

whereMB = [U2U3U4]T . Substituting the value forMB
and MG from Equations (21), (22), (24), and (25) into
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Equation (33), the following equation is obtained:
⎡
⎣Ix 0 0
0 Iy 0
0 0 Iz

⎤
⎦

⎡
⎣φ̈θ̈
ψ̈

⎤
⎦ +

⎡
⎣φ̇θ̇
ψ̇

⎤
⎦ ×

⎡
⎣Ix 0 0
0 Iy 0
0 0 Iz

⎤
⎦

⎡
⎣φ̇θ̇
ψ̇

⎤
⎦

=
⎡
⎣U2
U3
U4

⎤
⎦ +

⎡
⎣ qJr�r

−pJr�r
0

⎤
⎦ (34)

Finally, rewriting Equation (34) and solve for the
angular acceleration, we can obtain in the following
equation:

φ̈ =
(
Iy − Iz
Ix

)
θ̇ ψ̇ +

(
Jr�r

Ix

)
θ̇ + U2

Ix

θ̈ =
(
Iz − Ix
Iy

)
φ̇ψ̇ −

(
Jr�r

Iy

)
φ̇ + U3

Iy

ψ̈ =
(
Ix − Iy
Iz

)
φ̇θ̇ + U4

Iz
(35)

Grouping together the translational and rotational
equation of motion, the complete nonlinear dynamic
equation of the quadrotor becomes

Ẍ = (cosφ cosψ sin θ + sinφ sinψ)
U1

m

Ÿ = (cosφ sin θ sinψ − sinφ cosψ)
U1

m

Z̈ = (cos θ cosφ)
U1

m
− g

φ̈ =
(
Iy − Iz
Ix

)
θ̇ ψ̇ +

(
Jr�r

Ix

)
θ̇ + U2

Ix

θ̈ =
(
Iz − Ix
Iy

)
φ̇ψ̇ −

(
Jr�r

Iy

)
φ̇ + U3

Iy

ψ̈ =
(
Ix − Iy
Iz

)
φ̇θ̇ + U4

Iz
(36)

However, since only four control inputs are avail-
able, thus only four motions were chosen to be control,
which are the altitude (Z) and the attitudes (φ, θ ,ψ).
Therefore, the dynamic Equation (36) can be reduced to
Equation (37) by omitting the translational movement
in X and Y directions from the system.

Z̈ = (cos θ cosφ)
U1

m
− g

φ̈ =
(
Iy − Iz
Ix

)
θ̇ ψ̇ +

(
Jr�r

Ix

)
θ̇ + U2

Ix

θ̈ =
(
Iz − Ix
Iy

)
φ̇ψ̇ −

(
Jr�r

Iy

)
φ̇ + U3

Iy

ψ̈ =
(
Ix − Iy
Iz

)
φ̇θ̇ + U4

Iz
(37)

From the nonlinear Equation (37), the system’s solu-
tion is difficult to find because the trigonometric func-
tions are related to each other in a no-elementary

way [33]. Due to this factor, a simplification of the sys-
tem based on a small angle approximation can be done
to obtain a linear dynamic equation for the system.
This simplification is made by approximating the sine
function with its argument (sinα = α), and the cosine
function with the unity (cosα = 1). This approxima-
tion is valid as long as the alpha is small, where α =
φ, θ ,ψ .

3. Controller design

The complex nonlinear dynamic of the system makes
the control of the quadcopter becomes a difficult task,
thus, a linear dynamics equation was used for the sim-
ulation. In this paper, several control strategies namely
the conventional PID controller, PD controller, LQR
controller, a hybrid P-LQR controller, and hybrid PD-
LQR controller are studied and compared with the pro-
posed controller, a hybrid PD2-LQR controller. These
techniques are elaborated in the following section. The
general form of a linear state space representation is
given as ẋ = Ax + Bu with ẋ is the states vector, and u
is the inputs vector as given in Equations (38) and (39).

State vector,

x = [z, ż,φ, φ̇, θ , θ̇ ,ψ , ψ̇]T (38)

Input vector,

u = [u1, u2, u3, u4]T (39)

In a straight flight path, the longitudinal motion
equation of the quadcopter is defined in Equation (40),
and the coefficientmatrix is given in Equation (41) [20].

ẋg = Agxg + Bgug (40)

where state vector, xg = [ẋ, ż, q, θ]T and input vector,
ug = [u1, u4]T .

Ag =

⎡
⎢⎢⎣
xẋ xż xq xθ
zẋ zẋ zq zθ
mẋ mż mq mθ
0 0 1 0

⎤
⎥⎥⎦B =

⎡
⎢⎢⎣
xt xδ
0 zδ
0 mδ
0 0

⎤
⎥⎥⎦ (41)

In a horizontal flight path, the motion equation of
the quadcopter is defined in Equation (42), and the
coefficient matrix is given in Equation (43) [20], where
state vector, xh = [v, p, r,φ,ψ]T and input vector, us =
u2.

ẋh = Ahxh + Bhuh (42)

Ag =

⎡
⎢⎢⎢⎢⎣

yv yp yr yφ0
lv lp lr lφ 0
nv np nr nφ0
0 1 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦Bg =

⎡
⎢⎢⎢⎢⎣

yδ
lδ
nδ
0
0

⎤
⎥⎥⎥⎥⎦ (43)

The transfer function of the quadcopter in the roll,
pitch, yaw, and altitude motion are given in Equations
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Table 1. Quadcopter parameter.

Parameter Name Parameter Value Unit

Mass m 1.2 kg
Length l 0.2 m
Thrust factor kt 3.13 e−5 Ns2
Drag factor kd 7.5 e−7 Nms2
Moment inertia x-axis Ix 2.353 e−3 kgm2

Moment inertia y-axis Iy 2.353 e−3 kgm2

Moment inertia z-axis Iz 5.262 e−2 kgm2

(44)–(47), respectively, based on the quadcopter par-
ameter in Table 1 and according to the transfer function
G(s) = C(sI − A)−1B + D [34].

G2 = φ

u2
= 65s + 4560

s3 + 109s2 + 1023s + 2935
(44)

G3 = θ

u3
= 56.95s + 4391

s3 + 105s2 + 870s + 4430
(45)

G4 = ψ

u4
= 105

s2 + 413s
(46)

G1 = z
u1

= ż
su1

= 1.63
s(s + 5)

(47)

3.1. PID controller

PID controllers are one of the most commonly used
controllers in the industrial application due to its
robustness and simple structure configuration. For the
controller implementation, the parallel structure of
PID in a continuous-time domain is chosen. The PID
controller attempts to minimize the error by adjust-
ing the input value to reduce the contrast between
the measured value and the desired value. Propor-
tional, integral, and derivative gains are the three
involved parameter gains in this structure, as shown
in Figure 3. The PID controller gains used in this
paper are shown in Table 2. The structure of the
PID controller can be expressed in the following

Table 2. Gains for the PID controller.

Motion Kp Ki Kd

Pitch 13.9934 7.3931 1.7023
Roll 4.6094 4.0755 0.5097
Yaw 100 1 1
Z 98.9629 1.7538 e−15 12.6053

equation:

u(t) = Kpe(t)+ Ki

∫ t

0
e(τ )dτ + Kd

de(t)
dt

(48)

where u is controller output, Kp is the proportional
gain,Ki is the integral gain andKd is the derivative gain.

3.2. PD controller

Other than the PID controller, the quadcopter system
also can be stabilized using only the Proportional-
Derivative (PD) controller configuration. As compared
to the PID controller, it shows that the PD controller
is better in terms of robustness [3]. Thus, the PD
controller can be used to replace the PID controller
(Figure 4) since its structure is simpler to design, and it
gives the easiest way to control the highly uncontrolled
quadcopter vehicle. The gains of the PD controller are
shown in Table 3. The structure of the PD controller in
its respectivemotion can be designed as in the following
equations:

uφ = Kp(φref − φ)+ Kd(φ̇ref − φ̇) (49)

uθ = Kp(θref − θ)+ Kd(θ̇ref − θ̇ ) (50)

uψ = Kp(ψref − ψ)+ Kd(ψ̇ref − ψ̇) (51)

uz = Kp(zref − z)+ Kd(żref − ż) (52)

3.3. LQR controller

The LQR controller is a feedback controller with an
optimal control technique. The state or output of the

Figure 3. Simulink model of the PID controller.
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Figure 4. Simulink model of the PD controller.

Table 3. Gains for the PD controller.

Motion Kp Kd

Pitch 102.8174 10.6424
Roll 73.4042 8.1973
Yaw 30.8183 0.0820
Z 27.8877 3.1904

LQR controller is feedback and compared to the set-
point value. The output is feedback through the con-
troller’s gain K [35]. The LQR system (Figure 5) can
be expressed in a state variable form in the following
equation [36,37]:

ẋ = Ax + Bu (53)

To achieve the desired output, the controller’s gainK
needs to be obtained [35]. The optimal control vector
for the state space form in the system is expressed as
follows [36]:

u = −Kx (54)

In order to determine an optimal control input, the
minimization of the cost function is needed as shown in
Equation (55) [38], where Q is a positive semi-definite
symmetric matrix and R is a positive definite symmet-
ric matrix. Q and R weighting matrices are chosen to
control each state effectively using little control effort

Table 4. Gains for the LQR controller.

Motion Gain K QMatrix RMatrix

Pitch [0.0192 0.1162 0.0001] Q = diag([3.8 32.14 0.922]) R = [1]
Roll [0.0180 0.0675 0.0002] Q = diag([3.8 32.14 0.922]) R = [1]
Yaw [0.0183 5.6692] Q = diag([3.8 32.14]) R = [1]
Z [1.3355 5.6692] Q = diag([3.8 32.14]) R = [1]

according to the performance index in the following
equation:

J = 1
2

∫ ∞

0
(xTQx + uTRu)dt (55)

The algebraic Riccati Equation (56) must be solved
in order to calculate the optimal gain K [39], where the
controller’s gainK can be obtained using Equation (57)
[40]. By using MATLAB software, gain K can be
obtained using LQR (A, B, C, D, Q, and R) command.
The gains of the controller are given in Table 4.

ATP + PA + Q − PBR−1BTP = 0 (56)

K = R−1BTP (57)

3.4. P-LQR controller

To improve the performance of the quadcopter control
system, a hybrid controller called the P-LQR controller

Figure 5. Simulink model of the LQR controller.
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Figure 6. Simulink model of the P-LQR controller.

Table 5. Proportional gains for the P-LQR controller.

Motion Kp

Pitch 0.0029
Roll 0.4058
Yaw 0.9890
Z 0.8305

was developed [41], as shown in Figure 6. This con-
troller consists of the combination of the Proportional
(P) controller with the LQR controller. This controller
was designed by adding another close-loop as negative
feedback in the LQR system. The LQR controller’s gain
K will be added with the P controller’s gain KP and
form negative feedback to the system. This type of con-
troller can perform better than the conventional LQR
controller by shorten the rise time and setting time and
improved the RMSE. However, this controller tends to
increase the overshoot response of the system [41]. The
proportional gains used for this controller are shown in
Table 5.

3.5. PD-LQR controller

The PD-LQR controller is the combination of the
Proportional-Derivative (PD) controller with the LQR
controller (Figure 7). This controller was designed by
adding another close-loop as negative feedback in the
LQR system. The LQR controller’s gain .. will be added
with the PD controller’s gain KP,Kd and form nega-
tive feedback to the system. The PD-LQRcontrollerwas
designed to improve the performance of the LQR con-
troller and P-LQR controller in terms of its stability and

Table 6. Proportional and derivative gains for the PDQR
controller.

Motion Kp Kd

Pitch 0.9680 0.1238
Roll 0.8809 0.1047
Yaw 0.9907 0.1000
Z 0.9348 0.1188

overshoot response without affecting the desired out-
put. PD controller was able to improve the response
performance while maintaining the overshoot within a
limit constraint [41]. The proportional and derivative
gains in all states are given in Table 6.

3.6. PD2-LQR controller (Proposed controller)

The entire controller mentioned above can control the
quadcopter; however, the autonomous UAVs need to
have a fast response in rising time, settling time and
very low overshoot. Besides, the steady-state error and
RMSE must be close to zero as much as possible. Thus,
various methods and approaches have been studied,
and numerous simulations have been done. In all simu-
lations done, it has been observed that the performance
of the quadcopter could be improved by adding another
Derivative (D) controller in the closed-loop as negative
feedback in the PD-LQR controller system.

The proposed controllers (Figure 8) are the com-
bination of the proportional-double derivative (PD2)
controller with the conventional LQR controller beco-
mes the PD2-LQR controller. By tuning the propor-
tional and derivative gains of the controller accurately,

Figure 7. Simulink model of the PD-LQR controller.
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Figure 8. Simulink model of the PD2-LQR controller.

Table 7. Proportional and derivative gains for the PD-2LQR
controller.

States Kp Kd1 Kd2

Pitch 0.9012 0.0548 6.6312e−4
Roll 0.9780 0.0069 0.0335
Yaw 0.9996 6.0278e−5 0.0010
Z 0.9977 0.0223 0.0058

the result obtained in Tables 8–12 in Section 5 shows
that the proposed PD2-LQR controller can improve
the quadcopter performance by reducing the rise time
and settling time, the overshoot is within the limit
constraint, and the steady-state error and RMSE are
approximately close to zero as compared to other con-
trollers. The gains used in this controller are shown in
Table 7.

4. Simulation technique

In this section, the simulation technique used to deter-
mine the performance of each controller is discussed.
First, the controllers’ structure, as shown in Figures 3–8
was design using the Simulink block diagram. Then,
a MATLAB program code was written to link up the
MATLAB interface with the Simulink interface. Note
that the simulation was run with a default sample time
which is 0. The desired performance specification of the
system is that, the overshoot requirement of the sys-
tem aimed to be less than 10% [42] and the control
precision to be lower than ±1% [43]. Moreover, the
ideal performance for rising time, settling time, over-
shoot, steady-state error, and root mean square error
(RMSE) to be close to zero as much as possible. The
expected level of precision aimed to be ±0.001 s [44]
due to its small size of the quadcopter. Each controller’s
gain parameters were tuned using theGradient Descent
Optimization method with Sequential Quadratic Pro-
gramming [45], where this is an optimization algorithm
based on a convex function with multi-variable param-
eters defined. This method refines its parameters itera-
tively to minimize a given function as far as possible to
its local minimum and if the function satisfied within

the pre-given constraint to ensure the convergence to a
local minimum.

Initially, the transfer function of the quadcopter and
the initial gain parameters values must be defined.
These gain values must be defined as a set or array
of value with a lower and upper limit, where in this
work we have set between ±150. Then, the limit con-
straint of the required step response must be defined so
that if the function did not satisfy the requirement, it
would automatically stop the searching, where in this
work the upper bound is limit to amplitude of 1 with
1% overshoot and the lower bound is limit to ampli-
tude of 0 for 0 < t < 0.5, 0.9 for 0.5 < t < 1, and 0.99
for 1 < t < 3. Next, the simulation to obtain the first
set of gain value is executed. In this step, the gradient
descent optimization method was used. At this stage,
the optimum gain values that satisfy the constraint are
being searched by iteratively adjusting the value until it
finds the feasible solution that satisfy all constraints to
within specific tolerances. After the first sets of gain val-
ues are obtained, these steps must be repeated to find
a better step response with the optimum parameters
gain.

The step for the optimization process is illustrated in
Figure 9.

5. Result and discussion

In this section, the simulation result of all controllers
in pitch, roll, yaw, and altitude motion are presented.
In this research work, a countless effort is dedicated to
finding a suitable controller with better performance
on controlling the quadcopter. Conventional PID con-
trol, PD control, LQR control, P-LQR control, PD-LQR
control, and PD2-LQR control algorithm are the six
controllers assessed.

5.1. Pitchingmotion

The PID, PD, LQR, P-LQR, PD-LQR, and PD2-LQR
controller in pitch motion response are shown in
Figure 10. From the figure, the LQR controllers have
the slowest response in terms of the rise time, while the
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Figure 9. The steps for the optimization process.

Figure 10. Response of various controllers in pitch motion.

PD2-LQR controller is the fastest. The PID andPDcon-
troller has an excellent performance in overshoot and
RMSE respectively compared to other controllers. Even
though the PID controller outperforms the PD2-LQR
controller in terms of overshoot it worth to mention
that the overshoot of the PD2-LQR controller is still
within the acceptable limit constraint less than 10% in
overshoot.

Table 8 present the comparison of the rise time,
settling time, percentage overshoot, steady-state error,
and RMSE of all the controllers in pitch motion. From
Table 8, we can see that the PD2-LQR controller has
the lowest rise time with only 0.11860 s, while the LQR
controller is the highest with 0.28512 s. For the PD,
PID, P-LQR, and PD-LQR controller, the rise time is
0.22726, 0.27697, 0.28436, and 0.27859 s, respectively.
From these values, we can see that the percentage
improvement of the PD2-LQR controller is as big as

Table 8. Performance comparison various controllers in pitch
motion.

Step info
Controller

Rise
time, s

Settling
time, s

Overshoot,
%

Steady-state
error RMSE

PD 0.22726 0.40718 0.00055 0.00968 0.25126
PID 0.27697 0.50334 0 5.36208e−05 0.34999
LQR 0.28512 0.88143 7.75500 0.00394 0.34661
P-LQR 0.28436 0.88006 7.81045 0.00087 0.34630
PD-LQR 0.27859 0.50166 0.00872 8.38531e−05 0.30598
PD2-LQR 0.11860 0.18235 0.91639 2.58940e-05 0.28600

58.4% in the rise time. The bold value in the table rep-
resents the best value of the respective controller with
the respective response.

In terms of settling time, the LQR controller is the
highest with 0.88143 s, and the P-LQR controller is the
second highest with only 0.00137 s indifference which
is 0.88006 s. The settling time of the PD controller is
0.40718 s, which is lower by 0.09616 s than the PID con-
troller. The settling time of the PD-LQR controller and
PD2-LQR controller are 0.50166 and 0.18235 s, respec-
tively, which make the PD2-LQR controller has a bet-
ter performance in term of settling time. In terms of
overshoot, the PID controller has the lowest percent-
age overshoot as compared to other controllers with
0% overshoot. In comparison, the P-LQR controller
has the highest percentage overshoot with 7.81045%
then followed by the LQR, PD2-LQR, PD-LQR, and
PD controller with 7.75500%, 0.91639%, 0.00872%, and
0.00055%, respectively. However, the percentage over-
shoot of the proposed PD2-LQR is still within a 10%
constraint limit that can be acceptable.

The steady-state error value of the PD, PID,
LQR, P-LQR, PD-LQR, and PD2-LQR controller are
0.00968, 5.36208e−5, 0.00394, 0.00087, 8.38531e−5,
and 2.58940e−5, respectively. From these values, we
can see that the PD2-LQR controller has the lowest
steady-state error as compared to other controllers,
while the PD controller has the highest steady-state
error. The RMSE of the PD controller is the lowest with
0.25126, followed by the PD2-LQR, PD-LQR, P-LQR,
LQR, and PID controller, respectively. The bold value
in the table represents the best value of the respective
controller with the respective response.

The comparison of the performance of the controller
is made for all step responses, rise time, settling time,
percentage overshoot, steady-state error, and RMSE.
From the table, we can see that the proposed PD2-
LQR controller is performing better than other con-
trollers. In order to see in better display, the P-LQR con-
troller and the PD2-LQR are compared; the rise time of
the PD2-LQR controller is improved by 58.3%, 79.3%
improvement in settling time was achieved by the PD2-
LQR controller, percentage overshoot of the controller
has improved by 88.3%, theminimization of the steady-
state error is up to 97.0%, and the RMSE reduce by
17.4%. The result also shows that the percentage over-
shoot of the PD, PID, and PD-LQR controller are better
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than that PD2-LQR controller. However, the overshoot
value of the PD2-LQR controller is still within the
acceptable limit constraint. Thus, the performance of
the quadcopter control system in the pitch motion can
be improved using the PD2-LQR controller.

5.2. Rollingmotion

The PID, PD, LQR, P-LQR, PD-LQR, and PD2-LQR
controllers’ response in the roll motion is shown in
Figure 11. From the figure, the LQR controller has the
slowest response in terms of the rise time and settling
time, and highest steady-state error value while the
PD2-LQR controller is the fastest. However, the PID
controller has an excellent performance in overshoot,
and the PD controller is best in RMSE compared to
other controllers. Even though the PID and PD con-
troller outperform the PD2-LQR controller in terms of
overshoot and RMSE respectively, it is worth to men-
tion that the overshoot of the PD2-LQR controller is
still within the acceptable limit constraint less than 10%
in overshoot, and the difference in RMSE is very small.

Table 9 presents the rise time, settling time, percent-
age overshoot, the steady-state error, and RMSE of all
the controllers in roll motion. The PD2-LQR controller
has the lowest rise time with only 0.08388 s, while the
LQRcontroller is the highestwith 0.54730 s. For the PD,
PID, P-LQR, and PD-LQR controller, the rise time is
0.24698, 0.28322, 0.30698, and 0.26790 s, respectively.
So, the percentage improvement of the PD2-LQR con-
troller is as high as 84.7% in the rise time compared to
the LQR controller. In terms of settling time, the LQR
controller also is the highest with 0.90246 s, followed
by the P-LQR controller with only 0.0679 s indiffer-
ence which is 0.83456 s. The settling time of the PID
controller is 0.51770 s, which is higher than the PD
controller by 0.07535 s. The settling time of the PD-
LQR controller and PD2-LQR controller are 0.48197
and 0.13786 s, respectively, which make the PD2-LQR
controller has a better performance in term of settling
time than other controllers.

In terms of overshoot, the PID controller has the
lowest percentage overshoot as compared to other
controllers with 0% overshoot. In comparison, the P-
LQR controller has the highest percentage overshoot

Figure 11. Response of various controllers in roll motion.

Table 9. Performance comparison various controllers in roll
motion.

Step info
Controller

Rise
time, s

Settling
time, s

Overshoot,
%

Steady-state
error RMSE

PD 0.24698 0.44235 0.01195 0.00872 0.26446
PID 0.28322 0.51770 0 0.00027 0.33522
LQR 0.54730 0.90246 0.05790 0.00941 0.37263
P-LQR 0.30698 0.83456 4.02312 0.00557 0.34307
PD-LQR 0.26790 0.48197 0.00045 0.00349 0.31744
PD2-LQR 0.08388 0.13796 0.04306 1.21465e−06 0.28503

with 4.02312% then followed by the LQR, PD2-LQR,
PD, and PD-LQR controller with 0.05790%, 0.04306%,
0.01195%, and 0.00045%, respectively. However, the
percentage overshoot of the proposed PD2-LQR is still
within a 10% constraint limit that can be acceptable.
The PD2-LQR controller has the lowest steady-state
error as compared to other controllers, while the LQR
controller has the highest steady-state error. As for the
proposed PD2-LR controller, the value is 1.21465e−6.
The RMSE of the PD, PID, LQR, P-LQR, PD-LQR,
and PD2-LQR controller are 0.26446, 0.33522, 0.37263,
0.34307, 0.31744, and 0.28503, respectively, which
make the PD controller has the lowest RMSE. How-
ever, the difference between the PD and PD2-LQR con-
troller is minimal, which is 0.02057; thus, it still can be
accepted.

Overall, the proposed PD2-LQR controller is per-
forming better than other controllers. In comparison
between the PD-LQR and the PD2-LQR controller;
the rise time of the PD2-LQR controller is improved
by 68.7%, 71.4% improvement in settling time was
achieved by the PD2-LQR controller, percentage over-
shoot of the controller has improved by 98.9%, the dif-
ference of the steady-state error between the PD-LQR
controller and PD2-LQR controller is minimal thus the
value can be negligible, and the RMSE reduce by 10.2%.
The result also shows that the percentage overshoot
of the PID, PD, and PD-LQR controller is better than
that PD2-LQR controller. However, the overshoot value
of the PD2-LQR controller is still within the accept-
able limit constraint. Thus, the performance of the
quadcopter control system in the roll motion can be
improved using the PD2-LQR controller.

5.3. Yawingmotion

The apparent response comparison of the PID, PD,
LQR, P-LQR, PD-LQR, and PD2-LQR controller in
yaw motion is shown in Figure 12. From the figure,
we can see that the PD-LQR controller have the slow-
est response in terms of the rise time and settling
time, while the PD2-LQR controller is the fastest. How-
ever, the PD2-LQR controller has slightly increased
in steady-state error compared to PD controllers, but
for the other controller, PD2-LQR still performs bet-
ter. Though PD controller outperforms the PD2-LQR
controller in terms of steady-state error, it is worth to
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Figure 12. Response of various controllers in yawmotion.

Table 10. Performance comparison various controllers in yaw
motion.

Step info
Controller

Rise
time, s

Settling
time, s

Overshoot,
%

Steady-state
error RMSE

PD 0.28114 0.50296 0.00046 6.33704e−06 0.21469
PID 0.10479 0.18866 0.00838 0.00047 0.21418
LQR 0.27685 0.49542 0.00199 0.00176 0.19483
P-LQR 0.31195 0.55778 0.00151 0.00912 0.20034
PD-LQR 0.31452 0.55901 0.02265 0.00875 0.21993
PD2-LQR 0.06103 0.11072 0 1.82156e−05 0.14441

mention that the steady-state error of the PD2-LQR
controller is still within the acceptable limit constraint,
plus the value differences are minimal that can be
approximated to zero.

Table 10 presents the rise time, settling time, per-
centage overshoot, steady-state error, and RMSE of all
the controllers in yawmotion. The PD2-LQR controller
has the fastest rise time response with only 0.06103 s,
while the PD-LQR controller has the highest response
with 0.31452 s. For the PD, PID, LQR, and P-LQR con-
troller, the rise time is 0.28114, 0.10479, 0.27685, and
0.31195 s, respectively. From these values, the percent-
age improvement of the PD2-LQR controller is as big
as 80.6% in the rise time compared to the PD- LQR
controller.

In terms of settling time, the PD-LQR controller
also is the highest with 0.55901 s, and the P-LQR con-
troller is the second highest with only 0.00123 s indif-
ference, which is 0.55778 s. The settling time of the PD
controller is 0.50296 s, which is higher than the PID
controller by 0.3143 s. The settling time of the LQR
controller and PD2-LQR controller are 0.49542 and
0.11072 s, respectively, which make the PD2-LQR con-
troller has a better performance in term of settling time
than other controllers.

In terms of overshoot, the PD2-LQR controller has
the lowest percentage overshoot as compared to other
controllers with 0% overshoot. In comparison, the PD-
LQR controller has the highest percentage overshoot
with 0.02265% then followed by the PID, LQR, P-LQR,
and PD controller with 0.00838%, 0.00199%, 0.00151%,
and 0.00046%, respectively. The value of steady-state
error of the PD, PID, LQR, P-LQR, PD-LQR, and
PD2-LQR controller are 6.33704e−6, 0.00047, 0.00176,
0.00912, 0.00875, and 1.82156e−5, respectively.

From these values, the PD controller has the low-
est steady-state error as compared to other controllers,
while the P-LQR controller has the highest steady-state
error. As for the proposed PD2-LR controller, the value
can be approximated to zero since the differences in the
value are very small. The RMSE of the PD2-LQR con-
troller is the lowest with 0.14441 followed by the LQR,
P-LQR, PID, PD, and PD-LQR controller, respectively.

Generally, the proposed PD2-LQR controller is per-
forming better than other controllers. In comparison
between PD-LQR controller and the PD2-LQR, the rise
time of the PD2-LQR controller is improved by 80.6%,
80.2% improvement in settling time was achieved by
the PD2-LQR controller, percentage overshoot of the
controller has improved by 100%, the difference of
the steady-state error between the PD-LQR controller
and PD2-LQR controller is minimal thus the value can
be negligible, and the RMSE reduce by 34.3%. Thus,
the performance of the quadcopter control system in
the yaw motion can be improved using the PD2-LQR
controller.

5.4. Altitudemotion

The apparent response comparison of the PID, PD,
LQR, P-LQR, PD-LQR, and PD2-LQR controller in
altitudemotion are shown in Figure 13. From the figure,
we can see that the PD and LQR controller has the slow-
est response in terms of the rise time and settling time
respectively, while the PD2-LQR controller is the fastest
in rising time and settling time. However, the PD2-LQR
controller also has slightly increased in overshoot and
steady-state error compared to the PID and PD-LQR
controller with 0% overshoot. Though the PID and PD-
LQR controller outperforms the PD2-LQR controller
in terms of overshoot, the PD2-LQR controller is still
within the limit constraint of 10%. Other than that, PID
also has the lowest value of steady-state error with only
8.08649e-11, while the PD2-LQR with 0.00034. As for
the RMSE, the PD2-LQR controller outperformed the
other controllers.

The rise time, settling time, percentage overshoot,
steady-state error, and RMSE of all the controllers in
altitude motion are presented in Table 11. Here, the

Figure 13. Response of various controllers in altitude motion.
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Table 11. Performance comparison various controllers in
altitude motion.

Step info
Controller

Rise
time, s

Settling
time, s

Overshoot,
%

Steady-state
error RMSE

PD 0.34965 0.52671 1.59856 6.46821e−08 0.41045
PID 0.29385 0.53652 0 8.08649e−11 0.42895
LQR 0.09783 1.08887 45.34163 0.03368 0.31462
P-LQR 0.29485 0.98465 13.49222 0.00752 0.34269
PD-LQR 0.31883 0.56058 0 0.00766 0.35388
PD2-LQR 0.04941 0.08132 0.18594 0.00034 0.25820

PD2-LQR controller has the fastest rise time response
with only 0.04941 s, while the PD controller has the
slowest response with 0.34965 s. For the PID, LQR, P-
LQR, and PD-LQR controllers, the rise time is 0.29385,
0.09783, 0.29485, and 0.31883 s, respectively.

In terms of settling time, the LQR controller has
the highest settling time with 1.08887 s, and the P-LQR
controller is the second highest with only 0.10422 s
indifference which is 0.98465 s. The settling time of the
PID controller is 0.53652 s, which is higher than the PD
controller by 0.00981 s. The settling time of the PD-
LQR controller and PD2-LQR controller are 0.56058
and 0.08132 s, respectively, which make the PD2-LQR
controller has a better performance in term of settling
time than other controllers.

In terms of overshoot, the PID and PD-LQR con-
troller has the lowest percentage overshoot as compared
to other controllers with both 0% overshoot. In com-
parison, the LQR controller has the highest percent-
age overshoot with 45.34163% then followed by the
P-LQR, PD, and PD2-LQR controllers with 13.49222%,
1.59856%, and 0.18594%, respectively. The steady-state
error of the PD, PID, LQR, P-LQR, PD-LQR, and PD2-
LQR controller are 6.46821e−8, 8.08649e−11, 0.03368,
0.00752, 0.00766, and 0.00034, respectively.

From these values, the PID controller has the low-
est steady-state error as compared to other controllers,
while the LQR controller has the highest steady-state
error. As for the proposed PD2-LR controller, the value
can be approximate to zero since the value is minimal.
The PD2-LQR controller has the lowest RMSE with
0.25820 and followed by the LQR (0.31462), P-LQR
(0.34269), PD-LQR (0.35388), PD (0.41045), and PID
(0.42895) controller, respectively.

Collectively, the proposed PD2-LQR controller is
performing better than other controllers. When the
PD-LQR controller and the PD2-LQR are compared,
the rise time of the PD2-LQR controller is improved
by 84.5%, 85.5% improvement in settling time was
achieved by the PD2-LQR controller. The difference in
percentage overshoot of the controller is minimal and
still within the limit; thus, it still can be acceptable.
The steady-state error was improved by 95.6% and the
RMSE reduce by 27%. Therefore, the performance of
the quadcopter control system in attitude motion can
be improved using the PD2-LQR controller.

5.5. Summary of findings

In the previous subsection, the simulation result of the
PD, PID, LQR, P-LQR, PD-LQR, and PD2-LQR con-
troller in all four motions, pitch, roll, yaw, and altitude
have been presented and discussed. From all the con-
troller design approaches, a comparative study has been
done to elucidate a collective performance. The com-
parisons of the entire controller in all motion and per-
centage improvement of PD2-LQR controller against
other controllers are presented in Table 12. In sum-
mary, the result shows that the PD2-LQR controller has
a better performance in all motions in most of the step
responses than other controllers.

From Table 12, we can see that the PD2-LQR con-
troller can perform better than the other controllers
in terms of rising time in all motion. In an average
of 69.35% improvement can be made if the proposed
PD2-LQR controller is used to stabilize the quadcopter.

In terms of settling time, the performance of the
PD2-LQR controller is excellent since it can improve
all the responses in all motions. The proposed PD2-
LQR controller can improve the settling time up to 76%
on average. For the overshoot response, the PD2-LQR
controller gives a better improvement than most of the
other controllers. In an average of 15.7% improvement
in overshoot can be achieved using the PD2-LQR con-
troller. However, in pitchmotion, the PD, PID, and PD-
LQR controllers outperformed the PD2-LQR controller
by 99.9%, 100%, and 99.1% improvement, respectively.
In contrast, in roll motion, the PD, PID, and PD-LQR
controllers give better improvement with 72.4%, 100%,
and 98.9%, respectively than PD2-LQR. Though the
PD, PID, and PD-LQR controllers are outperformed
the PD2-LQR controller in pitch and roll motion, the
overshoot of the PD2-LQR controller is still within
the acceptable limit constraint that is less than 10% in
overshoot.

In pitch motion, the PD2-LQR controller gives an
outstanding result in steady-state error compared to
PD, PID, LQR, P-LQR, and PD-LQR with 99.73%,
51.7%, 99.3%, 97.0%, and 69.1% improvement, respec-
tively. In roll motion, the steady-state error was
improved by 99.8%on average using the PD2-LQR con-
troller. In yaw motion, only the PD controller outper-
formed the PD2-LQR controller with 65.2% improve-
ment in steady-state error but compared to the PID,
LQR, P-LQR, and PD-LQR controllers it still lags by
96.1%, 98.9%, 99.8%, and 99.8%, respectively. In alti-
tude motion, only PD and PID controller outperforms
the PD2-LQR controller with both 99.9% improve-
ment in steady-state error. However, the value of the
steady-state error in all motion is minimal between
the proposed PD2-LQR controllers with the other
controllers. Therefore, the value of the steady-state
error for the entire controllers can be approximated to
be zero.
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Table 12. Performance comparison in Percentage among the various in all four motions

Motion Parameters PD vs. PD2-LQR PID vs. PD2-LQR LQR vs. PD2-LQR P-LQR vs. PD2-LQR PD-LQR vs PD2-LQR

Pitch Rise time, s 47.8 57.2 58.4 58.3 57.4
Settling time, s 55.2 63.8 79.3 79.3 63.7
Overshoot, % 99.9 100 88.2 88.3 99.1
Steady-state error 99.73 51.7 99.3 97.0 69.1
RMSE 12.1 18.3 17.5 17.4 6.5

Roll Rise time, s 66.0 70.4 84.7 72.7 68.7
Settling time, s 68.8 73.3 84.7 83.5 71.4
Overshoot, % 72.4 100 25.7 98.9 98.9
Steady-state error 99.9 99.5 99.9 99.9 99.9
RMSE 7.2 15.0 23.5 16.9 10.2

Yaw Rise time, s 78.3 41.8 78.0 80.4 80.6
Settling time, s 78.0 41.3 77.7 80.2 80.2
Overshoot, % 100 100 100 100 100
Steady-state error 65.2 96.1 98.9 99.8 99.8
RMSE 32.7 32.6 25.9 27.9 34.3

Altitude Rise time, s 85.9 83.2 49.5 83.2 84.5
Settling time, s 84.6 84.8 92.5 91.7 85.5
Overshoot, % 88.4 100 99.6 94.2 100
Steady-state error 99.9 99.9 99.0 95.5 95.6
RMSE 37.1 39.8 17.9 24.7 27.0

∗ The cell in red means the performance of the controller is not improved and the ones in green means improved.

Lastly, in terms of RMSE, only in roll motion where
the PD controller outperforms the PD2-LQR controller
with only 7.2% improvement. For the others, PD2-
LQR gives an excellent performance than the other
controllers. In average, a 69.5% improvement can be
made if the proposed PD2-LQR controller is used in all
motions.

6. Conclusion

In this paper, modelling and control of the quadcopter
in all four motions, pitch, roll, yaw, and altitude have
been done. The dynamic model of the quadcopter used
in this researchwas derived based on theNewton–Euler
approach. Six controllers, including the proposed con-
troller, namely PD, PID, LQR, P-LQR, PD-LQR, and
PD2-LQR controllers, have been designed to access
how it stabilizes the quadcopter. Their performance in
terms of rising time, settling time, percentage over-
shoot, steady-state error, and RMSE has been compared
to find the best-suited controller for the quadcopter.
The simulation results show that the proposed PD2-
LQR controller was able to improve the performance of
the quadcopter in almost all step responses than other
controllers. Though some controllers can outperform
the PD2-LQR controller in certain responses, it is worth
tomention that the differences between those values are
minimal and some of them can be approximately equal
to zero. Plus, all responses of the PD2-LQR controller is
within the acceptable limit constraint. Therefore, based
on this result, the proposed PD2-LQR controller is suit-
able to be used to controlling the quadcopter in all pitch,
roll, yaw, and altitude motion.
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