
 Interdisciplinary Description of Complex Systems 19(4), 493-501, 2021 

*Corresponding author, : soumya.banerjee@maths.ox.ac.uk; +1 505 277 3122; 
*Department of Computer Science, 1, University of New Mexico, Albuquerque, NM, 87131, USA 

 

AN ARTIFICIAL IMMUNE SYSTEM APPROACH 
TO AUTOMATED PROGRAM VERIFICATION: 
TOWARDS A THEORY OF UNDECIDABILITY 

IN BIOLOGICAL COMPUTING 

Soumya Banerjee1, 2, 
*
 

1University of Oxford 
1Oxford, United Kingdom 

2Ronin Institute 
2Montclair, USA 

DOI: 10.7906/indecs.19.4.3 
Regular article 

Received: 4 April 2020. 
Accepted: 21 December 2021. 

ABSTRACT 

We propose an immune system inspired Artificial Immune System algorithm for the 

purposes of automated program verification. It is proposed to use this Artificial Immune 

System algorithm for a specific automated program verification task: that of predicting  shape 

of program invariants. It is shown that the algorithm correctly predicts program invariant 

shape for a variety of benchmarked programs. Program invariants encapsulate the 

computability of a particular program, e.g. whether it performs a particular function correctly 

and whether it terminates or not. This work also lays the foundation for applying concepts of 

theoretical incomputability and undecidability to biological systems like the immune system 

that perform robust computation to eliminate pathogens. 
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INTRODUCTION 

The biological immune system has proved to be a rich source of inspiration for 
computing [1-15]. Artificial immune systems (AISs) take inspiration from the immune 
system to provide powerful metaphors for robust and distributed computing. In this article, I 
employ an immune system inspired approach to solve a problem in program verification: 
that of finding a program invariant. 

An invariant of a program is a mathematical formula that captures the semantics of the 
program [16] and is used in automatic program verification. The shape of an invariant is its 
approximate polynomial representation. Once the shape of the invariant is predicted, 
deterministic techniques can be used to generate the exact form of the invariant [17]. Hence, 
the prediction of invariant shape is of paramount importance for program verification. 

An AIS algorithmic framework is proposed to carry out the machine-learning task of 
predicting invariant shape from an instance of a program. Program invariants encapsulate the 
computability of a particular program, e.g. whether it performs a particular function 
correctly and whether it terminates or not. We hope this work will also lay the foundation for 
applying concepts of theoretical incomputability and undecidability to biological systems like 
the immune system that perform robust computation to eliminate pathogens [8-15]. 

IMMUNOLOGICAL PRELIMINARIES 

A chemical species that can be recognized by the adaptive immune system is known as an 
antigen (Ag). When an organism is exposed to an Ag, some specialized immune system cells 
called B cells respond by producing chemicals called antibodies (Ab’s). Ab’s are molecules 
attached primarily to the surface of B cells whose aim is to recognize and bind to Ag’s. By 
binding to these Ab’s the Ag stimulates the B cell to proliferate and mature into plasma cells 
that secrete Ab. An organism is expected to encounter a given Ag repeatedly during its 
lifetime. The effectiveness of the immune response to secondary encounters is enhanced by 
the presence of memory cells associated with the first infection, capable of producing high- affinity 
Ab’s after repeat encounters. Such a strategy ensures that the speed and accuracy of the 
immune response becomes successively higher after each infection. This gives rise to 
associative memory where the stored pattern is recovered through the presentation of an 
incomplete version of the pattern. The repertoire of activated B cells is diversified [18-21] 
and B-cells with higher affinity for the antigen are selected to enter the pool of memory cells. 

AUTOMATED PROGRAM VERIFICATION AND PROGRAM INVARIANTS 

The field of automated program verification started with seminal work by Floyd [22] and 
Hoare [23]. They introduced the concept of a loop invariant: a mathematical formula that 
remains true throughout the execution of a loop. The loop invariant completely captures the 
semantics of the loop, and along with the program preconditions and postconditions, can be 
used to show correctness of the program [23]. 

Previous work [16] has shown how the loop invariant for a particular program can be 
generated by a priori agreement on the shape of the invariant: the approximate polynomial 
representation of the invariant. However, the shape of the loop invariant can be hard to 
deduce for many programs. 

The following shows an example program: 

{A  0, B  0} 
 x := A; 
y := B; 
z := 0; 
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while x > 0 do 
if odd(x) then z := z + y; 
 y := 2 * y; 
x := x/2;  

end while 

Assuming the shape of the program invariant as Ishape: Ax + By + Cz + Dxy + Eyz + Fxz + 
Gxyz + H = 0, (where A, B, C, D, E, F, G and H are constants or program variables), using 
quantifier elimination [16] the final loop invariant is Ifinal: z + xy –AB = 0. Coupled with a 

precondition P: {A  0 ^ B  0 ^ x = A ^ y = B ^ z = 0} and a postcondition Q: {z = AB}, it can be 
shown that this invariant is consistent with Q i.e. the program correctly multiplies 2 numbers 
A and B and stores the result in z. 

Finding the precise shape of the loop invariant is generally a non-trivial process and the 
algorithm proposed aims to use ‘cues’ from the program to make informed predictions about 
the invariant shape and ultimately help in automated program verification. 

PROPOSED COMPUTATIONAL FRAMEWORK 

Here we propose a computational framework for predicting program invariants. An AIS 
algorithm will be used to generate shapes of program invariant. Initially the AIS will be 
trained on programs, for which the shape of invariant is known. Then a program will be 
presented to the AIS and it will try to predict the form of the invariant. 

An AIS approach presents many advantages over a traditional Machine Learning (ML) 
approach. In an AIS, recognition can be sloppy [24] i.e. if it has previously recognized 
program P (with an invariant I), then a new program P’ ‘similar’ to P, can also be 
recognized, and an invariant I’ can be generated (that is similar in form to I). This is akin to 
our immune system recognizing a previously encountered pathogen (program), and 
generating antibodies (invariant) similar to the previously produced antibodies. 

The natural immune system produces antibodies by a process of mutation, and the same 
process is emulated in AIS algorithms. A candidate solution (invariant) will be generated, and 

then the solution will be improved by in-silico mutation. 

Previously encountered programs and their corresponding invariants will be stored as 
memory B cells. When a program similar to a stored one is presented, the time taken to 
generate the invariant will be shorter than the time taken to generate the original invariant 
(secondary response). 

COMPONENTS OF THE ARTIFICIAL IMMUNE SYSTEM 

Here we define the specific components of the AIS have to be determined. What is the 
program analogue of an antigen and an antibody? 

A program fragment is defined to be either an assignment statement, a statement containing an 
iteration construct (for, while, repeat, etc.), or a statement having a conditional check (if <condition> 
then) e.g. x := x + 2, and while (x > 0) do, and if (x > 3) then, are all program fragments. 

The analogue of an antigen is a program fragment and the corresponding analogue of an 
antibody is an invariant for the program fragment it recognizes. Hence, the AIS will be 
presented with an antigen (program fragment), and the immune system cells will either 
produce the antibody (invariant) immediately if it has encountered this antigen before, or 
will undergo mutations to generate the correct antibody (invariant). 

The individual invariants for each program fragment will then be recombined to generate 
the invariant for the whole program. 
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A SHAPE SPACE AND ANTIGENIC DISTANCE FOR PROGRAMS 

We need a measure of distance between disparate program fragments, so that the AIS can 

recognize them and generate an antibody in response. For a natural immune system, the 

antibody combining region relevant to antigen binding can be specified by a number of ‘shape’ 

parameters [25] which denote the size and shape of the combining site or physical 

characteristics of the amino acids. 

If there are N shape parameters, they can be combined into a vector, and antibody combining 

sites and antigenic determinants can be described as points Ab and Ag, in an N - dimensional 

Euclidean vector-space called shape space [25]. 

Antigenic distance between 2 antigens is the distance in shape space [26] between them e.g. 

||Ag1 - Ag2|| is the distance between antigens Ag1 and Ag2 in shape space S. The antibody 

distance is the distance ||Ab1 - Ab2|| in shape space between 2 antibodies Ab1 and Ab2. 

I define the program fragment shape space as the N-dimensional Euclidean vector space of 

program fragment characteristics like identifier name, exponent on the identifier, operator, etc. I 

define the corresponding program fragment antigenic distance as the distance ||P1 - P2|| 

between 2 program fragments P1 and P2 in program fragment shape space. The program 

fragment antibody (invariant) distance is the distance ||I1 - I2|| between 2 program fragments 

I1 and I2 in program fragment shape space. 

Let us consider 2 program fragments P1: x := x + 2 and P2: t := t + 2. The corresponding 

antibody (invariant) for P1 is I1: x = x + 2n, where n is a program variable or constant 

(since upon n –1 iterations, x gets the value x + 2n). Let P1 and I1 constitute the training set. 

Then the AIS should be able to produce an antibody (invariant) for the program fragment P2 

even though it has never encountered this antigen (program) before. The correct invariant is 

I2: t = t + 2n (where n is a program variable or constant) and this is indeed what the AIS 

generates by somatic hypermutation. The program P1 differs from P2 by 1 mutation 

(replacing x by t on both sides of the assignment) i.e. the program fragment antigenic distance 

||P1 –P2|| is 1. The invariants I1 and I2 also differ by 1 mutation (replacing x by t) i.e. the 

program fragment antibody (invariant) distance ||I1 –I2|| is 1. Hence, when an AIS 

trained on (P1, I1) is presented with P2, it produces I2 using one mutation from I1 (Fig. 1). 

 

Figure. 1. AIS mutation from the assignment statement Ag1 (x := x + 2;) and invariant Ab1 

(x + 2n) to Ag2 (t := t + 2;) and invariant Ab2 (t + 2n) in shape space S. 

PROPOSED ALGORITHM 

In this section we outline the proposed immune system inspired algorithm. The AIS would be 

trained on the antigen (program fragment) P1: x := x + 2 and given the antibody (invariant) 
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I1: x = x + 2n as a solution (training phase). The AIS stores the solution I1 as a memory 

detector. 

When an entire program (as opposed to a program fragment) is presented to the AIS, it 

breaks the program up into program fragments (all the assignment statements in the 

program), and then ‘presents’ each of these antigens (fragments) to itself. 

If an antigen (program fragment) P2 ‘similar’ to P1 is detected, it will generate I1 as a candidate 

solution. If I1 itself does not act as an invariant, the AIS will keep on carrying out randomly 

on I1 until it evolves the final antibody (invariant) I2 that will act as the invariant for the 

program presented (somatic hypermutation phase). This is akin to how the natural immune 

system mutates B cell receptors and ultimately produces a receptor that can recognize the 

antigen. The algorithm may also use some heuristics to guide the mutation process e.g. if an 

antigen (program fragment) of the form p := p + 5 is encountered, it would search its 

repertoire for a program fragment that is closest in program shape space to this e.g. x := x + 5 is 

closer to the presented antigen (1 mutation) than y := y + 7 (2 mutations). Additionally, we 

will have to ensure that each mutation is sound i.e. there is no such mutation that would 

generate a wrong invariant for the corresponding mutated program fragment. In the last 

step, the AIS incorporates Ii into its memory pool (learning phase). 

The AIS then presents the next program fragment P3, generates the invariant I3 and stores it 

in the memory population, and so on until all program fragments have been 

presented. Finally, the AIS combines all invariants linearly, producing a polynomial (shape 

of invariant) that captures the semantics of the entire program. 

RESULTS 

The AIS (trained on P1, I1) presented with suites of entire programs would successfully 

generate the shape of the invariant. The first program is shown below: 

(x,y,u,v) := (a,b,b,0);  

x := a; y := b; 

u := b; v := 0; 

while (x  y) do 

while (x > y) do x := x - y; v := v + u; end while;  

while (x < y) do y := y - x; u := u + v; end while; 

end while 

This program takes 2 positive integers a and b, and calculates their greatest common divisor 

and least common multiple. The AIS presents itself with each assignment statement 

sequentially. The first 4 assignment statements (lines 1-2) have no invariant, since they are 

not contained inside any loop. Hence, the AIS does not generate any invariant for them. The 

progress of the algorithm on the next 2 assignment statements (x := x –y; v := v + u), Fig. 2. 

The AIS starts from the training set (P1: x := x + 2 & I1: x = x + 2n) and then mutates the 

operators and operands to create the invariant I3: x = x –yn for the program fragment P3: 

x := x –y. The AIS stores I3 in the memory population and for the next assignment statement 

(v := v + u;), it starts mutating from (P3, I3) until it creates the invariant I4: v = v + un for the 

program fragment P4: v := v + u. 

For the next set of assignment statements (y := y –x; u := u + v;), the AIS then generates the 

invariants I5: y = y –xn and I6: u = u + vn (not shown). The 4 invariants I1, I2, I3 & I4 are 

then combined linearly (with n being substituted for all program variables, namely x, y, u, v) to 
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Figure. 2. AIS mutations for the assignment statements x := x –y; v := v + u. 

yield the invariant shape Ishape: Ax + Bv + Cy + Du + Exy + Fy
2
 + Guy + Hvy + Jxu + 

Ku
2
 + Lvu + Mx

2
 + Nvx + Pv

2
 + Q = 0, where A, B, C, D, E, F, G, H, J, K, L, M, N, P and 

Q are constants or program variables. This is the correct invariant shape, since using 

quantifier elimination [16], the final invariant yielded is Ifinal: xu + yv –ab = 0 (with A = B 

= C = D = E = F = G = K = L = M = N = P = 0, Q = –ab, H = J = 1). 

Finally we test the AIS on another standard program [16] shown below: 

{A ≥ 0, B ≥ 0}  

x := A; 

y := B; 

z := 1; 

while y > 0 do 

if odd(y) then y := y - 1; z := x * z;  

else x := x * x; y := y/2; 

end while 

This program calculates A
B
 and stores it in z. The AIS would calculate the invariant for the 

program fragment P5: z := x * z as I5: z = x
n
 * z. For the program fragment P6: x := x * x, it 

generates the invariant I6: x = exp(x, exp(2,n)), where exp() is the exponentiation function. 

Combining all the program fragment invariants, gives us the following invariant shape: 

Ishape: Azx
x
 + Bzx

y
 + Czx

z
 + D.exp(x,exp(2,x)) + E.exp(x,exp(2,y)) + F.exp(x,exp(2,z)) +G = 0. 

This is the exact shape of the invariants, since quantifier elimination yields the final invariant 
Ifinal: zx

y
 = A

B
 (with A = C = D = E = F = 0, G = –A

B
). 

We can now readily verify the working of the program. When the loop terminates, the 

invariant is true and y = 0, which yields the correct postcondition: z = A
B
. 

The proposed algorithm would use a sequence of mutations, guided by heuristics, to generate 

the correct invariant for a program invariant. 

CONCLUSION AND FUTURE WORK 

We have proposed a computational framework for an immune system inspired approach for 

automated program verification. The immune system inspired algorithm breaks up a program 

into fragments and presents them to itself. It then generates an invariant in response to each 

program fragment and ultimately combines them to create the general shape of the invariant. 

We show how this approach can be used to generate the general form of the program 

invariant for non-trivial benchmark programs [16]. 

Future work will focus on theoretical research into whether there are classes of programs 
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for which a linear combination of individual program fragment invariants might not generate 

the invariant for the entire program. Another avenue of future investigation would be to look 

into how mutations on exponentiation would affect the invariant e.g. x := x + 2 getting 

mutated to x := x
2
 + 2. Lastly, our approach does not consider program fragments having 

iteration constructs like while, repeat, etc. and future research will investigate how 

incorporation of such program fragments can enhance the predictive power of the algorithm. 

A lot of work has been done on incomputability, undecidability and program termination in 

theoretical computer science. The best characterization of this comes in the form of the 

Halting Problem formulated by Alan Turing. Biological systems also perform computing, e.g. 

the immune system computes the most efficient way to eliminate pathogens in a timely 

manner without harming the host [8-15]. However it has been more difficult to define 

incomputability and undecidability for biological systems. 

Program invariants encapsulate the computability and correctness of a particular program, 

e.g. what it does and whether it terminates or not. This work lays the foundation of applying 

computability to biological systems especially the immune system that performs computation. 

The present work also applies immune system inspired algorithms to find program invariants 

and prove correctness and termination. It is intriguing to speculate that it is also possible to 

go in the reverse direction and translate the complexities of the immune system into an equivalent 

computer program. The translated computer program can then be analyzed for mathematical 

properties of what it computes [27, 28]. Hence this work can be extended to provide a 

theoretical framework for understanding the limits of computation in the immune system. 

The present computational framework can be used to account for cases when the immune 

system fails to clear infections as is the case in certain virulent infections [29]. 

This approach can also be similarly extended to analyse substrates for computing that are 

non-silicon based and can be used to probe the computational nature of life itself [15]. 

In summary, the present work applies the theoretical concepts of undecidability to 

immuno- computing and possibly biological computing in general. We view this work as the 

first step towards elucidating the fundamental limits of computing in immunology and 

possibly biology as well. 
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