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1 Introduction
Saccharomyces cerevisiae can survive in inorganic mineral 
sources, such as iron-sulphur mineral pyrite ash medium. 
Pyrite ash is a discarded material of sulphuric acid manu-
facturing plants as an iron–sulphur ore by-product. Pow-
dered pyrite ore is calcinated to oxidise its sulphur content 
into sulphur dioxide gas leaving a mass of depleted mineral 
ash that contains significant amounts of iron in forms of 
oxides and trace amounts of sulphides.1

Chemical and biochemical reactions, as well as the data 
of biological growth dynamics are usually characterised 
by sigmoid models, and display sigmoidal curves that ex-
hibit S-shaped graphical lines. Activities of chemical and 
biochemical catalysts, besides growth of living organisms, 
present sigmoidal appearances.2

The powder X-ray diffraction (XRD) analysis of pyrite ash 
indicates that the sulphur residue of pyrite ash is associated 
with minerals such as FeS, CuS, CuSO4, PbS, and PbSO4.1,3 
The effect of roasted pyrite ash on soil has been evaluated, 
and the potential risks have been defined.4,5

The nanomineralogical composition of roasted pyrite ash 
was investigated, and numerous heavy metal elements, 
such as As, Cr, Cu, Co, La, Mn, Ni, Pb, Sb, Se, Sr, Ti, Zn, 
and Zr, were determined using XRD, high-resolution trans-
mission electron microscopy, and field emission scanning 
electron microscopy.3

S. cerevisiae is used for the massive production of single cell 
protein and ethanol. The growth of S. cerevisiae in a pyrite 

ash based medium has been examined to analyse the capa-
bility of the bacterium to metabolise organic and inorganic 
sulphur, in addition to its growth progression in mineral 
media. Inorganic sulphur compounds, as in pyrite ash, can 
be converted into organic forms through the bioprocess of 
protein molecules by S. cerevisiae. Several studies have re-
vealed that S. cerevisiae can assimilate sulphur complexes 
through specific sulphur pathway systems to produce intra-
cellular sulphur-containing serine, threonine, cysteine, and 
methionine amino acids, as well as extracellular hydrogen 
sulphide (H2S). S. cerevisiae possesses special enzymes for 
use in sulphate-assimilatory metabolism. As S. cerevisiae 
actively produces H2S during growth, its metabolism and 
genetics are being extensively studied for investigating the 
dissimilatory and assimilatory metabolisms of inorganic sul-
phur compounds. S. cerevisiae can use various organic and 
inorganic nitrogen compounds, thus increasing uptake of 
the carbon and sulphur substances.6–9

Several studies have been conducted to understand the ef-
fect of heavy metals on the survival capability of S. cerevisi-
ae. Cadmium toxicity was modelled in the growth process 
of S. cerevisiae from the lag phase to the stationary phase, 
and the preliminary cell mortality was represented by in-
creasing cadmium levels.10 In other studies, the biosorption 
and accumulation of heavy metals by S. cerevisiae have 
been effectively investigated experimentally.11–14

The main objective of this study was to investigate model-
ling of the growth of S. cerevisiae incubated in the media 
containing pyrite ash by using characteristic growth mod-
elling functions, and to determine the errors between the 
observed and approximated values. XRD simulation anal-
ysis of the structure of pyrite ash samples is planned using 
diffraction profiling functions.
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2 Materials and methods
S. cerevisiae was isolated from commercial baker’s yeast 
and incubated starting with an initial count (N0) of 1 ∙ 105 
CFU ml–1 according to selective isolation and incubation 
methods. The samples of pyrite ash with high iron (61.08 %) 
and low sulphur (0.59 %) contents were supplied from the 
calcinated waste ashes of the Eti Mining Bandırma Borax 
Plant in Turkey. Pyrite ash solutions (3 %) were prepared 
for incubation trials in 40-litre plastic tank, and incubation 
media were formulated using non-sulphur containing car-
bon/nitrogen sources as well as glucose, salts, and vitamins. 
Incubation was performed at an average growth tempera-
ture of 37 °C for five days in batch-type liquid-state biopro-
cesses. Nitrogen and phosphate extracted from the poultry 
waste into water by the application of CO2 from the Bolu 
region were applied as putative substrates for incubation. 
Isolation and identification procedures of S. cerevisiae 
strains were conducted at the laboratories of the Scientif-
ic Industrial and Technological Applications and Research 
Centre, and mineralogical studies of the pyrite ash samples 
during experimental investigations were performed using 
the Rigaku XRD set up at the laboratory of the Physics De-
partment of the Faculty of Literature and Science, Bolu 
Abant İzzet Baysal University. The XRD profile analysis 
of pyrite ash samples was performed with the diffraction 
peaks between 20° and 90° 2θ angles. Modelling functions 
were used to estimate the predicted counts of S. cerevisiae, 
and calculations, 3D sigmoidal graphs, and profile simula-
tion graphs were assessed using MATLAB software.15 

2.1 Growth model functions

The sigmoid model appropriately describes the growth of 
organisms with simple life cycles that starts with a sluggish 
growth, continues with fast-exponential growth, and con-
cludes with declining growth.16,17 Characteristic growth 
models that consider intrinsic rate constants are recog-
nised as useful tools to fit the calculated data with the real 
data of the sigmoid curves.18 Some well-known practiced 
models and their modified forms are the Malthusian ex-
ponential, Verhulst logistic, Richards, Gompertz, and von 
Bertalanffy functions. The functions are modified to inves-
tigate the living aspects and growth dynamics of microor-
ganisms in certain experimental or natural conditions. The 
models and their modified forms with major restrictions 
were successfully applied to evaluate growth dynamics by 
fitting the predicted data with the experimented data.19–25 
The growth model functions and their analytical solutions, 
which are used to determine the best fitting models for 
growth processes are listed in Table 1.

The Malthusian exponential growth model function in-
dicates that the current growth of the microorganisms is 
strictly proportional to the initial population (N0), although 
it cannot sufficiently represent entirely restrictive growth 
parameters. The Verhulst logistic estimation is adjusted 
for sufficiently characterising the growth restrictions with 
maximal viability (Nm), which is described as the carrying 
capacity as a limiting case. The capacity acknowledged as 
the main parameter, since it depends on population sat-
uration level characteristics and regulates the growth dy-
namics of organisms. Except the exponential modelling 

equation, all the other modelling functions are described 
as extended logistic equations. Among them, the Richards 
and the von Bertalanffy functions are Bernoulli-type differ-
ential equations, which are considered as estimating the 
complete growth parameters through modifications of the 
exponential power type (β). The von Bertalanffy function 
is an improved form of the Richards function incorporated 
with β = 3 power type evaluation.23,24

2.2 Error equations

The accuracy of the approximated data set generated from 
the modelling equations can be obtained through an error 
analysis, representing the deviation of the result from the 
exact value, which indicates the precision of the estimation 
for any function. The error analysis can be accomplished 
using relative and numerical error analysis methods.26,27

The relative error analysis considers the absolute difference 
between true investigational (yi+1) and estimated (yi) values: 

(1)

The numerical error analysis can be performed using the 
Euler’s method and the Heun’s 2nd order Runge–Kutta 
method with step size means given by (xi, xi+1) and (yi, yi+1), 
which are essentially terms from the Taylor series expan-
sion.

The subsequent equations show the derivation of the nu-
merical error using the Euler’s method as follows: 
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The numerical error is obtained using the Heun’s method 
as follows:

( )1 1 22i i
hy y k k+ = + + (7)

( )1 ,i ik f x y= (8)

( )2 1,i ik f x h y k h= + + (9)

2.3 Simulation of XRD pattern

XRD analysis is a method useful for observing and compar-
ing the structural changes of reduced pyrite ash minerals. 
Powder diffraction line profiles of XRD patterns can be esti-
mated using Gaussian and Lorentzian shape functions.28,29 
The width of a line profile is described by the full width 
at half maximum (FWHM) parameter in simulation mod-
elling. The Gaussian equation comprises the exponential 
form of the intensity and the theta angle; thus, this model 
is a fine-estimating function of investigational data.

The Gaussian function is modified to represent XRD pro-
files as follows:

(10)

The Lorentzian function is pertinent profile shape equa-
tion, which can also describe tested diffraction line data.

The revised Lorentz function is improved to characterise 
XRD profiles as follows:

(11)

3 Results
The strains of S. cerevisiae were well grown in 3 % pulp 
solutions of calcinated pyrite ash media with constant air 
temperature and constant feeding. The temperature of the 
media was kept around 37 °C, and the lowest pH was re-
corded as 4.5.

The initial, evolving, maximum, and declining counts of 
S. cerevisiae were recorded during the preliminary growth 
periods in the designed bioprocess; these values were used 
to generate predicted graph curves. The counts of S. cere-
visiae indicated a slow growth during the preliminary peri-

od, and the growth declined when the count reached the 
highest amount (Nm).

3.1 Modelling and error results 

All common growth models were surveyed to determine 
the best assumed fit for the sigmoidal curves in order to de-
scribe the investigations of the S. cerevisiae counts. For this, 
the specific growth rate kinetic constants (r) were obtained 
using the analytical solutions of each modelling equation 
from the line slope in the population versus time graph. 
The approximated data were then recalculated using the 
estimated rate constants. The computed respective rate 
constants of the models, and the regenerated initial, maxi-
mum, and final counts of S. cerevisiae are given in Tables 2 
and 3, respectively. 

Table 2 – Computed values of the growth rate kinetics  
constants, r

Growth model r
Exponential 0.0026

Logistic 0.0027
Gompertz 0.0058
Richards 0.0270

von Bertalanffy 0.0008

Table 3 – Computed initial, maximum, and last counts of 
S. cerevisiae

Counts (105 CFU ml–1)
Initial Maximum Last

Experimental 1.1 5.4 4.6

Pr
ed

ic
te

d

Exponential 1.1 3.9 3.4
Logistic 1.1 4.8 4.3

Gompertz 7.4 26.5 26.5
Richards 17.2 22.2 22.2

von Bertalanffy 1.1 5.3 4.8

Different modelling approaches were examined in this 
study to extend the investigations and retrieve appropriate 
displays for each model. Smooth 3D graphs were generat-
ed using the number of counts recorded from the experi-
ments, and the predictions were modelled with respect to 
culture time parameter.

The analytical solution of the exponential function was 
used to determine the rate constant of the exponential 
model, which was obtained as 0.0026 from the slope. The 
approximated initial, maximum, and final counts of S. cer-
evisiae using the exponential rate constant were calculated 
as 1.1 ∙ 105, 5.4 ∙ 105, 4.7 ∙ 105 CFU ml–1, respectively. The 
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exponential modelling results were found comparable to 
the real value shown in Table 3. Fig.  1 shows the graph 
of the number of counts obtained from investigations and 
exponential prediction vs culture time. As the exponential 
model includes only the initial count (N0) that does not 
comprise the growth capacity parameter, it covers only a 
simplistic expression of the tested data. A sigmoidal fit with 
errors was obtained with the exponential model. The er-
ror analysis for the exponential solution is shown in Fig. 2, 
which indicates maximum relative error deviation between 
the real and estimated data of 26.8 %. The analysis of the 
maximum numerical error using the Euler’s and Heun’s 
methods yielded errors of 4.8 % and 5.4 %, respectively, 
which yielded the lowest errors computed.

The maximum number (Nm) of S. cerevisiae expresses the 
carrying capacity, which is considered as the main parame-
ter in the logistic, Gompertz, Richards, and von Bertalanffy 
modelling functions. The carrying capacity relates viability 

regulation with Nm, which was experimentally detected to 
be 5.4 ∙ 105 CFU ml–1. The carrying capacity was assessed 
to sketch a graph to calculate the logistic rate constant, 
as well as the initial and final counts. The rate constant 
of the logistic model was determined to be 0.0027 from 
the slope, and was used to regenerate the logistic investi-
gation data. The initial, maximum, and final counts were 
determined as 1.1 ∙ 105, 4.8 ∙ 105, and 4.4 ∙ 105 CFU ml–1, 
respectively, using the logistic rate constant as presented 
in Table 3. The counts acquired from the observations and 
the logistic function evaluation with respect to culture time 
interval are presented in Fig. 3, which shows an S-shaped 
curve with a maximum relative error of 14.7 %. The max-
imum numerical errors in the case of the logistic model 
were estimated as 17.3  % for the Euler’s method, and 
64.6 % for the Heun’s method, as seen in Fig. 4.

The Gompertz equation, one of the extended logistic 
modelling equations, was used to determine the rate con-

Fig. 1 – Exponential model prediction
Fig. 2 – Error analysis for the exponential solution

Fig. 3 – Logistic model prediction
Fig. 4 – Error analysis for logistic model estimation
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stant, which was determined as 0.0058. This recalculation 
yielded the predicted initial, maximum, and final counts of 
7.4 ∙ 105, 26.5 ∙ 105, and 26.5 ∙ 105 CFU ml–1, respectively, 
as shown in Table 3. In this table, the initial value of the 
counts was found to be much higher than the calculated 
value. The values for the experiments and Gompertz func-
tion approximations were recalculated using the Gompertz 
rate constant, as illustrated in Fig. 5. The maximum rela-
tive and numerical error deviations between the observed 
values and the values estimated using the Gompertz mod-
el had a 12.3 % relative error, 14.1 % Euler’s error, and 
101.7 % Heun’s error, as shown in Fig. 6.

The Richards and von Bertalanffy restricted modelling 
equations, after modifications in β, yielded the maximum 
counts of S. cerevisiae. The Richards rate constant was esti-
mated as 0.027, and the initial, maximum, and final counts 
were determined as 17.2 ∙ 105, 22.2 ∙ 105, and 22.2 ∙ 105 
CFU ml–1, respectively, when β = −0.9 exponential adjust-

ment, which was acknowledged as unusual. These results 
were plotted to obtain a sigmoidal curve as demonstrated 
in Fig. 7. The maximum errors for the Richards estimations 
yielded a −2.8 % relative error, −2.7 % Euler’s error, and 
105.7 % Heun’s error, as visualised in Fig. 8.

The von Bertalanffy function incorporated with pow-
er β = 3 calculation yielded a rate constant of 0.00084, 
and the initial, maximum, and final counts were 1.1 ∙ 105, 
5.3 ∙ 105, and 4.8 ∙ 105 CFU ml–1, respectively. These counts 
were found to be comparable values to the observed 
counts as well as the exponential and logistic estimation 
data. The sigmoidal curve obtained from the von Berta-
lanffy function evaluation is illustrated in Fig.  9, which 
is considered as an identical fit to the real experimental 
data. The maximum relative error deviation was estimated 
to be 11.6 %. Furthermore, the Euler’s and Heun’s meth-
ods yielded errors of 13.1 % and 101.1 %, respectively, as 
demonstrated in Fig. 10.

Fig. 5 – Gompertz model prediction
Fig. 6 – Error analysis for the Gompertz model estimation

Fig. 7 – Richards model prediction

Fig. 8 – Error analysis for the Richards model estimation
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The maximum relative error deviation between the real and 
evaluated data in the exponential model was determined 
to be 26.8 %. The deviation calculated with the Richards 
model was estimated as −2.8  %, which was considered 
as unrealistic. The maximum numerical errors calculated 
using Euler’s method Euler’s method were 17.3 % for the 
logistic model, and 105.65 % for the Richards model. The 
error deviation of the von Bertalanffy method with an ap-
proximation of β = 0.1−1.1 and 0.1 increment, was found 
to be higher than that of the other modelling equations.

The lowest relative error deviation between the exper-
imental and estimated data was obtained using the von 
Bertalanffy model solution, yielding a value of 11.6  %. 
Heun’s method yielded the minimum numerical errors of 
4.8 % and 5.4 %, respectively, as shown in Table 4.

Table 4 – Maximum error values for the applied models

Relative 
error / %

Euler’s 
error / %

Heun’s error 
/ %

Exponential solution 26.8 4.8 5.36
Logistic solution 14.73 17.28 64.59

Gompertz solution 12.33 14.06 101.73
Richards solution −2.80 −2.73 105.65

von Bertalanffy solution 11.56 13.07 101.10

3.2 XRD pattern simulations

The pyrite ash samples were quantitatively studied using 
XRD analysis, and a slight decomposition was detected in 
the sulphur-associated minerals, as reported in previous 
studies.2,3

The initial diffraction profile of the pyrite ash sample was 
accurately obtained using the actual intensity data as illus-

trated in Fig. 11, in which diffraction line number 5 was at-
tributed to sulphur mineral compounds, such as FeS, PbS, 
CuS, and PbSO4. Therefore, the initial and final profiles of 
line 5 were evaluated as shown in Fig. 12. The areas under 
the curves in these profiles corresponded to the total inten-
sity of the related molecules, and the difference between 
the areas under the two curves was attributed to a slight 
variance in the decompositions. The mineral composition 
of pyrite ash, as determined through XRD analysis on the 
first day, is specified in Table 5.

Fig. 11 – Initial day XRD analysis of pyrite ash

As presented in Fig.  12, the initial and final profile data 
represent the pyrite ash mineral components, and the test 
results indicated slight decreases in the amounts of sulphur 
and non-sulphur minerals due to the microbial process, 
as reflected in the plots of intensity rate against theta. The 
differences between the two lines are presented in Fig. 13, 
which shows a trivial difference in the intensity between 
the initial and final diffraction profile data of line 5. Slight 
differences between the profiles of line 5 on the initial and 
final days were also observed, as shown in Fig.  13. The 

Fig. 9 – Richards model prediction

Fig. 10 – Error analysis for the Richards model estimation
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intensity of the diffraction lines of the constituents of the 
sample changed after the experiments. The maximum in-
tensities of line 5 on the initial and final days were record-
ed as 220 and 185, respectively. 

Line 5 on the final days was simulated by the Gaussian and 
Lorentzian functions as 3D simulation graphs presented in 
Figs. 14 and 15, respectively. As seen in Fig. 14, the diffrac-
tion line data were well-fitted roundly using Gaussian func-
tion completing the half value of the maximum intensities 
and yielding the maximum intensity around 220. An incom-
plete fit was acquired using Lorentzian function resulting 
in the maximum intensity around 150, as seen in Fig. 15.

4 Discussion
Growth behaviour of S. cerevisiae and molecular structure 
of pyrite ash samples were studied using the growth mod-
elling and XRD pattern simulations. 

Table 5 – Mineral molecules of initial day XRD analysis of pyrite 
ash

Line 
No. Mineral Molecules Line 

No. Mineral Molecules

1 FeS 13 ZnO, FeO, Fe2O3

2 CuO 14 ZnO
3 CuSO4 15 FeO
4 PbSO4 16 CuS
5 Fe2O3, FeS, PbS, CuS, PbSO4 17 FeO, Fe2O3

6 Fe2O3, ZnO 18 ZnO
7 CuO 19 FeS
8 FeS, CuO 20 FeO
9 FeO 21 FeO

10 PbS 22 FeS
11 ZnO, PbO, FeS 23 FeO
12 ZnO, FeO 24 FeO
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Fig. 12 – Initial and last days of the XRD analysis of the line 5
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Fig. 13 – Graph of differences between the two lines of the XRD 
analysis of the line 5

Fig. 14 – Gaussian approximation of XRD analysis of the line 
number 5

Fig. 15 – Lorentzian approximation of XRD analysis of the line 
number 5
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The observations in this study revealed productive growth 
and no detectable toxic effect on S. cerevisiae; thus, it was 
deduced that there was no significant heavy metal toxicity 
during the initial incubation period and a prolonged peri-
od for a couple of weeks thereafter. Extended incubation 
period also led to biofilm layer formation, immobilisation 
of the microorganisms at the surface of the mineral parti-
cles, and biosorption of the smaller particles to the surface 
of the microorganisms, all of which were detected under 
microscopic investigations. Habitation of S. cerevisiae in-
side the biofilm layers was observed. 

The counts of S. cerevisiae as observed through the prima-
ry incubation period were substituted in the mathematical 
expressions of well-known growth models, and the specific 
growth rate kinetic constants were approximated, as listed 
in Table 2. Consequently, sigmoidal curves (Figs. 1, 3, 5, 
7, and 10) with some errors (Figs. 2, 4, 6, 8, and 10) were 
obtained, consistent with the results of previous studies. 

The rate constants obtained by the exponential and logis-
tic, Gompertz and von Bertalanffy models were used to 
estimate the initial, maximum, and final counts of S. cerevi-
siae. The counts estimated through these models were the 
most relevant to the actual counts, whereas the Richards 
function attained the most irrelevant estimated value, as 
shown in Table 3. The estimated rate constants, project-
ed figures, and calculated errors specified that all models, 
except the Richards model, yielded similar results for the 
initial counts of S. cerevisiae.

The graph of the exponential model was drawn using 
the function and rate constant, yielding the most appo-
site accuracy compared to the tested data. This accuracy 
was due to the simplistic N0 expression of the exponential 
function. The estimations were repeated using Nm param-
eter, known as a growth-limiting factor, and the carrying 
capacity. Moreover, the β power estimations in the other 
modelling functions yielded lower accuracies than those 
of the exponential function. Generally, the 3D graphs of 
the overall models presented S-shaped curves, as shown in 
Figs. 1, 3, 5, 7, and 9.

The errors between the observed and estimated values of 
the five models were examined using the relative method 
and the numerical Euler’s and Heun’s error methods, as 
illustrated in Figs. 2, 4, 6, 8, and 10. 

The key outcome of this study was that the deviations from 
the observed values increased depending on N0 and Nm 
values, and the β calculations. As seen from the graphs of 
the surveyed errors, the relative and numerical error anal-
yses for the exponential model approximations yielded in 
the lowest error percentages, related to the other overall 
errors. The maximum relative error deviation between 
the experimental and estimated data for the exponential 
model was calculated as 26.8 %, whereas the maximum 
numerical error calculated by the Euler’s and Heun’s 
methods were 34.6 % and 61.2 %, respectively. The von 
Bertalanffy approximation using β = 0.1–1.1 power, yield-
ed the highest error deviation compared to the other mod-
elling estimations. 

The lowest relative error deviation between the tested and 
evaluated data was found to be 11.6 %, which was cal-
culated via the von Bertalanffy model solution. The mini-
mum numerical errors obtained by the Euler’s and Heun’s 
methods were 4.8 % and 5.4 %, respectively, as shown in 
Table 4.

The chemical compositions of pyrite ash have been studied 
in previous research, and sulphur-containing compounds 
such as FeS, CuS, CuSO4, PbS, and PbSO4 have been 
detected. The initial and final chemical compositions of 
the pyrite ash were analysed, and the corresponding XRD 
analysis results were found to be comparable (Fig.  11). 
The diffraction line number 5 corresponding to the highest 
amount of sulphur was selected and investigated specifi-
cally through generating graph plots, as well as Gaussian 
and Lorentzian simulations. The XRD profiles of line 5 on 
the initial and final days were slightly different (Fig.  12). 
Fig. 13 demonstrated that the variance between the inten-
sity magnitudes of the two profiles presented the largest 
discrepancy between the angles of 15°–25°. The diffrac-
tion line 5 was described well by the Gaussian function in 
a 3D simulation, using the tested intensity values, and an 
analogously fitted shape profile was acquired. Thus, the 
results revealed a well described relationship between the 
real and simulated profiles of diffraction intensity and ab-
sorption (Fig. 14). However, the Lorentzian function yield-
ed an incomplete fitting result with a sharp edge (Fig. 15).

5 Conclusions
The growth of S. cerevisiae was modelled to predict the 
restrictions and progress of living organisms in the miner-
als comprising pyrite ash. XRD analysis was performed to 
examine the mineral decomposition in the incubation bio-
process. The S. cerevisiae strains could grow well in pyrite 
mineral ash without heavy metal toxicities. The microor-
ganisms were immobilised on the surface of the mineral 
ash, and they formed specific types of biofilms. The rate 
constants were assessed using the analytical solutions of the 
growth models, and used to regenerate the predicted data 
for each model equation. The 3D graphs of the five stud-
ied models demonstrated S-shaped sigmoidal curves. The 
lowest relative error was 11.56 %, obtained using the von 
Bertalanffy model. The models, based on the maximum 
counts and power estimations yielded weakened model 
assumptions and increased numerical error deviations. 
Consequently, the error estimations of Euler’s and He-
un’s methods indicated that the deviation rates increased 
with model equations that included Nm and β estimations. 
The numerical methods for exponential model estimation 
yielded the most appropriate numerical error percentages. 
Euler’s method yielded an error of 4.8 %, whereas Heun’s 
method yielded an error of 5.4 %. The XRD analysis results 
for the sulphur-containing compounds FeS, CuS, CuSO4, 
PbS, and PbSO4 revealed a slight difference between the 
initial and final diffraction line profiles. The selected line 
number 5 was visualised well by the Gaussian function in 
a 3D simulation, but the Lorentzian function yielded an 
incomplete fitting result.
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SAŽETAK
Modeliranje prirasta kulture Saccharomyces cerevisiae i simuliranje 

obrazaca rendgenskog spektra piritnog pepela
Yakup Ermurat

Kvasac Saccharomyces cerevisiae inkubiran je u mediju koji je sadržavao piritni pepeo. Uzorci 
piritnog pepela analizirani su rendgenskom difrakcijskom analizom. Dio rendgenskog spektra koji 
se odnosio na spojeve koji su u sebi sadržavali atom sumpora simuliran je primjenom Gaussijana 
i Lorencijana te je uočeno da Gaussijan dobro opisuje eksperimentalne podatke. Za opisivanje 
prirasta kvasca primijenjeno je više matematičkih modela. Najniža relativna pogreška od 11,56 % 
dobivena je za von Bertalanffyjev model prirasta. Procjena eksponencijalnim modelom dala je 
niske vrijednosti postotne pogreške: Eulerova pogreška iznosila je 4,8, a Heunova 5,36 %.
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Saccharomyces cerevisiae, piritni pepeo, modeliranje prirasta, analiza pogreške, XRD analiza
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