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ABSTRACT 

This article provides a comparative analysis of two common control configurations used to control the 

side-stream distillation used to separate benzene, toluene and xylene as suggested by Doukas and 

Lyben. Their under-actuated model has been considered as the model of distillation column and the 

internal model controller is designed considering a Singular Value Decomposition (SVD) and Virtual 

Inputs (VI) techniques. An internal controller design based on VI is proposed in this article for this 

kind of underactuated systems. This design is used to control in parallel the distillation process and its 

model in real time. The proposed controller design is simple and systematic in relation with the 

desired closed loop specifications of the internal model control structure. Furthermore, the controller 

obtained ensure robustness to process variations. The SVD technique can realize the decoupling of 

under-actuated processes and wipe out unrealizable factors by introducing compensation terms, 

affecting the dynamic of the system. The aim of this article is to make a comparison between our 

proposed VI controller and the SVD approach. The results we obtained confirmed the potentials of the 

proposed controller based on VI considering the set point tracking and its robustness. 
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INTRODUCTION 

The contribution of this article is study of two different control strategies for a class of 

chemical process industries. The model of the distillation column used in this plant, which is 

characterized by an underactuated structure. According to the diversity and complexity of 

these systems, it is important to emphasize that none of the technique proposed and 

developed for fully actuated systems can be applied directly to any underactuated system. 

Therefore, it is meaningful to develop control methods for this class of systems, and more 

precisely to develop the most optimized controller design. 

The control objective for systems characterized by the fact that there are more degrees of 

freedom than actuators, is to obtain a desirable behavior of several output variables by 

simultaneously manipulating several inputs channels. Under-actuated systems are less 

sensitive to modelling errors, so it has to be controlled in its original form to obtain robust 

stability and performance [1]. 

Garcia and Morari [2], presented the concept of Internal Model Control (IMC) and have 

already proved the effectiveness of the framework for robust control of different kinds of 

Singular-Input Singular Output (SISO) systems. The IMC structure is composed of three 

principal parts: the process, the internal model in parallel to the process and the controller, 

which is the dynamic inversion of the model. Recently, many methods have been proposed to 

control MIMO systems with time delays. For example, Zhang and Pang [3] proposed a 

Closed-loop Gain Shaping Algorithm (CGSA) using Padé approximation, which is 

sufficiently accurate in view of stability analysis. Jin et al [4] introduced a design method of 

decoupling internal model control; the basic idea is to realize the decoupling of the controller 

of non-square processes by inserting some compensation Relative Normalized Gain Array 

(RNGA). An equivalent transfer function matrix is introduced to approximate the pseudo-

inverse of the process transfer function matrix, which makes the design of decoupling internal 

model control simple and easy to calculate. 

Shan and Wang [5] integrated IMC with disturbance controllers by choosing different forms 

of external input/output disturbance. When this disturbance is applied directly as input to the 

controller, the design of controller needs to compensate the effect of slow dynamic poles by 

adding some constraints. Pamela et al. [6] introduced an approach to regulate the heater power 

in those systems, which must control the temperature in food processing, pharmaceuticals and in 

polymerization. The objective is to control the system with both PI controller and IMC 

structure and to analyze its performance parameters. Jin et al. [7] proposed a novel design 

IMC controller based on Singular Value Decomposition (SVD), this approach uses SVD in 

the inverse of the steady-state gain matrix of process. The last decades have shown an increasing 

interest in the control of under-actuated systems, many IMC methods can be introduced to 

achieve considerable results on the control for these kinds of systems. For this class of system, the 

number of inputs is smaller than the number of outputs, which means that the transfer function 

matrix is not square, and the issue of inversion exists. As a result, the problem of inversion 

was solved in many literature researches previously mentioned [4-6] by decoupling the 

internal model control based on the Relative Normalized Gain Array (RNGA), Singular 

Value Decomposition (SVD) and an Equivalent Transfer Function (ETF) matrix. The 

solution brought by these methods require complicated calculations and many instructions to 

implement [7]. 

Otherwise, our proposed approach; Virtual Inputs is used to augment the system inputs inserting a 

certain number of virtual columns to the model in order to make it a square matrix. These 

virtual columns have no influence on the response of the system, and they will be eliminated 
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after. The control of under-actuated systems is challenging, hence the necessity to identify the 

control technique with less interactions and better performances such as overshoot, setting 

time etc. Based on internal model control for discrete under-actuated systems a comparison 

based on the inversion technique of the model will be made between Singular Value 

Decomposition (SVD) and Virtual Inputs (VI) to realize the internal model controller. 

In this article, section 2 summarizes the fundamental control problem to be solved. Section 3 

describe the general IMC structure. Section 4 details the design of the internal controller 

based on Singular Value Decomposition. Section 5 details the design of the internal controller 

based on Virtual Inputs. At the end, we show how our proposed methodology based on 

Virtual Inputs at distillation column could give good results compared to the other method 

described previously. 

PROBLEM FORMULATION  

The process to be controlled is assumed linear and discrete-time governed by the following 

equation [8] 

  (1) 

Wheren x  ℝn
 i is the system state, u  ℝm 

is the vector of manipulated variables, y  ℝ 
n 
is 

the vector of system outputs, ijt is the time delays, F, H and C are matrices of corresponding 

dimensions [8]. For the IMC design technique, it is convenient to express this model in frequency 

response form. Taking Z transforms of (1), the following input-output model is obtained: 

  (2)
 

Where ( )G z  is the system transfer matrix of dimension (n×m), the number of control inputs 

is equal to m, the number of outputs is equal to n, making it a rectangular matrix, which has the 

form 

  (3) 

Where the elements g (z)ij , are the transfer functions of z and ijt  is the delay in the response 

of output i to input j. The synthesis of an IMC controller that is equal to the inverse of the 

model expression and is fundamental to ensure perfect set-point tracking and this represents 

the basic problem of the IMC approach. In fact, the realization of the direct model inverse is 

difficult, and sometimes not possible to realize, for many physical systems [8, 9]. This perfect 

controller cannot be implemented for the following reasons.  

1.) If the model contains time delays, its inverse involves predictive terms, which make the 

controller unrealizable. 
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2.) If the zeros of the transfer matrix of the model outside the complex unit circle yield an 

unstable perfect controller. 

3.) System equipped with a perfect controller is extremely sensitive to modelling errors and 

time delays. 

4.) The direct model inversion is also impossible in the case of underactuated systems. 

In fact, the model must provide an accurate description of the process dynamics and 

characteristics. Therefore, the model expression must be very close to that of the plant. For 

underactuated systems, the number of control inputs is less than the number of outputs and 

therefore we will have a rectangular matrix that is invertible. This represents the major 

problem encountered. In this article, to resolve this problem, it is proposed to develop some 

methods of inversion in the case of under-actuated systems. 

INTERNAL MODEL CONTROL DESCRIPTION 

The development of the IMC structure has progressed in recent years in order to design an 

optimal feedback controller. In this section we present the general IMC structure and we 

describe its basic principles and properties. Due to the fact that the traditional IMC methods 

cannot solve the control problem of non-square systems, we introduce two design technique 

to realize the internal controller but, when using a matrix to describe a non-square system, the 

issue of inversion often emerges. 

THE GENERAL IMC DESCRIPTION 

The general IMC structure of multivariable systems adopted in this article is shown in Figure 1, 

where (z)y , (z)my and (z)u are the output vector of the process, the output of internal model and 

the control variable, respectively. r(z) is the set-point vector, d(z) is the disturbance, (z)G and (z)M  

represent the transfer function matrix of process and its model, C(z) is the transfer matrix of 

the IMC controller. 

 

Figure 1. The general IMC structure. 

We begin by reviewing the properties of the IMC structure. This structure is equivalent to a 

conventional feedback loop with controller. From Figure 1 the inputs vector u(z) and the 

system outputs vector y(z) are expressed by 

G(z)C(z)

M(z)

+
-

+
+

e(z)r(z) u(z)

y(z) - ym(z)

y(z)

d(z)

+
-

ym(z)

Controller Process

Internal model 
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[ ]

-1
( ) ( )( ( ) - ( )) ( )( ( ) - ( ))u z I C z G z M z C z r z d z= +

 (4) 

 
[ ]

-1
( ) ( ) ( ) ( ) ( )( ( ) - ( )) ( ( ) - ( ))y z d z C z G z I C z G z M z r z d z= + +

 (5) 

Property 1. Dual Stability; Assuming an ideal model M(z) = (z)G  and ( ) 0d z = , stability of 

both the controller C(z) and the process (z)G is then sufficient for overall system. Then 

equations (4) and (5) becomes: 

 
(z) (z) (z)u C r=

 (6) 

 
( ) ( ) ( ) ( )y z C z G z r z=

 (7) 

Therefore, the system poles as well as the controller poles must lie inside the unit circle (UC) 

for stability. On the other hand, when ( ) ( )G z M z=  the stability is not affected by adding 

constraints on the inputs. 

Property 2. Perfect Control; Assume that the controller 1(z) (z)C M -= , yields a closed-loop 

stable IMC loop, this controller is equivalent to the inverse model to achieves perfect set-

point satisfaction despite any disturbance. Furthermore, 1(z)M -  is often not realizable. When 
1(z) (z)C M -= is verified, transfer function (7) becomes 

 
-1( ) ( ) ( ) ( ) ( )y z M z G z r z r z= =

 (8) 

Property 3. Zero Offset; Assume that the steady state gain controller is equal to the inverse 

model gain 1(1) (1)C M -=  and the closed-loop system in Figure 1 is stable. 

The key to apply the IMC structure is the controller who would yield the best output response 

possible. However, as in the under-actuated case, this perfect controller cannot be 

implemented for previous reasons. We will discuss in the next section the controller design 

using two different methods; Singular Value Decomposition (SVD) and Virtual Input (VI). 

These methods are based on the transfer function matrix of the model of the process. 

IMC STRUCTURE BASED ON SINGULAR VALUE DECOMPOSITION  

The application of the internal model structure to under-actuated systems is considered like 

our main target. In this section, we will describe the design phase of the internal controller 

based on SVD and the implementation at the level of the structure IMC. This approach of 

design can realize the decoupling of under-actuated processes and eliminate the unrealizable 

factors by inserting compensated terms. Meanwhile, a non-diagonal filter is designed based 

on SVD matrix theory. We discuss with more details this approach in the following. 

The IMC structure of an under-actuated systems based on SVD is shown in Figure 2, where CSVD(z) 

is the IMC controller.  
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Figure 2. IMC structure based on SVD method. 

The SVD of the transfer matrix G(z) of the under-actuated systems is as follows: 

  (9) 

Where, U is an ( )m m´ orthonormal matrix and 
'

mU U I= , ( mI  is the identity matrix), ∑ is 

an diagonal matrix with singular values of (z)G  in the diagonal, 
HV is an (n×m) orthonormal 

matrix and 
'

mV V I=  and H  represented the conjugate transpose. The SVD is essentially 

trying to reduce the rank of the matrix and to approximate them as a linear combination [10]. 

The closed loop transfer function matrix deduced from Figure 2 is given by: 

  (10) 

where (z)SVDC  is a non-square internal model controller based on Singular Value 

Decomposition has two main roles; on one hand make the internal control, while 

compensating and decoupling the system to reduce coupling between channels and, on the 

other hand, it can satisfy the robustness and the performances of the systems. The design 

method of the under-actuated internal model controller (z)SVDC is given below. 

In the nominal case, ( ) ( )mG z G z=  equation (10) becomes 

 
{ }(z) (z)C (z) (z)C (z) diag (z)SVD m SVD iiH G G h= = =

 (11) 

Where, hii ≠ 0, i = 1, 2, …….., m. Hence, in the traditional IMC structure [11], the closed loop transfer 

function (z)H  and the general decoupled internal model controller (z)IMCC  should be respectively 

 
(z) (z) (z)m IMCH G C=

 (12) 

 

1(z) (z)H(z)IMC mC G-=
 (13) 

It is obvious that once 
1(z)mG-

 and H(z)  are specified, it is possible to determine (z)IMCC . We 

start by finding the 
1(z)mG-

 but in under-actuated systems; the exact inverse of the model does 

not exist, so we replace it with the generalized inverse of (z)mG [12]. Hence, the result of this 

inversion is the unit matrix
* (z)mG : 

G(z)CSVD(z)

Gm(z)

+
-

+
+

e(z)r(z) u(z)

y(z) - ym(z)

y(z)

d(z)

+
-

Gf(z)
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  (14) 

Where 
* (z)mG  and ( )H

mG z are the pseudo-inverse and the Hermitian matrix of (z)mG respectively. 

The expression (13) becomes  

  (15) 

Next, we choose the appropriate ( )H z . Whereas the model (z)mG  consists into two parts to 

handle many limitations in this technique  

 
(z) (z) (z)m m mG G G- +=

 (16) 

Where ( )mG z+  contains time delays and zeros of ( )mG z outside the unit circle such ( )mG z-  

has a stable and realizable inverse. 

In the traditional internal model controller design [12], adding the filter is used to supplement 

the model mismatch and ignore the error caused by the non-minimum phase portion, as 

shown in equation (17).  

 

1(z) (z) (z)IMC mC G F-=
 (17) 

Substituting equations (16) and (17) into equation (12) leads to: 

 

1(z) (z)C (z) G (z)C (z) G (z)G (z) (z) (z) G (z) (z)IMC m IMC m m m mH G G F F-

+ - += = = =
 (18) 

Where ( )F z  is a designed filter of internal model controller. It can be considered as the 

general form [13]: 

 

1

1
(z)

1

f

f

b z
F

a z

-

-
=

-
 (19) 

Among them: 

 

( )
T

fa e l=
 (20) 

 
1f fb a= -

 (21) 

In the above formula,  is the time constant of the design filter, it determines the bandwidth of 

the closed-loop system and thus serves as a tuning parameters for performance and 

robustness, T  is the sampling time of the system. Furthermore, when the high performance is 

required, F(z)  Im but it is intuitively obvious that this choice makes the system very 

sensitive and it can very easily become unstable even for small modeling errors. In addition, 

the completely decoupling can be obtained by choosing ( )mG z+  and ( )F z diagonal. Even 

when dynamic interactions are allowed, ( )mG z+  and ( )F z  must satisfy [13]: 

 
(1) , (1)m m mG I F I+ = =

 (22) 
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In the following discussion, we give procedures for finding (z)mG +  and a rule for filter 

design. Assume (z) (z)mG G= , and that ( )mG z+  is diagonal with the following form [14]  

  (23) 

where 
T

ijt is the maximum prediction in the i-th row of
* (z)mG , pz  is the pole in outside of the 

unit circle, pz
-

 is the conjugate complex of pz , ir  represents the maximum number of the 

same pole of 
* (z)mG .  

IMPROVEMENT OF FILTER 

According to the equation (17), the robustness of the (z)SVDC  often cannot meet the 

requirement, for solving this problem, this approach need to improve the filter F(z). The 

filtering structure is designed in general, which makes control system bear the capacity of 

high-dimensional decoupling and fast response. First, we use the SVD in the inverse of the 

transfer functions matrix of process (z)G . Then, we can use the term after decomposition to 

improve the filter (z)F and to obtain the controller based on SVD.  

Step 1: Use the SDV in the inverse of the steady-state gain matrix of (z)G  

  (24) 

Step 2: Let vW  satisfy the following formula  

 

H

VV W I=
 (25) 

Step 3: The improved internal model controller is as follows 

 

* 1(z) G (z)G (z) W (z) WSDV m m v vC F -

+=
 (26) 

The robustness of the system can be greatly enhanced by adding a filter ( )fG z in the feedback 

loop, and the filter time constant can be set to half of the maximum delay time in this loop [15]. 

IMC STRUCTURE BASED ON VIRTUAL INPUTS (VI) 

Focusing now on the inversion method of the under-actuated systems based on Virtual Inputs. 

To successfully apply our approach, firstly we need to modify the IMC basic structure mentioned 

in Figure 1, so that it becomes applicable to underactuated systems with more outputs than 

control inputs. Secondly, we design an approximate inverse of the model plant which is 

inspired by the studies of [16, 17] in the case of MIMO systems and over-actuated systems [18]. 

The modified IMC structure presented in Figure 3 is characterized by two more blocks with 

respect to the basic IMC structure presented in Figure 1 [19]. The first new block is the 

Virtual Inputs Augmentation VIA (z) which is used to augment the system inputs inserting 

virtual (n× (n - m)) column to the transfer matrix of the non-square system in order to make it of 

dimension (n × m), so that it can be inverted. The second one is the Virtual Inputs Removing 

VIR (z) block which is used to eliminate the exceeding virtual inputs [19].  
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Figure 3. IMC structure based on Virtual Inputs method. 

The inserting columns mentioned previously can be chosen as first-order transfer functions, which 

verify the stability criterion, and in order to simplify the study and avoid inversion problems [19].  

The studied system can be shown through the following equation [18, 19]: 

 

1 11 12 1 1

2 21 22 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

m

m

n n n nm m

y G z G z G z u

y G z G z G z u

y G z G z G z u

     
     
     
     
     
       (27) 

When the model and the system match perfectly ( ) ( )mG z G z= , the augmented system Ğ(z) 

and its exact model are expressed as: 

 

11 1 1 1 1

1 1

(n m) (n ( m)

(z) ( )

m m n

m

n nm nm nn

Initial transfer function Added transfer function
n

G G G G

G G z

G G G G





  

   
   

 
   
      

 (28) 

The Virtual Inputs Controller CVIN (z) design presented in Figure 4 is based on the inversion 

method reported in [18, 19].  

The closed-loop transfer function matrix CVIN (z) between e(z) and u(z) is derived as: 

  (29) 

Where 1K  is an invertible square matrix ( )n n  used to ensure the stability of the controller 

and it can be expressed by 1 mI ,K R    , a second gain 2K  is introduced as reported in 

Figure 4 in order to compensate the static errors. The gain 2K  is given by equation (30). 

  (30) 

 

G(z)CVIN(z)

Gm(z)

+
-

+
+

e(z)r(z) u(z)

y(z) - ym(z)

y(z)

d(z)

+
-

VIA(z) VIR(z)
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Figure 4. Structure of the Virtual Input controller. 

For sufficiently high values of a , the controller CVIN(z) approaches the inverse of internal 

model Ğm(z): 

 
   

1

VIN mC z G z



 (31) 

For the construction of the controller, it is necessary to respect the fact that: 

 
   . I

VIN m n
C z G z 

 (32) 

The virtual inputs method proposed for the design of the controller by internal model is valid 

whatever the number of outputs n  ℕ*
 and inputs m  ℕ* 

of a physical system. In fact, this 

approach is applicable for the following classes of systems: 

 Monovariable system where 1n m= = , 

 Overactuated system where n < m, 

 Underactuated system where n > m. 

SIMULATION RESULTS AND COMPARISON 

To analyze the comparative study on the above control technique, we considered a chemical 

process industry. In order to test the control effect of discrete underactuated internal model 

controller based on SVD and VI, a side-stream distillation control problem suggested by 

Doukas and Lyben will be used [20].  

Figure 5 shows the side-stream distillation scheme that serves to separate benzene, toluene 

and xylene. The problem posed in this case was to control the concentrations of four 

impurities in three product streams with only three manipulated variables: reboiler duty, 

reflux ratio and side stream flow rate. 

Doukas and Lyben [20] treated the distillation column as a 4 × 3system. An internal 

controller should be design for the under-actuated system. Doukas and Lyben model can be 

represented as  

 

u(z)
K1(z)+

-
K2(z)

e(z)

( )mG z

e(z) u(z)
( )VINC z
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Figure 5. Schematic diagram of distillation column [20]. 

 

11 12 131

1

21 22 232

2

31 32 333

3

41 42 434

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

G z G z G zy
u

G z G z G zy
u

G z G z G zy
u

G z G z G zy

  
   
        
 

    
     (33) 

where the toluene in bottom (y1), toluene in bottom (y2), benzene in side draw (y3) and 

benzene in side draw (y4) are the four controlled variables. The reboiler duty (u1), reflux ratio 

(u2) and side draw (u3) are the manipulated variables [20].  

The (4 3)´  transfer function matrix presented in equation (33) as follows 

 

2
1 1

11 12 2

-5.12 z - 0.61 0.0017 z  + 0.0356 z + 0.0117
( ) , ( )

 z - 0.41 z  - 1.27 z + 0.40
G z z G z z  

 (34) 

 

2
1 1

13 212

-0.3811 z  - 1.078 z - 0.07728 2.507z + 0.5044
( ) , ( )

 z  - 1.263 z + 0.3985 z - 0.4967
G z z G z z  

 (35) 

 

2
1 6

22 232 2

-0.0175 z  - 0.0208 z - 0.0566 0.0016 z + 0.0015
,

z  - 1.72 z + 0.74 z  - 1.95 z + 0.95
G z G z- -= =

 (36) 
2 2

1 1

31 322 2

2.35 z  + 0.0182 z + 0.17  0.0077 z  + 0.003837 z + 0.0111
( ) , ( )

z  - 0.0018 z +   0.0077 z  - 0.49 z + 0.0607
G z z G z z- -= =

 (37) 

 

2
1 1

33 412

-0.29 z  - 0.0225 z - 0.0091 -5.66 z - 0.87
,

z  - 0.0299 z + 0.0002 z - 0.44
G z G z- -= =

 (38) 

 

2 2
1 1

42 432 2

-0.0706 z  - 0.0324 z - 0.0166 0.94 z  + 0.63 z + 0.0008
,

z  - 0.46 z + 0.0551 z  - 0.81 z + 0.16
G z G z- -= =

 (39) 

In this section, we evaluate the controller performance using the above-mentioned approach.  

40

Cooling Water

Distillate 

Reflux 

Bottoms

27

20
Feed

 stream

CT

Side stream

CT

CT
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SIMULATION RESULTS USING THE SVD CONTROLLER 

Starting with the internal controller based on Singular Value Decomposition, and using the 

whole approach seen in section 4. Using equation (23), ( )mG z+ can be obtained by 

  (40) 

Using equation (24), , ,L VS is given as follows 

  (41) 

  (42) 

  (43) 

Using equation (25), 
1,v vW W -
 are given as follows 

  (44) 

  (45) 

Considering the realization of the controller, the added filter ( )F z  is 

  (46) 

In order to increase the robustness of system, we add a feedback filter in feedback loop. The 

expression of the added filter is as follow: 

 
{ }11 22 33 44( ) ( ) ( ) ( ) ( )f f f fG z diag G z G z G z G z=

 (47) 

where,  



A novel discrete internal model control method for underactuated system 

573 

 
11 222 2

0.0001422
( ) , ( )

0.001 0.004 0.0002846 0.00000125
f f

z z
G z G z

z z z z

-
= =

- + - +  (48) 

 
33 442 2

0.9971 0.006362 0.00008516
( ) , ( )

0.009359 0.0001379 0.000001784
f f

z z
G z G z

z z z z

- -
= =

- + -  (49) 

The expression of the inverse of (z)mG , 
* (z)mG  is given as follows 

  (50) 

where, 

 

2
* 1 *

11 122 2

0.023 0.0006079 0.000699 0.0005
,

0.0366 0.0003355 0.2707 0.01832
m m

z z z
G z G

z z z z

-- - -
= =

- + - +  (51) 

 

2 2
* 1 * 1

13 142 2

0.01035 0.000875 0.04769 0.006181
,

0.03663 0.0003355 0.139 0.004828
m m

z z z z
G z G z

z z z z

- -+ - -
= =

- + - +  (52) 

2 2
* * 1

21 222 2

-0.3386 z  + 0.07526 z - 0.001504  -0.7011 z  + 0.3355 z - 0.04626
, z

 z  - 0.03663 z + 0.0003355                z  - 0.2707 z + 0.01832
m mG G -= =

 (53) 

 

2 2
* 1 *

23 242 2

 0.01847 z  + 0.001332 z -0.0025 z  - 0.03611 z - 0.00231
z ,

 z  - 0.03663 z + 0.0003355       z  - 0.139 z + 0.004828
m mG G-= =

 (54) 

 

2 2
* 1 * 1

31 322 2

 -0.07642 z  + 0.003053 z 0.105 z  - 0.05384 z - 0.06541
  z , z

 z - 0.03663 z + 0.0003355 z  - 0.2707 z + 0.01832
m mG G- -= =

 (55) 

 

2 2
* *

33 342 2

-1.182e-08 z  - 7.598e-07 z 0.04368 z  + 0.002231 z - 7.429e-06
,

z  - 0.03663 z + 0.0003355  z  - 0.139 z + 0.004828
m mG G= =

 (56) 

The final expression of the internal controller based on SVD described by the equation (26) is 

the following  

 

* 1(z) G (z)G (z) W (z) WSDV m m v vC F -

+=
 (57) 
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Figure 6. Outputs System with internal controller based on SVD. 

SIMULATION RESULTS USING THE VIRTUAL INPUT CONTROLLER 

Dealing now with our proposed approach, the Virtual Input methods applied on the same 

system studied previously. Considering the same underactuated system with three control and 

four outputs. The system transfer matrix G(z) is given by (33). 

Let us consider the case of perfect modeling ( ) ( )mG z G z= , The augmented model transfer 

function is of dimension 4 × 4. The system and the model outputs are expressed respectively 

by (58) and (59). 

 
[ ]1 2 3 4 ( )

T
y y y y G z u=

 (58) 

  (59) 

The model transfer functions 11mG  until 43mG  are successively chosen to be close to 11G  until 

G43. The augmenting (n × (n-m)) virtual column 14mG , 24mG , 34mG  and 44mG  are chosen as first 

order transfer functions so that they ensure the invertibility conditions of the matrix ( )mG z . 
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It is mandatory to study the discrete-time internal controller stability, in order to set the 

stability interval of the gain matrix 1K  which ensures the stability of the IMC structure. The 

expression of the controller (29) detailed in the previous section can be reformulated using 

the representation of sate as: 

  (60) 

Where x(k)  ℝn
, e (k)  ℝn

 and u (k) ℝn
, are the state, input and output vectors respectively 

of the controller, the matrices F, H and C are known constant matrices. The stability 

condition highlighted by Lyapunov theory allows to assess the necessary and sufficient 

condition of the controller stability. Using this theory, we can conclude that the system 

presented by the equation (60) is stable if and only if there exists a positive definite matrix 

0TP P  , satisfying the following Lyapunov inequality [21]: 

 
( )0 , - 0TP F PF P> <

 (61) 

Solving the LMI equation (61), the interval of the gain 1K  which assures the stability of the 

internal controller is – 0.1 < K1 < 0.01 × I4. In the case of this system, we choose 0.01a =  

such that K1 =  × I4. 

The gain matrix 2K  relative to K1 = 0.01 × I4 is given by: 

  (62) 

The set responses of the studied system with both controller design is presented through the 

Figure 6 and Figure 7; we note that the steady state error is not null in the case where we used 

the controller based on SVD. 

COMPARISON ANALYSIS 

After using both Singular Value Decomposition and Virtual Inputs approaches, it seems to be 

quite interesting making a comparison between them showing their effectiveness in terms of 

stability, robustness, precision and tracking signal. 

From the data presented in table 1, it is relevant to note that the desired specifications of the 

closed-loop responses are not met with the SDV controller and this is expected because of the 

problem of the interaction which are too strange as illustrated by the decoupling of the 

controller and the simulation results obtained with the SVD controller in Figure 6. SVD method 

has a problem if we do not make the right choice of the parameter of the filter, in this case, 

the approximation cannot be made with effectiveness and the system can be diverging. Added 

to that this approach towards the under-actuated process is to square the system by make the 

decoupling of the model affecting the characteristic of the system. Unfortunately, this 

operation can decrease the performance of the system and making it so poor by neglecting 

some information’s. 
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The internal model controller using a Virtual Inputs as inversion approach of the model 

( )mG z better performances in terms of rise time, settling time and in terms of error dynamics 

precision are obtained, as shown by table1, these results are satisfactory because the steady 

state is zero for all responses as shown in Figure 7. This mean that the set-point tracking is 

ensured. The internal model control using the Virtual Input approach is having the benefits of 

small overshoot, faster tracking features, and less interaction compared to the Singular Value 

Decomposition method as indicated by the Figures 6 and 7 and by the table below. 

The Virtual Input method may be fails when the system has a disturbance acting on the 

outputs of the system. For this reason, with load disturbance the response needs to be 

controlled to attain robustness and performance. 

Table 1. Quantitative comparison between IMC Controller based SVD and Virtual Inputs. 

 Parameters to control 
Outputs of System 

Y1 Y2 Y3 Y4 

IMC controller 
based 

on SVD 

Rise Time (s) 93 160,6 -6 240 

Steady state error (%) 12,99 1,96 66,24 21,36 

Settling time (s) 560 320 247 400 

IMC controller 
based on VI 

Rise Time (s) 53,95 23,92 30,02 30,14 

Steady state error (%) 0 0 0 0 

Settling time (s) 96,02 42,05 42,05 47,97 

Figure 7. System outputs with internal controller based on Inputs Virtual. 
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In order to verify the robustness of the proposed internal model controller, we added a 

white noise with a variation of 0,2 acting on the outputs of the system in the interval of time 

100 s, 150 s, 200 s, 250 s. The influence of this noise is observed in Figure 8. 

  

  

Figure 8. System outputs with disturbed internal controller based on Virtual Inputs. 

It is shown that the closed loop system is not sensitive to noise. We conclude that the method 

it offers strong robustness in case of the given perturbation and good tracking features. 

CONCLUSION 

To control an under-actuated industrial process demands not only to know all the 

characteristic of his model, but also to achieve the desired performance when there exist load 

disturbances. Both Virtual Input and SVD approaches are applied to distillation column 

process, to prove the controller achievability for this industrial process and that it is the most 

efficient approach in terms of rapid response, set-point tracking and disturbance rejection. 

Through a comparative analysis, the Virtual Inputs approach avoids the complex calculation, 

such as calculate the inverse of the matrix, the controller structure is simple, has a few tuning 

parameters, and is easy to be accepted by operators. 

The simulation results show that our proposed method (Virtual Inputs) ensures suitably the 

set-point tracking and the disturbance rejection for the external disturbance as illustrated in 

distillation control problem suggested by Doukas and Lyben and gives better results 

compared to SVD approach. The modified internal model control scheme gives more degree 

of freedom in the controller design technique in order to improve the performance of the 

controlled system. 

As future works, it will be interesting to handle with unstable multivariable non-square 

systems and non-linear systems as proposed in order to design an internal controller with 

more flexibility and to apply the proposed Virtual Input controller to real processes. 
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