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1. Introduction
Artificial intelligence (AI) today is significantly focused 
on increasing the efficiency of different sectors and 
reducing negative impacts on the environment. The 
agriculture sector started adopting the AI only recently, 
following the development of Internet of Things (IoT) as 
distributed networks of sensors and other devices [1] that 
enabled precision agriculture and the formation of large 
datasets [2]. The number of IoT devices in agriculture 
was projected to increase from 30 million in 2015 to 
75 million in 2020 [3] and to offer significant precision 
farming opportunities such as: crop monitoring, disease 
detection, storage optimization, treatment optimization, 
irrigation and weeding [4, 5]. Successful examples of 
precision agriculture analytics include crop prediction 
by fruit counting or estimation from crop images with 
different spectra with 70-90% reliability of estimation 
accuracy [6], or modelling and forecasting of corn yield 
by neural networks depending on soil treatment [7]. A 
wider application of these methods is still in its infancy, 
as research began only a few years ago, mainly out of 
concern for climate change. The biggest aggravating 
factor for the successful application of AI is the lack of 
large amounts of data as a prerequisite for further analysis 
and modelling. Due to slow, year-round cycles, and 
the distinct specificity of individual locations (soil and 
weather conditions), it is not possible to promptly create 
a significant database of historical data. In addition, 

it is necessary to install a large number of sensors on 
different fields, which is one of the most propulsive areas 
of modern agriculture [8]. Moreover, climate changes 
are one of the most expressed aggravating factors for 
obtaining the relevant datasets.

The “big data” issue is addressed here by creating 
specially designed bioreactors that serve as rapid plant 
model identification systems of multiple simultaneous 
climate zones, supported by autonomous real-time data 
acquisition and archiving. Instead of the usual observed 
annual life cycles in nature, the system introduces 
equipment for rapid, simultaneous implementation 
of a number of different experiments in a climate-
encapsulated system with control loops of light, 
temperature, humidity, pH and nutrient profiles, with 
an extensive network of sensors and with the help of 
multi-spectral cameras. The equipment is supported 
by software in the form of an autonomous storage of 
identifiers in a central database. For the exemplary case 
of the wheat, a single encapsulated design enables 8-12 
simultaneous plant groups, each one as individual field 
emulation, capable of squeezing up to three yield cycles 
in a single year, resulting in total with 24-36 harvests 
per year per device that is the size of a computer server 
cabinet.

With a significant amount of historical data available, 
mathematical models of several different stages of wheat 
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crop development are developed using AI (artificial 
neural networks, genetic algorithms) with respect to 
different, artificially created and permuted, microclimate 
conditions correlated with identified plant growth and 
development indicators at different stages.

The paper is a concise version of [11], organized 
as follows. Overall methodology of the approach is 
presented in Section 2. Encapsulated design and basic 
features are described in Section 3 while the architecture 
of the supporting IT system is described in Section 4. 
The AI plant development models are outlined in Section 
5 and the conclusions are presented in Section 6.

2. Rapid plant modelling system methodology
The proposed methodology utilises the developed 
encapsulated design (apparatus) for accelerated 
experiments of plant growth in an isolated environment 
with autonomous permutation of artificial climatic 
conditions (light profile, temperature, humidity, airflow, 
pH and nutrient level) and archiving plant growth and 
development indicators collected by different sensors and 
multi-spectral cameras. The apparatus, i.e. the prototype 
of the system, implies constructional, assembly and 
electronic preconditions, and corresponding control 
loops to achieve the desired stated conditions in real-
time and at the same time to regulate several different 
climatic conditions in an isolated environment. 

The constructional prerequisite of the system ensures 
isolation from external conditions and enables a spatially 
compact design suitable for separating several different 
climatic conditions. The isolated environment also allows 
the simulation of conditions that are not yet present in the 
considered climates but are expected to occur under the 
influence of climate changes. The prerequisite includes a  
system for irrigation and nutrient supply through pumps 
and tubes to each individual plant, artificial LED lighting 
of different spectra and a heating and cooling system. 

The electronic prerequisite includes electronic support, 
sensors, and control hardware for the regulation of the 
mentioned climatic conditions, as well as support for easy 
adjustment of parameters for future experiments. The 
implementation of experiments aims to be significantly 
accelerated by the simultaneous possibility of providing 
different conditions and the use of cameras and a mesh 
grid network of sensors with autonomous archiving of 
data in real time, which is then a suitable starting point for 
determining correlations between conditions and plant 
growth through advanced machine learning algorithms.

The proposed methodology aims at isolating plant 
physiognomy identifiers that are related to the faster 
or slower plant development at different stages. There 
are roughly one hundred phenological stages of wheat 
growth (BBCH scale) [9] and the system shares the 

data for three generalized ones: i) germination, ii) plant 
formation and maturation, iii) grain maturation, which 
are a general approximation for many plants, with the 
open possibility for the concept to be transferable to 
other species. Physiological identifiers such as stomatal 
transpiration, photosynthetic effect, night respiration, 
intercellular carbon dioxide concentration, evaporation, 
etc. are associated with physical and more accessible, 
i.e. measurable, identifiers such as water and nutrient 
absorption measured by multi-spectral camera, precise 
growth measurement, images in different spectra in 
certain modes (day and night), etc. Individual relevant 
parameters measurable by sensors and correlation with the 
growth and development of the plant are autonomously 
archived in real time together with the given climatic 
conditions in which the plant is located, gradually 
forming a very large database suitable for determining 
correlation relationships by advanced machine learning 
algorithms. Thus obtained, accurate data on isolated and 
artificially created climatic conditions and consequent 
plant development are autonomously archived and over 
time build a large data set of 6 million records collected 
in 5000 climate scenarios over a period of 2 years, which 
is suitable for applying algorithms in mathematical 
modelling and then predicting future plant developments 
in the coming climate change. The obtained mathematical 
models will be checked on a separate set of data and with 
the identification of the reliability of the estimate based on 
the forecasted conditions to give a prognostic illustration 
of the expected plant development. To increase the 
reliability of prediction, the models are classified and 
reduced to three parts depending on the plant stage: i) 
germination, ii) plant formation and maturation, iii) 
grain maturation.

The objectives of the system are as follows:
•	 develop the apparatus for rapid plant growth data 

collection, storage, and processing,
•	 conduct experiments in 5000 climate scenarios over  

a period of 2 years,
•	 obtain a relevant dataset of 6 mil. entries for the 

chosen wheat crop,
•	 apply machine learning algorithms for 3 different 

growth stages to obtain various use-case models of 
wheat crop development,

•	 structure the dataset and the models to be exploited 
for prediction of crop maturation, grain moisture  
and optimisation of pest treatments.

3. Encapsulated design plant growth devices
By being able to control the microclimate environment, 
the encapsulated design exploits the outdoor 
environment and further superposes desired artificial 
environment (temperature, soil humidity, air humidity, 
photosynthetic lighting, CO2 and O2 concentration and 
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Fig. 1. Encapsulated design plant growth device [11].

The measured microclimate parameters are: i) air 
temperature, air flow, air humidity, photosynthetic 
photon flux density and soil moisture. Plant development 
indicators are the spectral image light intensity (3 
bands), leaf area index (estimated), normalized 
difference vegetation index (NDVI), simple ratio (SR), 
photochemical reflectance index (PRI) and chlorophyll 
index (CI).

Climate parameters regulation

Air temperature: temperature control is achieved using 
temperature sensors, positive temperature coefficient 
(PTC) ceramic insulated heaters, ventilation system and 
the influence of the disturbances such as LED lights, 
solar irradiance through glass cabinet or electronic 
devices residual heating. The heating element is used in 
combination with fans to control the air flow.

CO2 concentration: by cabinet ventilation, the plants 
have access to the surrounding CO2 concentration, 
and photosynthesized oxygen is removed from the 

encapsulated design. Increased CO2 concentrations 
are achieved by putting the devices in a populated 
environment (faculty offices) where the concentration 
can reach up to 3000 ppm. There are two modes of 
operation: night (respiratory) and day (photosynthetic), 
both regulated with the inflow and outflow of the external 
air and CO2 sensors in the individual zones and matching 
control loops with PI controlled fan speeds.

Lighting: for normal growth, the plants require 
approximately 500-1500 μmol/m2/s of PPFD, which 
is the amount of PAR spectrum photons that reach the 
plant [10]. This correlates with required 200-500 W per 
m2 of LED light power of the PAR spectrum, which 
is additionally increased to compensate the distance 
from the light source. Rather than having a multi-
kilowatt lighting system, the sunlight is fully exploited 
by the glass structure of the encapsulated design, and 
artificial lighting is used to additionally increase the 
intensity, permute the outside conditions and extend the  
luminance duration. Artificial lighting is controlled by  
PI controller of the LED lighting intensity by PWM and  
a photosensor, individually in all four zones.

Soil moisture and air humidity: water is delivered to 
the soil by pumps and valves to each of the four zones 
individually and controlled by corresponding hysteresis 
controllers based on the information gathered from the 
electrical conductivity sensors placed in the soil. Valve 
on/off duration transforms the water flow in the tubes that 
supply water to the soil from within of the central tower. 
In the plant area of the encapsulated design, the humidity 
control loop consists of a humidity sensor, an ultrasonic 
humidifier and a corresponding fan that distributes the 
mist into the leaves. The setpoint of 0-100% humidity  
is achieved by a PI controlled fan speed.

Nutrients: the amount of required nutrient chemicals for 
plant growth has a significantly slower dynamics than 
other systems, with a measurable difference occurring 
after few months with real-time pH embedded sensors 
grade. Therefore, the soil is preconditioned prior to 
conducting the experiments in a laboratory environment 
and with highly accurate pH level sensors.

An exemplary established microclimate in the four  
zones of the device is shown in Fig. 2 as time-responses  

aeration) to experiment plant growth and development 
under different (sometimes extreme) microclimate 
conditions, collect and analyse the data to build artificial 
models that are further used for large scale harvesting 
predictions. The structure of the encapsulated design is 
shown in Fig. 1 with the upper part intended for plant 
growth and environment control and electronic support 
located within the enclosed drawer. It is important to 
note that within a single device it is possible to achieve 
four separate microclimatic zones with corresponding 
sensors and actuators in each zone. The considered 
devices are based on intelligent, self-sustainable home 
gardens of Urban Oasis Croatian manufacturer, which 
was additionally modified by the research team to enable 
a system for rapid modelling of plant development.
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of temperature, humidity, light intensity, and soil 
moisture during a chosen period of 30 minutes.

Measured identifiers

Physiological identifiers such as stomatal transpiration, 
photosynthetic effect, night respiration, intercellular 
carbon dioxide concentration, evaporation, etc. are 
associated indirectly with physical and more accessible, 
measurable vegetation indices relying mostly on multi-
spectral cameras as sensors. This is necessary to enable 
a large number of measurements, as accurate plant status 
identifiers from the domain of molecular biology are 
both time-consuming and costly, and may be associated 
with a correlation delay with respect to other input-
output data. In order to capture both the spectral bands 

required for basic vegetation indices as well as additional 
bands to power further analytics, a multi-spectral sensor 
RedEdge-MX was chosen.

4. Software architecture

The architecture of the chamber's software support 
(depicted in Fig. 3) includes the established i) database 
on the central data server, ii) computer cloud architecture, 
directly connected with iii) sensors and actuators of the 
devices utilised to conduct experiments. The data from 
the sensors and actuators are collected every 15 minutes 
and stored in the cloud computer; from there they are 
retrieved once a day, stored in the central server database 
and made available for advanced analysis.

Device software layer: divided into multiple subsystems, 
namely the control and regulation subsystem, the 
network subsystem and multiple sensor subsystems. 
The embedded controller in the control and regulation 
subsystem is a real-time controller for ensuring desired 
environmental conditions within the devices, i.e. wired 
connectivity with the sensors and actuators, and real-
time execution of the control loops. The architecture 
of the device's software, along with actuator and sensor 
control, implies the established communication with the 
computer cloud through which telemetry data and status 
reports are sent.

Fig. 3. Schematic of the  IT  system  for  collection  and  storage  of  the  encapsulated  design measured data.

Fig. 2. Microclimate in 4 zones for an exemplary case study.
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Computer cloud layer: designed for three main 
functions: i) telemetry ingestion and analysis, ii) device  
maintenance and control and iii) presentation of 
aggregated data and analysis results. Individual devices 
are connected to the cloud services through a central 
node where the device telemetry and status messages are 
aggregated and routed to distinct endpoints.

Central data server: a local server that collects the  
telemetry data and status reports from multiple 
encapsulated design devices, archives the data and 
conducts the advanced data processing such as 
experiments scheduling or executing tailored AI 
algorithms. The server integrates the data from all the 
growing chambers and makes it available for advanced 
processing, i.e. modelling through the use of ML 
approaches. Along the data collected from the chambers 
via the cloud service, pictures obtained from the multi-
spectral cameras are also stored on the central server 
computer, thus rounding up the available data from the 
plant development side. 

5. Modeling of crop growth stages
With a significant amount of relevant data made 
available through the plant growth encapsulated design 
and the corresponding IT system, AI techniques, i.e. 
ML algorithms are employed to correlate the measured 
climate conditions with plant development indicators. 
In addition to the microclimate conditions and plant 
physiological identifiers data entries, short- and long-
term weather forecasts are included in the dataset. 
The weather forecasts are provided by the Croatian 
Meteorological and Hydrological Service.

In accordance with the usual ML practice, the available 
dataset is divided into train, validation and test 
counterparts. Additionally, to significantly increase 
the reliability of prediction, models are classified and 
reduced to three parts, depending on the plant stage:  
i) germination, ii) plant formation and maturation, iii) 
grain maturation, and training is conducted on such 
divided data sets.

Several separate modules are developed based on the 
plant development indicators used as modelled outputs:
•	 yield prediction module,
•	 module for grain moisture prediction in current 

conditions and short-term prognosis,
•	 module for support in optimal pest treatment,
•	 module for long-term prediction of culture in climate 

change.

Once developed and tuned, the models will be publicly 
and interactively used through a web-based portal for 
predicting plant development under real and hypothetical 
climate conditions, with accumulated and archived 

feedback from farmers as additional data to tune the 
developed models.

Models of all three plant stage developments can be 
combined in order to offer insight into the overall 
plant development when new climate conditions are 
introduced. This option offers the possibility to simulate 
the wheat culture development in new environments  
that are likely to occur due to the climate changes  
already in effect. Such information can help in the 
determination of more fertile wheat cultivars and provide 
a general insight into crop development in the near  
future.

6. Conclusion
A system of encapsulated design devices for  
permutation of microclimate conditions and plant 
development monitoring is being elaborated. The  
system incorporates the concept of Internet of 
Things with real-time control and interfaces, and 
communication with a computer cloud that enable 
autonomous conduction of a large number of 
simultaneous experiments in microclimate zones of 
the device. It is used to rapidly gather a large amount  
of correlated data, thus enabling the artificial  
intelligence modelling of wheat development with 
respect to expected climate changes, i.e. predictive 
agriculture. 
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