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Abstract

This paper describes the application of a nonlinear model predictive control algorithm to the problem of dynamic 
reconfiguration of an electrical power distribution system with distributed generation and storage. Power distribution 
systems usually operate in a radial topology despite being physically built as interconnected meshed networks. The 
meshed structure of the network allows one to modify the network topology by changing the status of the line switches 
(open/closed). The goal of the control algorithm is to find an optimal radial network topology and optimal power 
references for controllable generators and energy storage units that will minimize cumulative active power losses 
while satisfying all system constraints. The validation of the developed algorithm is conducted in a case study of a real-
life distribution grid in Croatia. Realistic simulations show that large loss reductions are feasible (more than 13%), 
i.e., the developed control algorithm can contribute to significant savings for the grid operator.

Keywords: 	model predictive control, power distribution system reconfiguration, mixed-integer programming, real-
life case study.

1. Introduction
The ever-increasing demands for electrical energy, 
limited conventional fuel reserves, climate change, the 
desire for energy independence and the diversification 
of energy sources put in focus the distributed production 
of electrical energy from renewable sources as a key 
element in achieving sustainable development. Since 
most of the electricity generated in developed countries 
is consumed in households, buildings, and industry 
(see e.g. [9]), the idea is to bring the distributed energy 
production closer to the end-consumers, i.e., to the 
power distribution level of the overall electrical power 
system. Hence, the power distribution system ceases to  
be a passive part of the electrical power system and starts 
to be actively involved in the production of electrical 
energy. 
Despite all the advantages of distributed production 
of electrical energy, the rapidly growing penetration 
of intermittent renewable energy sources and other 
distributed sources poses vast challenges for electricity 
distribution systems ([4]). The challenges mostly relate 
to the maintenance of grid stability while adhering to the 
grid codes to ensure reliable and efficient power supply 
to all consumption entities spatially distributed across 
the distribution grid. Thus, an active grid management 
strategy is of key importance in achieving the promised 
benefits of smart grids – reduction of electricity losses, 
integration of renewable generation and storage units, 
reduced use of fossil fuels, and improved grid reliability. 
Power distribution systems are built as interconnected 
meshed networks but they, as a rule, operate in a radial 

topology. The topology of the network can be modified 
by changing the open/closed status of line switches which 
offers additional possibilities for the optimal management 
of the overall system. Merlin et. al in [6] were the first 
to emphasize the importance of distribution system 
reconfiguration (DSR) as an active grid management 
technique. The DSR problem can generally be modeled as a 
Mixed-Integer Nonlinear Program (MINLP). Historically, 
most of the methods for network reconfiguration relied 
on heuristics ([6]) and artificial intelligence techniques 
([2],[5]). Although these algorithms are generally easy to 
implement and sometimes very fast on practical networks, 
global solution optimality is not guaranteed and cannot be 
formally verified. Furthermore, most of the DSR problem 
formulations do not consider the dynamics of the system. 

In contrast to the existing literature, the authors in [7] 
proposed a closed-loop nonlinear model predictive 
control (NMPC) algorithm that can take into account 
system dynamics and its constraints. The NMPC 
algorithm builds on ideas from [1] and [3]. However, in 
[7] a simplified, small-scale example is used to illustrate 
the performance of the NMPC algorithm. 

In this paper we validate the developed NMPC  
algorithm for the dynamic reconfiguration of the 
distribution grid on a realistic case study of a real-life 
distribution grid from Koprivnica, Croatia. The NMPC 
algorithm is implemented in Matlab and tested in real-
time using data provided by the grid operator HEP-ODS. 

The rest of this paper is organized as follows. The control 
problem considered herein is formulated in Section 2. In 
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Section 3 a case study of a real-life power distribution 
grid in Koprivnica, Croatia, is described. A technical 
description of the algorithm implementation is given in 
Section 4. The simulation results are reported in Section 
5. Concluding remarks are given in Section 6. 

2. Nonlinear MPC formulation
Consider a power network represented by the graph 
�=(𝒱, ℰ), where �:={1,2,…,𝑛} is the set of nodes, and 
ℰ⊆ 𝒱�𝒱 is the set of flow lines (�,�), where �,� ∊ 𝒱 and 
𝑖�𝑗. Each node, except the substation node (�=1), may 
have loads connected to them. The network has a meshed 
structure, but it operates radially. It is assumed that all 
lines are equipped with switches and can participate in 
the reconfiguration of the network topology.

The control objective is to minimize the total active power 
losses over a prediction horizon �, i.e., � ∊{𝟢,1,...𝑁 ‒1}. 
The network losses are equal to the difference between 
the total system active power generation and the total 
system active power demand. Consequently, the active 
power losses of the network at time instant 𝑡 can be 
computed as the sum of the total active power injections  
(��

�,�) at all nodes:

	 (1)

The overall nonlinear MPC (NMPC) problem can be 
formulated as follows:

	 (2)

where x is a vector of all decision variables 𝑉�,� (voltage 
magnitude), ��,� (voltage angle), ��,� (line switching 
status), ��

�  (active power injection at substation node), 
��

� (reactive power injection at substation node), on 
a prediction horizon of length N. All power injections 
represent the average power during a discretization 
interval. Furthermore, all operational and physical 
constraints, i.e., power balance constraints, voltage 
constraints, constraints that ensure the radiality of the 
grid topology, etc., are included in constraints of the 
optimization problem (2). Since ��,� are binary variables, 
(2) is a mixed-integer non-linear optimization problem 
but it can be approximated as a mixed-integer linear 
program (MILP). More details on the control problem 
formulation can be found in [7].

In closed loop, the NMPC problem (2) is solved at any 
time instant and only the first control action is applied to 
the system. At the next time instant, (2) is solved again 

from the new initial state, according to the receding 
horizon control strategy (see e.g. [8]).

Even though the available solvers for mixed-integer 
linear programs are very mature, mixed-integer problems 
are still generally NP-hard, meaning that attempting to 
solve them can very easily lead to demanding (and often 
intractable) computations. Namely, even the state-of-the-
art algorithms implemented in commercial solvers like 
CPLEX have exponential complexity since in the worst 
case every possible combination of integer variables  
has to be checked. To alleviate this drawback, we keep  
the number of binary variables in our problem  
formulation as low as possible. To achieve this, the 
number of topology changes on a prediction horizon 
was limited to only one, i.e., for steps � = 0 to � = j‒1 
the previous topology is kept and on step � = j a new 
topology is determined that is to be used until the end 
of the prediction horizon. Obviously,  𝑁 such MILP 
problems can be defined for all j = 0 to j = 𝑁 ‒1, where N 
is the length of the prediction horizon. Moreover, these 
MILP problems can be solved in parallel and then the 
solution that generates the minimal cumulative cost on a 
prediction horizon is chosen.

The limitation of only one topology change on a 
prediction horizon is also motivated by practical reasons. 
It is not desirable to use the switching gear too often 
to prolong its life cycle, so it makes sense to limit the 
number of switching actions on a prediction horizon.

3. Case study

The electrical grid considered in this paper constitutes a 
part of the electrical power distribution grid in the city 
of Koprivnica, Croatia. The grid comprises: 28 nodes, 
1 transformer station 110/35 kV, 2 transformer stations 
35/10 kV, 3984 consumers, which are modelled as 22 
aggregated loads, and 28 transmission lines.

The grid data (node data, line data, transformer data; 
see [10] for details) as well as access to real-time 

Fig. 1. Graph representation of the distribution grid  
in Koprivnica.
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Fig. 2. Nodal power demand profiles in Koprivnica.

4. Simulation results
We ran the following three simulation scenarios:
1.1.	 In the first simulation run a fixed topology shown 

in Fig. 1. was kept. This topology was in operation 
on a real-life power grid in Koprivnica.  The results 
from this simulation are used as a baseline for the 
following comparisons.

1.2.	 In the second simulation run the optimal grid 
topology was computed in each step. Since the grid 
is in a quasi-static state, there was no need for a 
prediction horizon. The results of this simulation 
represent the best that can be achieved by topology 
reconfiguration in this scenario.

1.3.	 In the third simulation run, the additional constraint 
was imposed as follows: only one topology change 
is allowed on the entire prediction horizon. We 
used 𝑁=6 in our simulation.

All three simulations were run with the entire data set 
shown in Fig. 2. A time step of 15 minutes was used.

In all three simulations nodal voltage magnitudes 
were kept safely within the predefined limits of ± 5% 
around the nominal values (see Fig. 3). For the sake of 
brevity, we did not include the voltage profiles of other 
two simulations. The voltages are closer to the upper 
limit, which makes sense because higher voltages allow 
for smaller currents in the network and consequently  
smaller losses.

Fig. 3. Nodal voltage magnitudes during simulation 1.3.

The total active power losses during all three simulation 
runs are shown in Fig. 4. It is evident that in both 
reconfiguration scenarios a sizable reduction of losses 
was achieved compared to the baseline scenario where 
the topology was fixed. Table 1 reports the numeric values 
of the total active power losses in all three simulations. 
The losses obtained in simulation runs 1.2 and 1.3 are 
virtually the same and in both cases the reduction in 
total losses of around 13.5% compared to the baseline 
simulation run 1.1 was achieved.
The total number of switching actions per each line in 
simulations 1.2 and 1.3 are shown in Fig. 5. From this, 
it is evident that only a handful of lines switched their 
status on or off over the entire simulation run, while most 
of the lines never changed their switching status at all. 
Moreover, some of the lines changed their status rarely, 
while some of the lines changed their status many times. 
The total number of switching actions in simulation run 
1.2, when the topology was allowed to change in every 
step, was 158. In simulation 1.3, when the topology 
could change once in every N steps, this number was 
54. Therefore, practically the same performance was 
achieved with almost three times fewer switching 

measurements and historical load profiles at different 
nodes in the network were provided by the grid operator 
HEP-ODS.

The graph representation of the Koprivnica distribution 
grid is shown in Fig. 1. Nodes are represented by blue 
circles that are numbered from 1 to 28. Lines and 
transformers that connect nodes are represented as edges 
of the graph. Full lines represent transmission lines that 
are switched on, while dotted lines represent transmission 
lines that are switched off in the current topology. The 
radial topology depicted in Fig. 1 is the actual topology 
that was in operation on-site in Koprivnica for four 
consecutive days. The actual power demand profiles  
(15-min averages) during those four days in Koprivnica 
are shown in Fig. 2.

Fig. 4. Total active power losses during all three  
simulation runs in the scenario 1.
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Fig. 5. The total number of switching actions for each line during 
simulations 1.2 and 1.3.

Table 1.	 Total active power losses in three simulation 
runs.

Total loss [kWh] Reduction [%]
Simulation 1.1 2068.55 n/a
Simulation 1.2 1788.15 -13.56
Simulation 1.3 1788.48 -13.54

Table 2.	Computation times of the NMPC algorithm in 
simulations 1.2 and 1.3.

Max [s] Min [s] Mean [s]
Simulation 1.2 14.57 2.11 4.81
Simulation 1.3 374.32 100.13 155.02

5. Discussion of results

The presented results of both simulation scenarios 1.2 
and 1.3 are very promising and indicate that the applied 
methods could be implemented in a real-life distribution 
grid. The most appealing strengths of the method are: 
(i) process constraints can be systematically taken into 
account, (ii) certifiably globally optimal solution is 
obtained in every run of the algorithm, (iii) future power 
demand and renewable power production profiles can be 
easily taken into account.

The effectiveness of the reconfiguration depends on the 
degree of the network automation. In general, the more 
line switches are available for the dispatcher to change, 
the higher loss reduction can be achieved, i.e., more 
different topologies can be considered. In the current grid, 
the selection of appropriate lines to be updated with the 
switchgear for remote control of the switch state is based 
on minimizing a grid fault duration. The results that can 

be achieved by the reconfiguration algorithm provide an 
additional benefit to the already existing infrastructure. 
Consequently, the cost-benefit analysis of the medium 
voltage level automation system should take this newly 
added benefit into consideration, which in turn will allow 
for previously discarded switchgear to be reconsidered 
for automation. Some of the results presented in this paper 
provide interesting and valuable information along these 
lines. In particular, it was assumed in the simulations that 
all lines are equipped with a switchgear and therefore 
can change their switch state, although this is not true 
in the real grid. The results obtained, however, indicate 
that only some of the lines contributed to the change in 
the topology during the simulations while other lines 
never changed their switching state. Obviously, the lines 
with the highest number of switching actions are natural 
candidates for possible future upgrades with automatic 
switchgear in the real-life grid.

A few things should be noted. The algorithm depends 
on exact knowledge of the future power production and 
demand profiles. In practice, these profiles can only be 
predicted, so an accurate predictor is required to enable 
real-time implementation of the algorithm in a real 
distribution grid. Furthermore, the algorithm depends on 
solving a mixed-integer linear program which does not 
scale well with the size of the problem, i.e., it can easily 
become very computationally demanding. However, 
as we have seen in the simulation results, it is not 
necessary to consider all lines in the grid for topology 
reconfiguration, because most lines never change their 
switching status. This means that a smaller number of 
binary variables is needed to formulate the problem 
allowing for implementation on even larger power grids.

6. Conclusion

In this paper we have presented the application of an 
NMPC algorithm for dynamic reconfiguration of power 
distribution systems in a case study of a real-life power 
distribution grid in Croatia. The performance of the 
dynamic reconfiguration algorithm was validated in 
realistic simulation scenarios using real-life data provided 
by the grid operator. The results are very promising and 
show that large loss reductions are feasible (more than 
13%). The developed NMPC algorithm has the potential 
to be applied to a real-life grid and can contribute to 
significant savings.
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