

Abstract—We present an approach of constructing a source

code history for a modern code review. Practically, it is supposed

to be used in programming training, especially within initial

stages. The developed constructor uses constructive-synthesizing

modeling tools to classify a source code history by fine-grained

changes and to construct an event log file aimed to provide

information on students’ coding process. Current research

applies Process Mining techniques to the software engineering

domain to identify software engineering skills. By better

understanding of the way students design programs, we will help

novices learn programming. This research provides an innovative

method of using code and development process review in teaching

programming skills and is aimed to encourage using code review

and monitoring coding practice in educational purposes. The

standard method of evaluation takes into consideration only a

final result, which doesn’t meet modern requirements of teaching

programming.

Index Terms—source code history, constructive-synthesizing

modeling, process mining.

I. INTRODUCTION

Programming requires a set of competencies, and

studying them is fundamental in computer science

education. Understanding the way students develop

software and challenges they face, has great potential for

improving the quality of teaching coding skills. In the

process of teaching the basics of software engineering, it is

significant to spot emergent problems and help with their

elimination, to control individuality and quality of solving

tasks, and to be aware of the difficulties each student faces

while learning. The standard approach of evaluation takes

into consideration only a final result, which doesn’t meet

modern requirements of teaching programming.

The quality of software is directly associated with the

Manuscript received February 25, 2021; revised October 1, 2021. Date of
publication December 3, 2021. Date of current version December 3, 2021. The

associate editor prof. Dinko Begušić has been coordinating the review of this

manuscript and approved it for publication.

Authors are with the Computer and Information Technologies Department,

Dnipro National University of Railway Transport named after academician V.

Lazaryan, Dnipro, Ukraine (e-mails: shinkarenko_vi@ua.fm,
marakonec@gmail.com).

Digital Object Identifier (DOI): 10.24138/jcomss-2021-0046

quality of corresponding developing process. One of the most

examined methods of refining a program quality is using code

review [1]. A modern code review, frequently used in practice

these days, is informal, tool-based, and asynchronous [2].

Typically, this approach is implemented in software

companies. Their experience may be effective in computer

science education. Over the past few years, there have been

studies on the effective using of code review in teaching

programming carried out [3, 4]. The findings show that code

reviews can assist students in looking back at their

performance and improving their software development skills.

In our previous works [5–7], we have introduced the tool

for automatic monitoring and visualizing software

development and debugging processes. We suggest

automating this process by implementing specially designed

extension for Microsoft Visual Studio Integrated Development

Environment (IDE) to provide the possibility of determining

style characteristics of every student in the classroom and each

individual work.

The study provides an innovative method of using code

and software development process review in teaching

programming skills and is aimed to stimulate using code

review and monitoring coding practice in educational

institutions. We present an approach of constructing a source

code history using constructive-synthesizing modeling

(CSM) for a modern code review. We have developed a

constructor that classifies a source code history by fine-

grained changes and constructs an event log file. We use the

Process Mining approach to determine software engineering

skills. By analyzing IDE usage data, we aspire to provide

software development process with novel insights. Based on

Process Mining techniques, we hope to discover coding

patterns, programmers’ behavior, and to detect problems.

The development process model obtained using Process

Mining will provide teachers with characteristics that

indicate design flaws of functionally correct code which can

affect its quality – so-called code smells.

The rest of this paper is structured as follows. An overview

of related studies is provided in Section II. Section III and

Application of Constructive Modeling and

Process Mining Approaches to the Study of

Source Code Development in Software

Engineering Courses

Viktor Shynkarenko, and Oleksandr Zhevaho

342 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2021

1845-6421/12/2021-0046 © 2021 CCIS

mailto:marakonec@gmail.com
A507
Typewritten Text
Original scientific article

A507
Typewritten Text

Section IV provides more details on the proposed approach.

An illustrative example is presented in Section V. Finally,

conclusions are presented in Section VI.

II. RELATED WORK

Empirical studies in software development are most often

based on data extracted from version control systems (VCS)

[8, 9], but not on IDE, since they don’t track developer’s

activities. Analysis of source code changes committed to VCS

is the most usual way to analyze software production data. In

recent years, there have been several reports of successful

using of VCS in computer science courses [10, 11]. However,

the VCS can’t evaluate contribution of a student to the

ultimate result, because they don’t provide information on

source code production process. VCS only capture a history of

changes between commits. Negara et al. [12] shows that

history from VCS doesn’t reflect real code evolution.

In [13, 14], the authors investigated the quality of students’

programs. The findings expose many quality flaws and lack of

expected quality improvement among the source codes of

first- and second-year students. Several published studies have

shown that continuous monitoring leads to significant

improvements in students’ achievements [4, 15]. Snipes et al.

[16] provided practical guidance of using the IDE. They

showed that the tools for collecting IDE usage data provided a

more detailed comprehension of developers’ work than was

possible previously. To collect information about the

development process in the IDE, events are typically used

[17–20]. However, most of those tools only track invocation

of commands during coding sessions, without more detailed

context data. In [21], tools are implemented to record

interactions with IDE and to combine this data with more

extensive context information.

Only a few studies have reported about using code review in

computer science courses [1, 22, 23]. However, the findings

suggest that using code reviews by students increases their

self-confidence and that the benefits gained in the classroom

are similar to the benefits found in production.

Over the last years, there have been several languages

suggested for modeling a development process [24]. This

work contemplates the use of CSM in constructing source

code history. Fundamentals of CSM provided in [25–28] allow

modeling any construction and process. Also we use the

Process Mining approach to extract a model of a program

development process.

Over the recent decade, Process Mining has become a

modern field of research that focuses on analysis of processes

via event data. Process Mining is aimed to discover, monitor,

and enhance processes that occur when applying data from an

event log received from an information system [29]. The IEEE

Task Force has published the Process Mining Manifesto [30].

This manifesto was supported by 53 organizations and 77

Process Mining experts. It is aimed to advance the topic of

Process Mining. What’s more, by determining a set of leading

rules and listing critical issues, this manifesto is to serve as a

manual for software engineers, scientists, and end-users.

Rubin et al. [31] shows that Process Mining may be equally

applied to software. Process Mining methods have already

been used to research software development process [32, 33].

Our goal is to introduce novel insights into software

development process by analyzing the ways developers use

their IDE. Better understanding of the ways students produce

code will help us assist novices in studying programming.

III. CONSTRUCTIVE MODELING OF THE SOFTWARE

DEVELOPMENT PROCESS

The process of classifying source code change history by

fine-grained changes and creating an event log file is a

constructive process and consists of elementary actions.

Therefore, CSM is used to formalize it. In addition, the

reason for choosing this approach is that it interacts well

with Process Mining.

Previously, a wide range of tasks in which CSM was

applied was shown, which indicates the universality and

prospects of CSM application for solving problems in various

subject areas, as well as the high generality and typicality of

the procedures of this modeling method [34]. CSM

formalization allows describing not only the structure of

objects but also their properties, to determine the permissible

operations on them.

The development of the constructor involves definition of

heterogeneous extensible carrier, relation and corresponding

operations signatures such as binding and converting carrier

elements, substitution, inference, operations on attributes, and

also a finite set of requirements of informational support of

construction. Informational support of construction includes:

ontology, goal, rules, constraints, initial and completion

conditions of construction.

Particular qualities of CSM are [25–28]: attribution of

elements and operations, extensible carrier, and the model of

the executor as its algorithms.

The main points of ontological maintenance of CSM are

presented in [34].

In its informal submission, the ontology of the generalized

constructor is discussed in [25, 26]. The work provides only

the components that are necessary for the upcoming

presentation.

The first stage of design is specialization of a generalized

constructor. Specialization defines such domain ontology as:

the carrier’s semantic nature, the goal, the finite set of

operations, their semantics and attributes, the order of

execution and restrictions [25].

In our previous work we presented the constructor which

purpose was to construct a history of source code changes [6].

In current work, we present a constructor-converter from

source code changes history to an event log file. The purpose

of the constructor is to classify history of source code by fine-

grained changes and to create an event log file. Inference begins

with initial conditions – non-terminal σ .

Completion conditions – all source code changes are

classified and an event log file is generated. Specialization of a

generalized constructor based on a constructive-synthesizing

approach of constructing an event log file can be considered

as:

V. SHYNKARENKO et al.: APPLICATION OF CONSTRUCTIVE MODELING AND PROCESS MINING APPROACHES 343

,,Λ,ΣMCΜ,Σ,ΛC ELELELELS ==  (1)

where S is a specialization operation (performed by an

external executor), ELΜ is a heterogeneous replenishable

carrier, which includes a set of terminals and non-terminals,

ELΣ is a set of relations and relevant operations, ELΛ is

informational support of construction.

The terminal symbols with their attributes are:

• logtraces is an event log file. Its attributes are: traces –

an array of traces that comprises a chain of activities;

• traceslindextrace , is an array of traces. Its attributes are:

index – index of trace trace in the array; l – array size;

• traceeventstdntpntfdttsdtid ,,,,, is an array of events created by a

single execution of a process. Its attributes are: id –

identifier; tsdt – start timestamp; tfdt – finish timestamp;

tpn – project; tdn – developer; events – an array of

events that occurred during a development session;

• eventslindex
event

, is an array of trace events. Its attributes

are: index – index of an event event in the array; l –

array size;

• eventtectet,ten, is a trace event. Its attributes are: ten –

name, tet – context, an object of a dynamic structure

with information about the environment of an event.

The introduced attribute operations are:

•),(nrL – operation of adding a new record nr to the

array L ;

•)(t – operation of setting attribute values of the

terminal t by an external performer;

•),,(chics – operation of getting an element by the

index i from the cs array and setting its value to ch ;

•),,(catics – operation of getting an element by the

index i , from the cs array, classifying its value and

setting it to cat ;

•),(tracesevents – operation of grouping events by traces;

• log),(traces – operation of saving the traces to an

event log file.

The signature →= },,{,,,L consists of finite

operations sets and relevant relations, where :},{• are

operations of binding and transforming carrier elements,

}||,|,{ = are operations of substitution and inference,

 are operations over attributes, and also relations of

substitution)(→ and attributiveness)( , },:{ = iii gs

is a finite set of substitution rules, is is a sequence of

substitution relations, ig is a finite set of attribute operations.

If attribute operations are not performed, the substitution rule

will look like  ,is , where  is the empty symbol.

The interpretation is association of an algorithm that

performs a certain algorithmic structure with an operation

signature. In the interpretation process, a constructor model

and an internal executor are connected. It results into a

constructive system. The external performer carries out the

interpretation operation [25, 26].

For self interpretation ELC needs to clarify a basic

algorithmic structure (BAS) [25, 26].

Let the next BAS be approachable:

,,,, ,,,,, = ELAELAELAELAELA VC (2)

where ELAV , is a finite set of basic algorithms of an internal

performer of construction.

The following algorithms introduce the implement

operations on attributes:

,,,,,, 65,4,32,1

log

traces

traces

events

cat

ics

ch

ics

t

t

L

nrL |A|A|A|A|A|A (3)

where iA is an identifier of algorithm and ii YX , are sets of its

definitions and values.

The creation of a constructive system is:

,,

,

,,

log

65

,4,3

2,1

,

)}|(A)|(A

)|),(A|(A

)|(A)|{(AΛΛ

,,Λ,ΣMC

,Λ,Σ,VMC

,,Λ,ΣMC

traces

traces

events

cat

ics

ch

ics

t

t

L

nrLELI,EL

I,ELI,ELI,ELELII

A,ELA,ELA,ELA,ELA,EL

ELELELEL











=

=

=

=

 (4)

where I is an interpretation operation.

A constructor concretization includes a definition of

specific rules, restrictions, starting terms, terms of construction

termination and such concretization carrier element basis as:

finite sets of its non-terminal and terminal characters with

their properties and values of properties. After interpretation

and concretization operations, executed by an external

performer, a constructive system will have all it needs for

autonomous creation of constructions [25, 26].

We carry out the following concretization of the constructor

ELC designed for creation of an event log file with classified

source code changes:

,,

,

=

=

K,ELK,ELK,ELELK

KI,ELI,ELI,ELELI

,Λ,ΣMC

,Λ,ΣMC 
 (5)

where K is a concretization operation.

The record of sequential execution of the rules will be

denoted as 
=

n

i
is

1

.

Substitution rules are described below (6, 7).

344 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2021

Rule 1s receives a history of source code changes cs from

an external executor and sequentially executes rule 2s for

each change. Rule 2s classifies the change and assigns a

category to an event file

=•→=


=

)(, 1
1

1 csgcss i

csl

i

 (6)

.log),(),,(

),,(,

,,),,,(

),,,(,log 22



=

==

=→=

tracestracesevents

eventeventschchceventcontext

chteventtetcateventtencatics

chicsgs i







 (7)

It results into creation of an event log file with classified

source code changes.

IV. APPLICATION OF PROCESS MINING APPROACH TO

SOFTWARE DEVELOPMENT PROCESS

An event log works as a starting point for Process Mining.

Each event in such log applies to an activity that may be

performed on a resource at specific time and for a specific

case. An event log is structured as a set of traces, where each

trace comprises a chain of activities created by a single

execution of a process (a case). At least, an event record

includes an identifier of a case of a process to which an event

is applied, a timestamp, and a variety of complementary

attributes. The description of every attribute kept in the event

log is shown in Table I.

TABLE I

DESCRIPTION OF ATTRIBUTES KEPT IN THE EVENT LOG FILE

Attribute Level Description

Name Trace Session identifier

StartedDateTime Trace Session start timestamp

FinishedDateTime Trace Session finish timestamp

Project Trace Project identifier

Developer Trace Developer identifier

Activity Event Change type

Timestamp Event A time marker when the event occurs

Context Event Context of event

Over the past decade, Process Mining has become a modern

field of research that focuses on analysis of process using

event data.

In this paper, we decided to store an event log in eXtensible

Event Stream (XES) format [35], which is a standard format

for Process Mining, designed by IEEE Task Force for logging

events. The file contains classified source code changes

according to the types shown in Table II.

We use Process Mining discovery techniques to construct

a model of a program development process. Extracting a

process model allows one to get the way and order a

process was performed. We use ProM to extract a

development process model from an event log. ProM is a

common open-source framework, de-facto standard, for

implementing Process Mining [36].

TABLE II

TYPES OF SOURCE CODE CHANGES

Element type Change type

Class add, remove, rename, move

add/remove/change comment

add/remove/change modifier (abstract, static, etc.)

change of accessibility

add/remove/change inheritance

add/remove/change attribute

Interface add, remove, rename, move

add/remove/change comment

change of accessibility

add/remove/change inheritance

Field add, remove, rename

add/remove/change comment

add/remove/change modifier (const, static, etc.)

change of accessibility

change type

add/remove/change initializer

add/remove/change attribute

Method add, remove, rename

add/remove/change comment

add/remove/change modifier (abstract, static, etc.)

change of accessibility

add/remove/change attribute

add/remove/rename parameter

change parameter type

change parameter order

add/remove/change parameter assignment

change return type

add/remove/change parameter modifier (ref, out, etc.)

Method body add/remove/change inline comment

add/remove/rename variable

add/remove/change variable assignment

change variable type

add/remove/change variable modifier (const, etc.)

add/remove/change method invocation

add/remove/change object instantiation

add/remove/change

if/else/assignment/catch/throw/switch/case/return/lock/usi

ng/yield statement

add/remove/change postfix/prefix expression

add/remove/change for/foreach/do/while loop

add/remove continue/break/try/finally/default statement

ProM’s Inductive Visual Miner follows framework directly

[37], which allows Directly Follow Graphics (DFG) to be used

to discover a development process model. A DFG represents

activities as rectangles and links two activities together if one

of them directly follows the other. Besides, each edge has a

value pointing out the number of entries to an event log.

V. ILLUSTRATIVE EXAMPLE

In this section we will give a precise example to illustrate

the way the approach described in the previous sections can be

V. SHYNKARENKO et al.: APPLICATION OF CONSTRUCTIVE MODELING AND PROCESS MINING APPROACHES 345

applied in real environment.

The task is to write a program to calculate the minimum

number of coins needed to give change to a customer. As

input, the program accepts an array of coin denominations and

the amount of change needed. The result is shown in Listing I.

Evaluation of student’s learning effect plays an important role

in education, and is usually done by assessing student’s final

results. Now, on the basis of this program, a teacher should

understand and evaluate skills and abilities of a programmer.

It’s quite difficult to do, estimating a final result only.

Therefore, we suggest using not only a code of a program, but

also a process of writing to evaluate student’s work.

In our previous work [6] we suggested a code-writing

history constructor. It was meant to construct a history of

writing a program text. As a result, a formed array of chains

completely reflects a history of a source code. The history of

writing the program from Listing I is shown in Listing II.

Code history is presented as a sequence of chains, each

of which contains the following information: a serial

number, type of change ('+' – add, '-' – delete, '*' – edit),

code, file name, line number in the final version of a

program or negative identifier, a timestamp that indicates

when changes were made.

The constructor presented in Section 3 classifies a source

code history by fine-grained changes and creates an event log

file aimed to examine student’s coding process. The file

contains a sequence of events according to types of source

code changes (see Table II).

It results into the process model shown in Fig. 1.

Implementation of above-mentioned techniques provides an

explicit picture of developer’s behavior during coding

sessions. The information extracted from process of writing a

program text can be used to automatically provide a student

with recommendations for improving their code, give

information about effective programming style, and track the

tendency of its change.

Analysis of a history of writing a program gives information

about the amount of time it took a student to write a text of a

program, which parts caused the greatest difficulties. Based on

several programs of a particular student, analysis also reveals

their style of work and indicates characteristic features.

Analysis of the program (see Listing 1) and the history of its

writing (see Listing 2) shows that during the implementation,

the programmer initially had a different solution (chains 1 –

33) than the one presented in the result. During testing, after

making sure that the chosen solution did not fit well enough,

the algorithm was redone (chains 34 – 45). You can also

notice that initially the whole program code was written inside

the main function, and only then, using the Extract Method

refactoring, the logic for finding the minimum number of

coins was moved to a separate method. This style violates the

principles of the stepwise refinement method, which must be

pointed out to a student as a result of the test. Besides,

comments on the method were written at the very end, which

also is a sign of a "bad" style. You can also highlight the

positive aspects, such as style of naming variables and

methods. The names were thought out immediately, and not at

the end, when the program is almost completed.

Fig. 1. Process model discovered using the Inductive Visual Miner

A direct experiment was performed on individual students

with intuitively known abilities. Three students with a high

and three students with a low level of programming skills were

selected. The level of students' skills was known in advance

and was determined by the teacher's expert evaluations in

programming-related disciplines. The experiment aimed to

establish the applicability of the method, not to collect

statistical information and determine skills.

As a result of the direct experiments, we confirmed the

work of our approach. The results obtained correlate well with

the predetermined level of the student.

Fig. 2-3 show the process models of students with

different skills.

The teacher's analysis of the graphs can lead him to the

conclusion that the process model in Fig. 3 is consistent with

the stepwise refinement method, while the process model in

Fig. 2 violates it.

346 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2021

Fig. 2. Process model with deviations from the stepwise refinement method

In Fig. 3 each task is detailed in the next iteration, and in

Fig. 2 it is expressed in the chaotic writing of the program and

making changes to already written code, as well as untimely

addition of comments.

The teacher should pay attention to:

– untimely addition of comments, which appears if there

is no add comment event after the “Add class” or “Add

method” events;

– large number of change events;

– renaming events.

Violation of all this indicates ignoring the method of

stepwise refinement, which in turn leads to a significant

complication of the program development process.

With the proposed approach, the teacher will be able to

evaluate the work based not only on the end result, but on the

process of achieving it.

As a result, flaws in the process are shown, and grading is left

to the teacher. It is up to the teacher to decide which violations

to lower the grades for, and where to make recommendations

and monitor their implementation in future works.

VI. CONCLUSIONS

We proposed an innovative method of using code and

development process review in teaching programming skills.

We implemented CSM tools constructor for modeling

software development process. The model of source code

history was

Fig. 3. Process model according to stepwise refinement method

discovered applying Process Mining methods.

It is shown that Process Mining methods are useful for

understanding the way programmers perform code production

activities, and the difficulties they typically face. Based on the

discovered model, we suggest applying adaptive teaching

methods for students with varying degrees of academic

achievement, which can relieve the process of learning

programming skills.

Practical realization of the suggested approach will provide

a teacher with the opportunity to conduct a modern code

review, which, in our opinion, apart from reviewing a code,

should also include an overview of software development

process in general. A visual representation will provide a

teacher with information about a style of each student’s work

with an explanation of their characteristics.

The automated monitoring system presented here and in our

previous works is novel in the sense that it controls both

student’s programming activities and final functionality of

their work.

This paper is the first step towards understanding student’s

coding skills. Our ultimate goal is to improve coding skills of

novice developers. In a future study, we intend to conduct an

experiment for better evaluation of suggested approach in real-

life conditions. Our aim is to detect patterns and anti-patterns

(smells) on the basis of source code change history and

develop an expert system that will make recommendations to

students and teachers.

V. SHYNKARENKO et al.: APPLICATION OF CONSTRUCTIVE MODELING AND PROCESS MINING APPROACHES 347

LISTING I
STUDENTS’ PROGRAM

1 public class Program {

2 public static void Main(string[] args) {

3 int[] cd = new int[5];

4 int change = 0;

5 Console.WriteLine("Enter denominations");

6 for (int i = 0; i < cd.Length; i++) {

7 cd[i] = Int32.Parse(Console.ReadLine()); }

8 Console.WriteLine("Enter the amount of change");

9 change = Int32.Parse(Console.ReadLine());

10 int result = GetMin (change, cd);

11 Console.WriteLine($"Min number: {result}");

12 Console.ReadLine(); }

13 /// <summary> Comment </summary>

14 /// <param name="change">Change</param>

15 /// <param name="cd">Array of denom.</param>

16 /// <returns> The min number of coins </returns>

17 public static int GetMin (int change, int[] cd) {

18 if (cd.Contains(change)) {

19 return 1; }

20 int result = change;

21 foreach(var coin in cd.Where(d => d <= change)) {

22 int count = 1 + GetMin (change - coin, cd);

23 if (count < result) {

24 result = count; } }

25 return result; } } }

LISTING II

CODE-WRITING HISTORY

1|+|int[] arr…|Program.cs|3|22-11-2020 10:35

2|+|int result = 0…|Program.cs|4|22-11-2020 10:36

3|+|Console.Write…|Program.cs|5|22-11-2020 10:37

4|+|for(int…|Program.cs|6|22-11-2020 10:38

5|+|arr[i] = Int32…|Program.cs|7|22-11-2020 10:39

6|+|Console.Write…|Program.cs|8|22-11-2020 10:40

7|+|change = Int32…|Program.cs|9|22-11-2020 10:41

8|+|Console.Write…|Program.cs|11|22-11-2020 10:42

9|+|Console.Read…|Program.cs|12|22-11-2020 10:43

10|+|int[] sortedArr…|Program.cs|-1|22-11-2020 10:44

11|+|for(int…|Program.cs|-2|22-11-2020 10:45

12|+|result +=…|Program.cs|-3|22-11-2020 10:46

13|+|change = change…|Program.cs|-4|22-11-2020 10:47

14|+|if (change…|Program.cs|-5|22-11-2020 10:48

15|+|public static…|Program.cs|17|22-11-2020 10:49

16|+|return 0;|Program.cs|25|22-11-2020 10:50

17|+|int result = 0;|Program.cs|20|22-11-2020 10:51

18|+|int[] sortedArr…|Program.cs|-6|22-11-2020 10:52

19|+|for(int i…|Program.cs|-7|22-11-2020 10:53

20|+|result +=…|Program.cs|-8|22-11-2020 10:54

21|+|change = change…|Program.cs|-9|22-11-2020 10:55

22|+|if (change ==…|Program.cs|-10|22-11-2020 10:56

23|*|return result;|Program.cs|25|22-11-2020 10:57

24|*|int change = 0;|Program.cs|4|22-11-2020 10:58

25|*|int[] cd =…|Program.cs|3|22-11-2020 10:59

26|-|int[] sortedArr…|Program.cs|-1|22-11-2020 11:00

27|-|for(int i = 0…|Program.cs|-2|22-11-2020 11:01

28|-|result += chan…|Program.cs|-3|22-11-2020 11:02

29|-|change = change…|Program.cs|-4|22-11-2020 11:03

30|-|if(change == 0)…|Program.cs|-5|22-11-2020 11:04

31|+|int result =…|Program.cs|10|22-11-2020 11:05

32|*|for(int i = 0…|Program.cs|6|22-11-2020 11:06

33|*|cd[i] = Int32…|Program.cs|7|22-11-2020 11:07

34|+|if(cd.Contains(…|Program.cs|18|22-11-2020 11:17

35|+|return 1;|Program.cs|19|22-11-2020 11:18

36|*|int result = ch…|Program.cs|20|22-11-2020 11:41

37|-|int[] sortedArr…|Program.cs|-6|22-11-2020 11:42

38|-|for(int i = 0;…|Program.cs|-7|22-11-2020 11:43

39|-|result += chan…|Program.cs|-8|22-11-2020 11:44

40|-|change = change…|Program.cs|-9|22-11-2020 11:45

41|-|if(change ==…|Program.cs|-10|22-11-2020 11:46

42|+|foreach(var co…|Program.cs|21|22-11-2020 12:06

43|+|int count = 1…|Program.cs|22|22-11-2020 12:08

44|+|if(count < res…|Program.cs|23|22-11-2020 12:09

45|+|result = count;|Program.cs|24|22-11-2020 12:10

46|+|///<summary>…|Program.cs|13|22-11-2020 12:40

47|+|///<param name…|Program.cs|14|22-11-2020 12:43

48|+|///<param name…|Program.cs|15|22-11-2020 12:44

49|+|///<returns>…|Program.cs|16|22-11-2020 12:45

REFERENCES

[1] Almeida, F. "Framework for Software Code Reviews and Inspections in

a Classroom Environment", International Journal of Modern Education
and Computer Science, 10 (10), pp. 31–39, 2018. https://doi.org/10.5815

/ijmecs.2018.10.04
[2] Bacchelli, A., Bird, C. "Expectations, outcomes, and challenges of

modern code review", In: 35th International Conference on Software

Engineering, San Francisco, USA, 2013, pp. 712–721.
https://doi.org/10.1109/ICSE.2013.6606617

[3] Sun, Q., Wu, J., Rong, W., Liu, W. "Formative assessment of

programming language learning based on peer code review:
Implementation and experience report", Tsinghua Science and

Technology, 24(4), pp. 423–434, 2019. https://doi.org/10.26599/TST.

2018.9010109
[4] De Andrade Gomes, P. H., Garcia, R. E., Spadon, G., Eler, D. M.,

Olivete, C., Correia, R. C. M. "Teaching software quality via source

code inspection tool", In: IEEE Frontiers in Education Conference,
Indianapolis, USA, 2017, pp. 1–8. https://doi.org/10.1109/FIE/.

2017.8190658

[5] Shynkarenko, V., Zhevago, O. "Visualization of program development
process", In: IEEE 14th International Scientific and Technical

Conference on Computer Sciences and Information Technologies, Lviv,

Ukraine, 2019, pp. 142–145. https://doi.org/10.1109/STC-CSIT.2019.
8929774

[6] Shynkarenko, V., Zhevaho, O. "Constructive Modeling of the Software

Development Process for Modern Code Review", In: IEEE 15th
International Scientific and Technical Conference on Computer Sciences

and Information Technologies, Zbarazh, Ukraine, 2020, pp. 392–395.

https://doi.org/10.1109/CSIT49958.2020.9322002
[7] Shynkarenko, V., Zhevaho, O. "Development of a Toolkit for Analyzing

Software Debugging Processes Using the Constructive Approach",

Eastern-European Journal of Enterprise Technologies, 5(2–107), pp. 29–
38, 2020. https://doi.org/10.15587/1729-4061.2020.215090

[8] Janke, M., Mader, P. "Mining Code Change Patterns from Version

Control Commits", In: IEEE Transactions on Software Engineering,
2020. https://doi.org/10.1109/TSE.2020.3004892

[9] Gousios, G., Spinellis, D. "Mining software engineering data from

GitHub", In: IEEE/ACM 39th International Conference on Software
Engineering Companion, Buenos Aires, Argentina, 2017, pp. 501–502.

https://doi.org/10.1109/ICSE-C.2017.164

[10] Guerrero-Higueras, Á. M., DeCastro-García, N., Conde, M., Matellán,
V. "Predictive models of academic success: A case study with version

control systems", In: Proceedings of the 6th International Conference on

Technological Ecosystems for Enhancing Multiculturality, New York,
USA, 2018, pp. 306–312. https://doi.org/10.1145/3284179.3284235

[11] Krusche, S., Seitz, A. "ArTEMiS: An automatic assessment management

system for interactive learning", In: Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, New York,

USA, 2018, pp. 284–289. https://doi.org/10.1145/3159450.3159602

[12] Negara, S., Vakilian, M., Chen, N., Johnson, R. E., Dig, D. "Is it dangerous
to use version control histories to study source code evolution?", In:

European Conference on Object-Oriented Programming, Lecture Notes in

348 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2021

https://doi.org/10.5815/ijmecs.2018.10.04
https://doi.org/10.5815/ijmecs.2018.10.04
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.26599/TST.2018.9010109
https://doi.org/10.26599/TST.2018.9010109
https://doi.org/10.1109/FIE.2017.8190658
https://doi.org/10.1109/FIE.2017.8190658
https://doi.org/10.1109/STC-CSIT.2019.%208929774
https://doi.org/10.1109/STC-CSIT.2019.%208929774
https://doi.org/10.1109/CSIT49958.2020.9322002
https://doi.org/10.15587/1729-4061.2020.215090
https://doi.org/10.1109/TSE.2020.3004892
https://doi.org/10.1109/ICSE-C.2017.164
https://doi.org/10.1145/3284179.3284235
https://doi.org/10.1145/3159450.3159602

Computer Science, Springer, Berlin, Heidelberg, Germany, 2012, pp. 79–
103. https://doi.org/10.1007/978-3-642-31057-7_5

[13] Breuker, D. M., Derriks, J., Brunekreef, J. "Measuring static quality of

student code", In: Proceedings of the 16th Annual Conference on
Innovation and Technology in Computer Science, New York, USA,

2011, pp. 13–17. https://doi.org/10.1145/1999747.1999754

[14] Keuning, H., Heeren, B., Jeuring, J. "Code quality issues in student
programs", In: Annual Conference on Innovation and Technology in

Computer Science Education, New York, USA, 2017, pp. 110–115.

https://doi.org/10.1145/3059009.3059061
[15] Fonseca, N. G., Macedo, L., Mendes, A. J. "CodeInsights: Monitoring

programming students’ progress", In: Proceedings of the 17th

International Conference on Computer Systems and Technologies, New
York, USA, 2016, pp. 375–382. https://doi.org/10.1145/2983468.

2983492

[16] Snipes, W., Murphy-Hill, E., Fritz, T., Vakilian, M., Damevski, K., Nair,
A. R., Shepherd, D. "A Practical Guide to Analyzing IDE Usage Data",

In: The Art and Science of Analyzing Software Data, Morgan

Kaufmann, Boston, USA, 2015, pp. 85–138.
https://doi.org/10.1016/B978-0-12-411519-4.00005-7

[17] Damevski, K., Shepherd, D. C., Schneider, J., Pollock, L. "Mining

Sequences of Developer Interactions in Visual Studio for Usage Smells",
IEEE Transactions on Software Engineering, 43(4), pp. 359–371, 2017.

https://doi.org/10.1109/TSE.2016.2592905

[18] Snipes, W., Augustine, V., Nair, A. R., Murphy-Hill, E. "Towards
recognizing and rewarding efficient developer work patterns", In: 35th

International Conference on Software Engineering, San Francisco. USA,

2013, pp. 1277–1280. https://doi.org/10.1109/ICSE.2013.6606697
[19] Snipes, W., Nair, A. R., Murphy-Hill, E. "Experiences gamifying

developer adoption of practices and tools", In: 36th International

Conference on Software Engineering, New York, USA, 2014, pp. 105–
114. https://doi.org/10.1145/2591062.2591171

[20] Amann, S., Proksch, S., Nadi, S., Mezini, M. "A Study of Visual Studio

Usage in Practice", In: 23rd International Conference on Software
Analysis, Evolution, and Reengineering, Suita, Japan, 2016, pp. 124–

134. https://doi.org/10.1109/saner.2016.39

[21] Amann, S., Proksch, S., Nadi, S.: FeedBaG "An interaction tracker for
Visual Studio", In: IEEE 24th International Conference on Program

Comprehension, Austin, USA, 2016, pp. 1–3. https://doi.org/10.1109/
ICPC.2016.7503741

[22] Wang, Y., Li, H., Feng, Y., Jiang, Y., Liu, Y. "Assessment of

programming language learning based on peer code review model:
Implementation and experience report", Computers and Education,

59(2), pp. 412–422, 2012. https://doi.org/10.1016/j.compedu.2012.

01.007
[23] Pon-Barry, H., Packard, B. W. L., St. John, A. "Expanding capacity and

promoting inclusion in introductory computer science: a focus on near-

peer mentor preparation and code review", Computer Science Education,
27(1), pp. 54–77, 2017. https://doi.org/10.1080/08993408.2017.1333270

[24] García-Borgoñón, L., Barcelona, M. A., García-García, J. A., Alba, M.,

Escalona, M. J. "Software process modeling languages: A systematic
literature review", Information and Software Technology, 56(2), pp.

103–116, 2014. https://doi.org/10.1016/j.infsof.2013.10.001

[25] Shynkarenko, V. I., Ilman, V. M. "Constructive-Synthesizing Structures
and Their Grammatical Interpretations. i. Generalized Formal

Constructive-Synthesizing Structure", Cybernetics and Systems Analysis,

50(5), pp. 655–662, 2014. https://doi.org/10.1007/s10559-014-9655-z
[26] Shynkarenko, V. I., Ilman, V. M. "Constructive-Synthesizing Structures

and Their Grammatical Interpretations. II. Refining Transformations",

Cybernetics and Systems Analysis, 50(6), pp. 829–841, 2014.
https://doi.org/10.1007/s10559- 014-9674-9

[27] Shynkarenko, V. I., Ilman, V. M., Skalozub, V. V. "Structural models of

algorithms in problems of applied programming. I. Formal algorithmic
structures", Cybernetics and Systems Analysis, 45(3), pp. 329–339,

2009. https://doi.org/10.1007/s10559-009-9118-0

[28] Shynkarenko, V. I., Ilman, V. M., Skalozub, V. V. "Structural models of
algorithms in problems of applied programming. II. Structural-algorithmic

approach to software simulation", Cybernetics and Systems Analysis,

45(4), pp. 544–550, 2009. https://doi.org/10.1007/s10559-009-9122-4
[29] Van Der Aalst, W. "Process mining: Overview and opportunities", ACM

Transactions on Management Information Systems, 3(2), pp. 1–17,

2012. https://doi.org/10.1145/2229156.2229157
[30] Van Der Aalst, W. et.al. "Process mining manifesto", In: Lecture Notes in

Business Information Processing, Springer, Berlin, Heidelberg, Germany,

pp. 169–194, 2012. https://doi.org/10.1007/978-3-642-28108-2_19

[31] Rubin, V. A., Mitsyuk, A. A., Lomazova, I. A., Van Der Aalst, W. M. P.
"Process mining can be applied to software too!" In: Proceedings of the

8th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, New York, USA, 2014, pp. 1–8.
https://doi.org/10.1145/2652524.2652583

[32] Sebu, M. L., Ciocarlie, H. "Applied process mining in software

development", In: 9th IEEE International Symposium on Applied
Computational Intelligence and Informatics, Timisoara, Romania, 2014,

pp. 55–60. https://doi.org/10.1109/SACI.2014.6840098

[33] Ardimento, P., Bernardi, M. L., Cimitile, M., Maggi, F. M. "Evaluating
coding behavior in software development processes: A process mining

approach", In: IEEE/ACM International Conference on Software and

System Processes, Montreal, Canada, 2019, pp. 84–93.
https://doi.org/10.1109/ICSSP.2019.00020

[34] Skalozub, V., Ilman, V., Shynkarenko, V. "Development of ontological

support of constructive-synthesizing modeling of information systems",
Eastern-European Journal of Enterprise Technologies, 6(4–90), pp. 58–

69, 2017. https://doi.org/10.15587/1729-4061.2017.119497

[35] Verbeek, H. M. W., Buijs, J. C. A. M., Van Dongen, B. F., Van Der Aalst,
W. M. P. "XES, XESame, and ProM 6", In: Lecture Notes in Business

Information Processing, Springer, Berlin, Heidelberg, Germany, pp. 60–

75, 2011. https://doi.org/10.1007/978-3-642-17722-4_5
[36] Van der Aalst, W. "Process mining: Data science in action", Springer,

Berlin, Heidelberg, Germany, pp. 1–467, 2016.

https://doi.org/10.1007/978-3-662-49851-4
[37] Leemans, S. J. J., Poppe, E., Wynn, M. T. "Directly Follows-Based

Process Mining: Exploration & a Case Study", In: International

Conference on Process Mining, Aachen, Germany, 2019, pp. 25–32.
https://doi.org/10.1109/ICPM.2019.00015

Viktor Shynkarenko is Full Professor in Computer and

Information Technologies Department of Dnipro National
University of Railway Transport named after academician

V. Lazaryan, Dnipro, Ukraine. His current research

interests are constructive-synthesizing modeling, software
engineering education.

Oleksandr Zhevaho is Ph. D. student in Computer and
Information Technologies Department of Dnipro

National University of Railway Transport named after

academician V. Lazaryan, Dnipro, Ukraine. His current
research interests are analysis of software development

process and Process Mining.

V. SHYNKARENKO et al.: APPLICATION OF CONSTRUCTIVE MODELING AND PROCESS MINING APPROACHES 349

https://doi.org/10.1007/978-3-642-31057-7_5
https://doi.org/10.1145/1999747.1999754
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1145/2983468.2983492
https://doi.org/10.1145/2983468.2983492
https://doi.org/10.1016/B978-0-12-411519-4.00005-7
https://doi.org/10.1109/TSE.2016.2592905
https://doi.org/10.1109/ICSE.2013.6606697
https://doi.org/10.1145/2591062.2591171
https://doi.org/10.1109/saner.2016.39
https://doi.org/10.1109/ICPC.2016.7503741
https://doi.org/10.1109/ICPC.2016.7503741
https://doi.org/10.1016/j.compedu.2012.01.007
https://doi.org/10.1016/j.compedu.2012.01.007
https://doi.org/10.1080/08993408.2017.1333270
https://doi.org/10.1016/j.infsof.2013.10.001
https://doi.org/10.1145/2229156.2229157
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1145/2652524.2652583
https://doi.org/10.1109/SACI.2014.6840098
https://doi.org/10.1109/ICSSP.2019.00020
https://doi.org/10.1007/978-3-642-17722-4_5
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1109/ICPM.2019.00015

