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Payloadmotion control for a varying length flexible gantry crane
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ABSTRACT
Cranes play a very important role in transporting heavy loads in various industries. However,
because of its natural swinging characteristics, the control of crane needs to be considered care-
fully. This paper presents a control approach to a flexible cable crane system in consideration
of both rope length varying and system constraints. At first, from Hamilton’s extended principle
the equations of motion that characterized coupled transverse-transverse motions with varying
rope length of the gantry are obtained. The equations ofmotion consist of a systemof partial dif-
ferential equations. Then, a barrier Lyapunov function is used to derive the control located at the
trolley end that can precisely position the gantry payload andminimize vibrations. The designed
control is verified through extensive experimental studies.
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1. Introduction

Overhead cranes are widely used in many applications
such as manufacturing factories, marine industries and
harbour operations, due to their capability of trans-
porting heavy loads or hazardous materials. However,
as a typical under-actuated system, and in some situa-
tions, rope flexible deformation cannot be ignored, the
crane load is frequently swinging during transporta-
tion processes, which affects the positioning accuracy
of the load, and brings danger, damage, even accidents
in working sites. Thus, the main problem in handling
the crane system is to reduce the sway angle of the load
and moving it to a desired position with a fast motion.

Recently, various studies have been done to solve
the above-mentioned problems. Many control strate-
gies have been applied to the crane system that can
be divided into three categories including open loop
(such as input shaping, filtering, command smoothing),
closed loop (such as classical linear control, intelligent
control, optimal control, adaptive control, slidingmode
control and so on), and combined open and closed
loop control, see [1] for more details. In addition, sev-
eral efforts to use some other control algorithms have
been investigated. In [2], time-optimal flatness-based
control has been used to minimize the transition time.
Model predictive control in combination with distur-
bance predictor is used in [3] for control of the crane
system with strong disturbances and uncertainties. In
[4], the hybrid partial feedback linearization and dead-
beat control scheme is applied to control the crane.
In this research, a deadbeat control is used to con-
trol and accelerate the position response, while par-
tial feedback linearization is in charge of minimizing

and stabilizing the sway angle. Moreover, to deliv-
ery high-performance control operation for overhead
crane, four control schemes are combined in [5] to con-
trol a overhead crane. The discrete-time controller is
formulated based on state feedback approach to provide
servo control operation. The reference signal genera-
tor based on typical anti-swing trajectory performed
by an expert crane operator is used to supply reference
state trajectory profiles. The feedforward control that
generates the designed output trajectory from system
model to reduce nonlinear disturbance and improve
the tracking accuracy. Simultaneously, the load swing
control that uses a high-gain observer to damp the
load swings. To avoid the dependence of controller
design on the crane model, a model-independent con-
trol called proportional-derivative with sliding mode
control is proposed in [6]. The controller is model free
that makes it robust with uncertain/unknown system
parameters. In addition, to overcome the sensitivity of
measured signal for feedback control scheme, inverse
dynamic that uses simulations of feedback control by
machine learning has been proposed in [7]. In this
research, artificial neural network that can act in real-
time is used to learn inverse dynamicmodel fromactual
crane.

All of aforementioned works treat crane motion as a
pendulum-like system and the crane cable is assumed
as a rigid body. However, the crane cable is flexible
in practice, that assumption is not valid, especially in
case of light loaded situations or underwater opera-
tions. This leads to a requirement of considering the
flexibility of crane cable while designing the crane
controller.
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In [8], the overhead crane with a flexible cable is
modelled as a hybrid partial differential equation -
ordinary differential equation system. And a feedback
stabilization controller is proposed to asymptotically
stabilize the system. To obtain the exponential stabi-
lization for the flexible cable crane system, cascade
approach [9] and back-stepping approach [10] are
applied. Some researchers have also designed controller
for flexible cable crane based on Lyapunov theory such
as in [11–13]. Boundary control for stabilizing the in-
plane motion gantry crane system is introduced in [14,
15], where the problem mentioned in [15] consisting
of two payloads that is not very common in practice.
An interesting control solution for the overhead crane
can be found in [16]where the authors consider delayed
boundary condition, the closed loop system is proven to
be well-posed and asymptotic stable. The dynamics of
flexible cable are also described by the wave equation
and a finite-time stabilization controller is designed for
the crane in [17]. Moreover, control of the flexible cable
crane with variable cable length is also considered in
[18–20]. In these works, the authors concentrate to the
ultimate goal which is achieving the payload to desired
position andminimizing swinging angle in steady state.
For certain applications when working space is limited,
it is necessary to have a hard constraint on the payload
motion especially in transient period.

In some certain applications, such as safety-critical
systems, ormechanical stoppages, the violation of space
constraints will cause serious hazards. Thus, dealing
with payload vibration constrains might be necessary.
The problem of above control schemes for the flexi-
ble cable crane have not considered the constraints. In
order to overcome this obstacle, the concept of barrier
Lyapunov function has been applied [21–23]. However,
these systems use an additional boundary control force
at payload that might be problematic in practice. The
barrier Lyapunov function is also used in [24] to con-
trol the flexible cable crane with constraints in the face
of non-varying rope length. However, none of above-
mentioned works consider both variable cable length
and payload constraints in controller design of flexible
cable cranes.

The purpose of this research is to design a con-
troller acting on trolley end for flexible cable with
varying rope length crane that can precisely posi-
tion the crane payload while minimize and retain
the payload swinging motion in a predefined range
for safety operation, this is also the main contribu-
tion of the paper. In order to obtain this purpose, the
crane model with flexible and variable length cable
is carefully derived. Then a control scheme is formu-
lated from the proposed barrier Lyapunov function
that stabilizes the system and takes the desired con-
straints in consideration. Experimental works are car-
ried out to validate the effectiveness of the proposed
controller.

2. Problem formulation

Before proceeding to derive mathematical model of the
gantry crane, some important assumptions are specified
as follows [20]:

Assumption: (1) The gantry crane operates and
deforms in one plane only.

(2) Hooke’s law is applied to the gantry cable elonga-
tion deformation.

(3) The system friction is totally ignored.
(4) Hook effect between the gantry cable and payload

is not considered.
(5) The payload is modelled as a point-mass i.e. pay-

load geometry is not taken into account.
(6) Deflection angle from vertical Z axis is very small.

Remark: Assumption 1 implies that single-beamgantry
crane is considered. Assumption 2 indicates the gantry
cable material is homogeneous, isotropic, and linearly
elastic. Assumptions 3 and 4 emphasize the scope of the
paper, system friction and hook effect will be our future
concerns. Assumptions 4 and 6 generally hold in low
capacity gantry cranes.

In order to formulate the dynamical model of a
crane, we set the crane in a Cartesian coordinate sys-
tem as shown in Figure 1. The crane includes a cart with
weight mT run along Ox axis. At time t, the cart is at
position x(t). The rope is with linear density ρ and a
load with weightmP is mounted at the rope’s end. At a
time t, the rope length is l(t). There are two input forces,
Fx, to move the cart, and Fl to lift the load. In prac-
tice, the forces are generated by torque controlled elec-
tric motors throughmechanical gearing systems. In the

Figure 1. System coordinate.



522 T. LAM NGUYEN ET AL.

paper scope, it is assumed that the electro-mechanical
system is ideal. Hence, it is straightforward to consider
acting forces Fx andFl as control inputs. A pointP in the
rope at the time t can be expressed by it position along
Oz axis z(t), and the difference from the cart along Ox
axis, w(z(t), t). The point P can be described as �rp and
is calculated as follows:

�rp = [x(t) + w(t, z(t))]�i + z(t)�k (1)

where�i and �k are unit vectors ofOx andOz axes respec-
tively. Then, velocity vector �vp at P can be calculated as

�vp = [xt(t) + wt(z(t), t) + zt(t)wz(z(t), t)]�i + zt(t)�k
(2)

where we have used the following notations

xt = dx(t)
dt

; zt = dz(t)
dt

;

wt = ∂w(z(t), t)
∂t

; wz = ∂w(z(t), t)
∂z

.

Total kinetic energy KE of the system includes kinetic
energy of the cart, rope and load, and can be calculated
as follows:

KE = 1
2
ρ

∫ l(t)

0
[(xt + wt + ztwt)

2] + z2t ]dz + 1
2
mTx2T

+ 1
2
mp[(xt + w̄t + ltw̄z)

2 + l2] (3)

with

w̄t = ∂w(z(t), t)
∂t

|z=l(t); w̄z = ∂w(z(t), t)
∂z

|z=l(t);

lt = dl(t)
dt

.

Total potential energy PE of the system includes poten-
tial energy of the cart, the rope, the load, and can be
calculated as follows:

PE = 1
2

∫ l(t)

0
[mpg + ρg(l − z)]w2

zdz − mpgl

−
∫ l(t)

0
ρgz dz (4)

with g is gravity acceleration. According to Hamilton’s
principle ∫ t2

t1
(δKE − δPE + δW) dt = 0 (5)

withW is the work done by external forces and δW =
Fxδx + Flδl. Substitute (3) and(4) into (5), and set

Lc = 1
2
ρ[(xt + wt + ztwt)

2 + z2t ] − 1
2
Tw2

z + ρgz

= Lc(t; xt , z, zt ,wt ,wz) (6)

Lm = 1
2
mp[(xt + w̄t + ltw̄z)

2 + l2t ] + 1
2
mTx2t + mpgl

= Lm(t; xt , l, lt , w̄t , w̄z) (7)

where T = mpg + ρg(l − z) is the cable tension.
Equation (5) can be rewritten in a compact form as

∫ t2

t1

[
δ

∫ l(t)

0
Lc dz + δLm + Fxδx + Flδl

]
dt = 0 (8)

The variation of Lc can be calculated as

δ

∫ l(t)

0
Lc dz = Lcδz

∣∣z=l(t)
z=0 +

∫ l(t)

0
δLc dz = L̄cδl(t)

+
∫ l(t)

0
δLc dz (9)

where L̄c = Lc|z=l(t). In addition, it is straight forward
to yield

δLc = ∂Lc
∂xt

δxt + ∂Lc
∂z

δz + ∂Lc
∂zt

δzt + ∂Lc
∂wt

δwt

+ ∂Lc
∂wz

δwz (10)

and∫ l(t)

0
δLc =

∫ l(t)

0

[
∂Lc
∂xt

δxt + ∂Lc
∂z

δz

+ ∂Lc
∂zt

δzt + ∂Lc
∂wt

δwt + ∂Lc
∂wz

δwz

]
dz.

(11)

Moreover using integration by parts, it can be shown
that∫ l(t)

0

∂Lc
∂wz

δwz dz =
[

∂Lc
∂wz

(δw)

] ∣∣∣∣
l(t)

0

−
∫ l(t)

0

(
∂Lc
∂wz

)
z
δw dz (12)

From (11) and (12), we can obtain

∫ t2

t1

(∫ l(t)

0
δLcdz

)
dt

=
∫ t2

t1

{∫ l(t)

0

[
∂Lc
∂xt

δxt + ∂Lc
∂z

δz + ∂Lc
∂zt

δzt

+ ∂Lc
∂wt

δwt −
(

∂Lc
∂wz

)
z

]
dz

+
[

∂Lc
∂wz

(δw)

] ∣∣∣∣
l(t)

0

}
dt (13)

For the sake of simplicity in the presentation, let us
calculate each single term in (13)

∫ t2

t1

{∫ l(t)

0

[
∂Lc
∂xt

δxt
]
dz

}
dt
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=
∫ l(t)

0

{∫ t2

t1

[
∂Lc
∂xt

d(δx)
dt

]
dt
}
dz

=
∫ l(t)

0

{∫ t2

t1

[
∂Lc
∂xt

d(δx)
]}

dz

=
∫ l(t)

0

[
∂Lc
∂xt

(δx)
] ∣∣∣∣

t2

t1

−
∫ l(t)

0

{∫ t2

t1

[
d
dt

(
∂Lc
∂xt

)
δx
]
dt
}
dz

= −
∫ l(t)

0

{∫ t2

t1

[
d
dt

(
∂Lc
∂xt

)
δx
]
dt
}
dz (14)

Similarly, we also have

∫ t2

t1

{∫ l(t)

0

[
∂Lc
∂zt

δzt
]
dz

}
dt

= −
∫ t2

t1

{∫ l(t)

0

[
d
dt

(
∂Lc
∂zt

)
δz
]
dz

}
dt (15)

∫ t2

t1

{∫ l(t)

0

[
∂Lc
∂wt

δwt

]
dz

}
dt

= −
∫ t2

t1

{∫ l(t)

0

[
d
dt

(
∂Lc
∂wt

)
δw
]
dz

}
dt (16)

Substitute (14)–(16) into 17 we obtain
∫ t2

t1

( ∫ l(t)

0
δLcdz

)
dt

=
∫ t2

t1

{∫ l(‘t)

0

[
− d
dt

(
∂Lc
∂xt

)
δx − d

dt

(
∂Lc
∂zt

)
δz

− d
dt

(
∂Lc
∂wt

)
t
δw −

(
∂Lc
∂wz

)
z
δw + ∂Lc

∂z
δz
]
dz

+
[

∂Lc
∂wz

δw
] ∣∣∣∣

l(t)

0

}
dt (17)

We also have

δLm = δLm(t; xt , l, lt , w̄t , w̄z)

= ∂Lm
∂xt

δxt + ∂Lm
∂ l

δl + ∂Lm
∂ lt

δlt

+ ∂Lm
∂w̄t

δw̄t + ∂Lm
∂w̄z

δw̄z, (18)

then, by calculating as same as with Lc, we can obtain
∫ t2

t1
δLmdt

=
∫ t2

t1

[
− d
dt

∂Lm
∂xt

δx + ∂Lm
∂ l

δl − d
dt

∂Lm
∂ lt

δl

−
(

∂Lm
∂w̄t

)
t
δw̄t + ∂Lm

∂w̄z
δw̄z

]
dt (19)

Because ofw2
z << 1, δz = δl, substituting (17) and (19)

into (9) yields

∫ t2

t1

{
−
∫ l(t)

0

[(
∂Lc
∂wt

)
t
+
(

∂Lc
∂wz

)
z

]
dzδw

−
[∫ l(t)

0

d
dt

∂Lc
∂xt

dz + d
dt

∂Lm
∂xt

− Fx

]
δx

−
[∫ l(t)

0

[
d
dt

∂Lc
∂zt

− ∂Lc
∂z

]
dz

− L̄c + d
dt

∂Lm
∂ lt

− ∂Lm
∂ l

− Fl
]

δl

+
[

∂Lc
∂wz

∣∣∣∣
z=l(t)

−
(

∂Lm
∂w̄t

)
t

]
δw̄ − ∂Lc

∂wz

∣∣∣∣
z=0

δw(0, t)

+ ∂Lm
∂w̄z

δw̄z

}
dt = 0 (20)

Since t1 and t2 are arbitrarily, (20) implies(
∂Lc
∂wt

)
t
+
(

∂Lc
∂wz

)
z
= 0 (21)

and
∫ l(t)

0

d
dt

∂Lc
∂xt

dz + d
dt

∂Lm
∂xt

= Fx (22)

and
∫ l(t)

0

[
d
dt

∂Lc
∂zt

− ∂Lc
∂z

]
dz

− L̄c + d
dt

∂Lm
∂ lt

− ∂Lm
∂ l

= Fl (23)

and
∂Lc
∂wz

∣∣∣∣
z=0

δw(0, t) = 0 (24)

and
∂Lc
∂wz

∣∣∣∣
z=l(t)

−
(

∂Lm
∂w̄t

)
t
= 0 (25)

Equation (21) represents themotion of the cable, a sim-
ple operation give a more detailed form of the equation
of motions as

ρ(xtt + wtt + zttwz + zt(2wzt + wzz)) = (Twz)z
(26)

It is noted that we have used the following notation

xtt = ∂2x
∂t2

, wtt = ∂2w
∂t2

, ztt = ∂2z
∂t2

,

and

wzt = ∂2

∂z∂r
.

Similar approach yields from (22)

Fx =
∫ l(t)

0
ρ(xtt + wtt + zttwz + zt(2wzt + ztwzz))dz

+ mTxtt + mp(xtt + w̄tt

+ lttw̄z + lt(2w̄zt + ltw̄zz)) (27)
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and from(23), performing integration by parts shows
that

F̄l = Fl + mpg + ρgl

=
∫ l(t)

0

(
ρ((xtt + wtt + zttwz + zt(2wzt

+ ztwzz))wz + Twzwzz
)
dz

+ mp((xtt + w̄tt

+ lttw̄z + lt(2w̄zt + ltw̄zz))w̄z + ltt

− 1
2
ρ((xt + w̄t) + ltw̄z)

2 + l2t ) + 1
2
mpgw̄2

z

(28)

Equations (27) and (28) characterize the relation
between control forces and the transverse, hoisting
motions, respectively. The relation will be used to
further in control design step. Equation (24) simply
becomes

w(0, t) = 0 (29)

Carefully applying time and spatial derivatives, (25)
simply turns into

ρ(xt + w̄t + ltw̄z)lt − mpgw̄z

− mp(xtt + w̄tt + lt(2w̄zt + ltw̄zz)) = 0 (30)

Equations (26)–(30) describe the dynamical model of
a crane system with varying cable length. Based on the
dynamics of the cable and boundary conditions, a vari-
ant of traditional Lyapunov function will be employed
to develop the position and vibration controller for the
system.

3. Position and vibration control design

Since the input forces are applied at the trolley end
of the system, the control design process has to guar-
antee the location of the inputs, minimize and retain
the payload swinging motion in a predefined range. In
order to achieve the control objective, the direct Lya-
punov method is employed. Considering the following
Lyapunov candidate function given as

V1(t) = 1
2

∫ l(t)

0

(
ρ[(xt + wt + ztwz)

2 + z2t ] + Tw2
z
)
dz

+ 1
2
mp[(xt + w̄t + ltw̄z)

2 + l2t

+ 1
2
k1mTx2t + 1

2
k2(x − xd)2 + 1

2
k3(l − ld)2

+ kc
2
log

(
k2b

k2b − w̄2

)
(31)

where kb is a positive constant denoting a distance
defined range that constraining the payloadmotion and
kc is a positive constant. We assume that at the initial

condition w(z, 0) < kb, which generally holds in prac-
tice. Compare to the conventional Lyapunov approach
which includes system energy and tracking errors, the
natural logarithm term log(•) is embedded to tackle the
the requirement of maintaining the payload in a cer-
tain distance from the equilibrium position. The first
derivative of V1(t) with time t is calculated as follows:

V̇(t) = 1
2

∫ l(t)

0

(
(2ρ(xt + wt + ztwz)

× (xtt + wtt + zttwz + zt(2wztztwzz)) + 2ztztt
+ 2Twzwzzzt + 2Twztwz

)
dz

+ 1
2
ρlt
(
(x̄tw̄t + ltw̄z)

2 + l2t
)

+ mpgw̄2
z + k − 1mTxtxtt

+ mp
(
(xtw̄t + ltw̄z)

× (xttw̄tt + lttw̄z + lt(2w̄zt + ltwzz)) + ltltt
)

+ k2(x − xd)xt + k3(l − ld)lt + kc
w̄w̄t

k2b − w̄
(32)

Fundamental operations show that

V̇(t) = k1
∫ l(t)

0
ρxt
(
xtt + wtt + zttwz

+ zt(2wzt + ztwzz)
)
dz + k1mTxtxtt

+ k1mPxt
(
xtt + w̄tt + lttw̄z + lt(2w̄zt + ltwtt)

)
+ k2(x − xd)xt +

∫ l(t)

0

(
ρwzzt

(
xtt + wtt

+ zttwz + zt(2wzt + ztwzz)
)

+ ztztt + Twzwzzzt + Twztwz

)
dz

+ mPltwz

((
xtt + w̄tt

+ lttw̄z + lt(ww̄zt + ltwzz)
)+ ltt

)
− 1

2
ρlt
(
(xt + w̄t + ltw̄z)

2 + l2t
)

+ 1
2
mPgw̄2

z + k3(l − ld)lt

+
∫ l(t)

0
ρwt

(
xtt + wtt + zttwz

+ zt(2wzt + ztwwt)
)
dz

+ mPw̄t
(
xtt + w̄tt + lttw̄z + lt(2w̄zt + ltw̄zz)

)
+ ρlt

(
(xt + w̄t + ltw̄z)

2 + l2t
)

+ (1 − k1)
∫ l(t)

0
ρx

− t
(
xtt + wtt + zttwz + zt(2wzt + ztwzz)

)
dz

+ (1 − k1)mPxt
(
xtt − w̄tt
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+ lttw̄z + lt(2w̄zt + ltwzz)
)+ kc

w̄
k2b − ā2

× (w̄t + ltw̄z) (33)

Using dynamic model (26)–(30) and integration by
parts show that

V̇1(t) = k1Fxxt + k2(x − xd)xt + F̄llt

+
∫ l(t)

0
wt(Twz)zdz +

∫ l(t)

0
Twztwz dz

+ ρw̄t(xt + w̄t + ltw̄z)lt

− mpgw̄tw̄z + ρlt
(
(xt + w̄t + ltw̄z)

2 + l2t
)

+ (1 − k1)
∫ l(t)

0
xt(Twz)zdz

+ (1 − k1)xt
(
ρ(xt + w̄t + ltw̄z)lt − mpgw̄z

)
+ kc

w̄
k2b − w̄2 (w̄t + ltw̄z) (34)

Since w̄t + ltw̄z ≤ |w̄t + ltw̄z|, it can be deduced that

V̇1(t) = k1Fxxt + k2(x − xd)xt + F̄llt

+
∫ l(t)

0
wt(Twz)z dz +

∫ l(t)

0
Twztwz dz

+ ρw̄t(xt + w̄t + ltw̄z)lt − mpgw̄tw̄z

+ ρlt
(
(xt + w̄t + ltw̄z)

2 + l2t
)

+ (1 − k1)
∫ l(t)

0
xt(Twz)z dz

+ (1 − k1)xt
(
ρ(xt + w̄t + ltw̄z)lt − mpgw̄z

)
+ kc

w̄
k2b − w̄2 |w̄t + ltw̄z| (35)

There exists a positive constant k0 such that |w̄t| ≤
k0x2t , this implies that

|w̄t + ltw̄z| ≤ |w̄t| + |ltw̄z| + sign(lt)lt|w̄z| (36)

Since |w̄| < kb, [25], we have

kc
w̄

k2b − w̄2 |w̄t + ltw̄z| ≤ Kc(k0x2t + sign(lt)|w̄z|)
(37)

where Kc = kc kb
k2b−w̄2 . Inequality (37) suggests that (34)

can be rewritten as

V̇1(t) ≤ k1Fxxt + k2(x − xd)xt + F̄llt

+
∫ l(t)

0
wt(Twz)z dz +

∫ l(t)

0
Twztwz dz

+ ρw̄t(xt + w̄t + ltw̄z)lt − mpgw̄tw̄z

+ ρlt
(
(xt + w̄t + ltw̄z)

2 + l2t
)

+ (1 − k1)
∫ l(t)

0
xt(Twz)z dz + (1 − k1)xt

× (
ρ(xt + w̄t + ltw̄z)lt − mpgw̄z

)
+ Kc(k0x2t + sign(lt)|w̄z|) (38)

Applying integration by parts on tension related terms
leads to∫ l(t)

0
wt(Twz)z dz = wtTwz|l(t)0 −

∫ l(t)

0
wztTwz dz

(39)
and ∫ l(t)

0
xt(Twz)zz dz = mPgxtw̄z − (xtTwz)0 (40)

Substituting (39), (40) into (38), and rearranging (38)
lead to

V̇(t) ≤ [F̄l + k3(l − ld) + ρ
(
(xt + w̄t + ltw̄z)

2 + l2t
)

+ ρ(xt + w̄t + ltw̄z)
(
w̄t + (1 − k1)xt

)
+ |w̄z|sign(lt)Kc]lt + [k1Fx + k2(x − xd)

− (1 − k1)(Twz)|z=0 + Kck0xt]xt (41)

At this step, recall the relation between input forces and
system dynamics given in (27) and (28), the control can
be selected as

F̄l = −k3(l − ld) − ρ((xt + w̄t + ltw̄z)
2 + l2t )

− ρ(xt + w̄t + ltw̄z)(w̄t + (1 − k1)xt)

− kllt + Kc|w̄z|sign(lt)

and

Fx = − 1
k1
[−k2(x − xd) + (1 − k1)(Twz)|z=0

− kxxt − Kck0xt] (42)

The control input render V̇(t) as

V̇1(t) ≤ kll2t − kxx2t ≤ 0 (43)

Since V̇(t) ≤ 0 and V(t) is a function of w̄, we con-
clude that V(w̄) is bounded. Due to the assumption
w(z, 0) < kb it implies that |w̄| < kb∀t. It is noted that
the designed controls require cable ends information
that are available for feedback. The controls are totally
applicablewhen embedding in actuators such as electric
motors in torque control mode.

4. Experimental results

The ability of maintaining payload in a certain gap
is illustrated in this section via a set of experiments.
The gantry crane scaled model is depicted in Figure 2.
The crane is designed to operate in three-dimensional
space and its motions are actuated by three servo
motors working in torque control mode combined with
gearbox/rack and pinion transmissions Figure 2(a).
The proposed controls are calculated and transformed
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into required torque at the motor ends. Torque refer-
ence values are set through analog inputs of the servo
drives in form of voltage. Payload swinging motion is
detected by a special mechanism and converted into
voltage signal that is proportional to payload fluctua-
tion Figure 2(b).

Firstly, we only apply position control of the trol-
ley to the system, payload fluctuation control is not
activated. The PI position controller in tuned in such
a way that desired trolley position is tracked when
payload dynamic is removed. In this circumstance, sys-
tem responses with different rope lengths and payload

Figure 2. Experiment setup: (a) 3D gantry crane model and (b) Payload swing angle measurement unit. (a) experiment1, (b)
experiment2.

Figure 3. System response with trolley position control l = 0.5m,mp = 3 kg: (a) Trolley motion and (b) Payload swinging angle.

Figure 4. System response with trolley position control (l = 0.7m,mp = 5 kg): (a) Trolley motion and (b) Payload swinging angle.
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Figure 5. System response with the position and vibration control (mP = 3 kg): (a) Trolley motion, (b) Payload swinging angle, (c)
Input force Fx , and (d) Input force Fl .

Figure 6. System response with the position and vibration control (mP = 5 kg): (a) Trolleymotion, (b) Payload swing angle, (c) Input
force Fx , and (d) Input force Fl .
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mass (l = 0.5m, mp = 3 kg and l = 0.7m, mp = 5 kg)
are given in Figures 3 and 4, respectively. It can be seen
that, without payload vibration suppression, payload
fluctuation angle can reach approximately 25 degree
when l = 0.5 cm, mp = 3 kg. Lower vibration ampli-
tude is witnessed in the case ofmp = 5 kg due to higher
payload inertia. The vibration affects trolley responses
as can be observed in Figure 3(a) and 4(a).

In the second experimental scenario, the integrated
trolley position and payload vibration suppression pro-
posed in the paper is activated. The control parameters
are kl = 3, k4 =, k2 = 5, k3 = 10, kx = 8, kb = 0.15,
this implies that the payload is to be maintained in a
distance of 0.15m away from the trolley vertical axis,
and kc = 7. At first, the payload is positioned at (0m,
0.5m) and then proceeds to (0.5, 0.5m) and to (0.5,
0.7m). Figure 5 and 6 present the system performances
with l = 0.5m, mp = 3 kg and l = 0.7m, mp = 5 kg,
respectively.

It can be observed from Figure 5 and 6 that
under control action, payload vibration is consider-
ably reduced. Payload maximum swinging angles for
l = 0.5m, mp = 3 kg, and l = 0.7m, mp = 5 kg are at
about 13 degree and 12 degree, respectively. Assuming
pendulum-like motion of the crane system and apply-
ing simple trigonometric operations, it is can be shown
that the payload motion in well maintained in a range
defined by kb which is corresponding to payload swing-
ing angles of 17 degree and 12 degree, respectively.
Control inputs are illustrated in Figures 5(c-d) and Fig-
ures 6(c-d). The experiment shows the effectiveness of
the proposed control based on the application of bar-
rier Lyapunov function where payloadmotion from the
trolley axis is well kept in the area defined by kb.

5. Conclusions

Due to the tremendous applications in different fields,
gantry crane dynamics and control draw researchers
attention. In this paper, the problem of position and
vibration suppression in the gantry crane system with
variable length flexible cable and payload motion con-
straints are considered. The system was represented
by partial differential equation model from Hamilton’s
extended principle. Based on the novel barrier Lya-
punov function, the control scheme that stabilize the
crane system has been derived. Moreover, the payload
has been successfullymoved to the desired point, vibra-
tions of the variable flexible cable have been greatly
suppressed, and the boundary payload motion con-
straint has been satisfied. Experimental results have
been provided to verify the performance of the pro-
posed control. However, the well-posed problem of the
designed controller is not proven. The crane system
consider is placed on a solid foundation, our future
works will look at dynamics and control aspects of the

systemmounted on moving foundation in ship-to-ship
and ship-to-shore operations.
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