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SUMMARY 

In this investigation, finite difference lattice Boltzmann method (FD_LBM) is developed to solve 

heat transfer effect behavior on the symmetrical and unsymmetrical airfoils with plunge 

oscillations. In this simulation, the equations of motion and energy are executed using LBM and 

FD simultaneously. The LB method is integrated with ghost flow for predicted curve boundary. 

The ghost flow method is a Cartesian-based method that, in addition to being practical and 

straightforward, retains many advantageous features of structured meshes, can be used for 

complex geometries, and has a high degree of flexibility. In other words, when the body oscillates, 

it is important to determine its position caused by the change in the mesh structure at any time. 

While the ghost method detects the object's position well, the new technique can capture the 

details of flow more accurately and stably than the other methods. Combining the ghost method 

with LBM provides a new technique that can investigate thermal behavior's effect on the airfoil 

with greater accuracy and stability. This combination of modern methods with high accuracy and 

stability in complex geometries has not been studied. The results are compared with the literature 

and show that this method has better convergence in different Reynolds and temperatures with 

changes at boundary conditions in the airfoil. 

KEY WORDS: Lattice Boltzmann; ghost flow; computational fluid dynamics; plunge; heat 

transfer; total variation diminishing. 

1. INTRODUCTION 

Many types of research have been conducted to develop the field of Micro Aerial Vehicles 

(MAV). Recently, efforts have been made to improve aerodynamic performance at low 

Reynolds (LRN) flows. By utilizing the wings' oscillatory movement, many of these vehicles 

produce thrust and lift in the range of low Reynolds, even below 1000. MAV applications are 

widely and diversely used, from civilian and military programs to space exploration. In this 

range of Reynolds, the adverse pressure gradient plays a detrimental function in aerodynamic 

efficiency and thus induces flow separation of an airfoil. The operating conditions are different 
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from ambient conditions. Therefore, various operational kinematics, wing section shapes, and 

Reynolds numbers have been investigated [1]. More research is needed to design and develop 

such configurations for LRN flow properties. The leading or trailing edge separation events 

increase drag and reduce lift [2]. In other recent studies [3], airfoils improved aerodynamic 

performance under surface heat treatment has been investigated. Due to the reduced size of 

the MAVs, compared to the older models, heat transfer effects are significant. Heat causes the 

boundary layer's relative growth in small wings with low Reynolds compared to larger airfoils. 

Succi [4] showed that heat transfer in a small area at the front edge affects significantly the 

airfoils performance. Their studies indicated different temperatures between the upper 

surface and the lower surface that had affected aerodynamic performance. Numerous studies 

have shown that biological flapping flyers utilize several unsteady mechanisms to keep afloat 

and control their flight [5]. However, these mechanisms role depends on wing deformation, 

wing kinematics, flight environment, and flyer size. Leading-edge vortex is generated 

aerodynamic force caused by a mechanism in flapping flight. 

Lattice-Boltzmann method is a novel method for computational fluid dynamics (CFD) proven 

to be usable in a wide range of applications, such as turbulence flow [6], the multi-phase free 

surface [7], the flow of non-Newtonian, porous environment [8]. In the last decades, the LB 

method has been widely researched and used to solve various fluid problems. The inherent 

advantages of the LBM, as one of the approximate solutions of the Boltzmann equation with a 

lower computational cost, cause the significant development of this method for simulating 

flows. Boltzmann's basic equations, LBM, have the power to simulate continuous and rarefied 

flows [9], [10], so further details of the thermodynamic imbalance behavior can be examined in 

this way [11],[12]. It is often used instead of the Navier-Stokes equation (NSE) because the 

solution of the Boltzmann equation (BE) is much simpler [13]. An intrinsic feature of the LBM 

method is parallel computation and its application to complex geometries [14], which makes it 

more popular than traditional methods such as CFD methods. 

In recent years, the combination of LBM with various CFD techniques has been studied, and 

different articles published. Matin et al. introduced a finite element-LB technique for binary 

fluids flow [15]. They stated that the FE-LBM scheme is a good solution and report satisfactory 

results of the accuracy of the experimental data obtained. 

The purpose of this research is to develop a numerical method based on finite difference_ 

lattice Boltzmann (FD_LBM) to simulate the flow and heat transfer around an airfoil with 

plunge oscillations. The equations of motion and energy are solved using LBM and FD, 

respectively. The LB method is integrated with ghost flow for predicting the curve boundary. 

The ghost flow method is a Cartesian-based method that, in addition to being practical and 

straightforward, retains many of the advantageous features of structured meshes, can be used 

for complex geometries, and has a high degree of flexibility. The energy equation is solved by 

the FD method and total variation diminishing TVD technique. It is well known that when the 

diffusion fluxes (with dissipation behaviors) own negligible values regarding convective fluxes, 

almost all classical methods suffer serious instability errors. In order to resolve this issue, a 

novel TVD scheme is applied. The TVD characteristics of the following Hybrid LB method made 

it a valuable asset in solving these kinds of problems. In other words, the TVD scheme was 

applied to avoid numerical instability and improve the stability, precision, and convergence 

rate of the numerical solution. For this purpose, four limiters were used, and the results were 

compared in terms of accuracy and calculation time. Two symmetric and asymmetric airfoils, 

NACA0012 and SD7003 airfoils, in oscillation mode, have been investigated and the results 

were compared with those of previous articles. The accuracy of the results indicates this 
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method's appropriacy for different geometries and different inlet flow conditions. The results 

also show this model's advantages compared to the Finite Volume (FV) model used in 

commercial software in terms of accuracy, speed of calculation, and CPU time. 

2. SOLUTION PROCEDURE 

2.1 EQUATIONS OF LATTICE BOLTZMANN METHOD 

The D2Q9 lattice model is selected in this research. This lattice is denoted, for two dimensions 

and nine velocities vectors. The velocity coordinates are here expressed in lattice units. This 

method is applied to simulate the process of velocity in an incompressible flow. Here, a set of 

distribution functions is used to determine the flow field. The following evolution equations 

regulate this approach for the collision operator with a single-relaxation-time approximation. 

For a distribution function fi(x, t), describing the probability of finding a fluid particle at the 

position x and time t in Boltzmann equation reads as follows: 

 ��(� + ���	� , � + ���) − ��(�, �) = ����� [��(�, �) − ����(�, �)] (1) 

Where ���	and	�� are defined as the time step and relaxation time, respectively. The density 

distribution functions along the i-th direction are related to the normal node scheme 	� and the 

corresponding equilibrium distribution functions 	����
. i represents the discrete velocity 

direction 	�. The equilibrium distribution function ����
(x, t) is calculated as follows: 

 ����(�, �) = 	 ���(�, �) �1 + 	�∙!(�,�)"�# + (	�∙!(�,�))#$"�% 			− (!(�,�))#$"�# & (2) 

Speed of sound in the lattice is	'�, in this model '� ≅ ) √3⁄ 		the lattice velocity is 		 = -�/-�, 

where δt and δx are time step and distance between two nodes respectively. The	/� parameters 

are units standardizing set of weights that denotes a discrete set of where velocity 0 vary 

between 0 and 8 for the D2Q9 model that is obtained from Eq. (3). The macroscopic variables, 

namely fluid velocity and density in Eq. (2), are u and � respectively. 

 /� =
12
3 (0	, 0)																																																																0 = 0()5� �(0 − 1) 6$& �07 �(0 − 1) 6$& . ))															 	0 = 1,2,3,4			

()5� �(0 − 9) 6<& �07 �(0 − 9) 6<& . √2))								 	0 = 5,6,7,8  (3) 

For an incompressible fluid flow, the kinematic viscosity υ is related to relaxation times by this 

correlation: 

 A = BC (�� − 0.5)'�$��� (4) 

Here in Eq. (4), the value of ��	should be considered greater than 0.5. The equilibrium 

distribution weighting factor for i-th direction is	��  that is given as follows: 

 �� =
1D2
D3 <E 																															0 = 0BE 																						0 = 1,3,5,7	BCF 																				0 = 2,4,6,8  (5) 

The macroscopic aerodynamic quantities such as pressure P, density �, and velocity ! are 

obtained from the following relations: 
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� = G ��
H

�IJ ,																	�! = G /���	,													K = �'�$
H

�IJ  (6) 

The Boltzmann lattice approach used on the curve node grid is the style scheme of the cell 

vertex. The following equation applies to each node r of the grid: 

��(L, � + ��M) = ��(L, �) + ��M G N�O��
OP

OIJ (LO , �) − ��M��M G '�O[��
OP

OIJ (LO , �) − ����(LO , �)] (7) 

The derivation of Eq. (7) is provided in [16]. In this Eq. (7), k =0 denotes the pivotal node r. The 

summations run over the nodes LO connected to r; the quantities N�O and '�O represent the 

streaming, and collisional matrices of the i-th population related to the k-th node, respectively. 

The equilibrium distribution function is defined by Eq. (2). By solving Eqs. (1) and (7) 

simultaneously, the nodes' properties are obtained by intermediation at the overlapping 

points. The values of macroscopic variables and distribution functions for the surface of the 

solid boundary are obtained. 

For the normal node and curve boundary in ghost fluid nodes, the following equations describe 

the post-collision and stream, respectively: 

For collision: 

�R�S.��(�� , �) − �R�".��(�� , �) = 2	�R�TUT�� �� − 	����� − ���2  
(8) 

For stream: 

�R�" − ��S.�� = V[1 −	 ���2 ∙ ��]�R�TUT�� + ��M G N�O	[	�W�O�� + �W�OTUT��OP
OIJ ]X ��M��M G '�O�W�OTUT��OP

OIJ  (9) 

Where �R�".��
 and �R�S.��

 refer to the curve boundary equilibrium and normal node distribution 

function, and �R�TUT��
 is the non-equilibrium distribution function. The quantities �W 0YZ[

 and �W 0Y757Z[
in Eq. (9) are defined as follows: 

�W�O�� = 	 ��OS��	\7]	�W�OS�� = ^1 −	���2��_ ∙ ��OS.TUT��	
 or (10) �W�O�� = 	 ��O".�� 	\7]	�W�OTUT�� = ��O".TUT��

 

The distribution functions ��".��
 and ��".TUT��

of the right-hand side of Eq. (8) and ��S.��
 and ��T.TUT��

 of the right-hand side of Eq. (9) are evaluated by interpolation for the curve boundary 

procedure. 

2.2 BOUNDARY TREATMENT WITH THE GHOST FLUID METHOD 

In this part, the ghost fluid lattice Boltzmann method for detecting the solid boundary is 

simulated. The computational space is divided into two separate locales, a physical zone `a 

and a solid zone `b. The fluid points FPs are put inside the physical zone, while the ghost 

points GPs are situated inside the body points BPs contiguous to the fluid-solid boundary. 
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Finding the Ghost points GP is the first step of this method. The ghost point must have a 

minimum of one mutual connection to the fluid nodes inner the solid domain. Then in the first 

step, the associated ghost point IPs must be identified. A point of image is thought to be on the 

typical line from the ghost point to the limit, so the purpose of the crossing point of the 

ordinary line with the limit boundary intersection point is at the midway (Figure 1). For 

interpolating the principal flow variables at the image, points use the information available 

from the neighboring fluid nodes after the IPs is determined. In this case, the IP neighbors are 

located in the fluid domain for the aerodynamic curve ranges, and the by-line insertion method 

is used to evaluate the estimation of the general variable state β of the four nodes including IP, 

as shown by Eq. (11): 

 	c = \d + ef + )df + ] (11) 

where β denotes the value of general macroscopic variables, including density r and velocity u 

and temperature T. There are four unknown coefficients a, b, c, and d in the two-line 

interpolation method. Therefore, four equations are needed to solve the unknowns. For this 

reason, the Cartesian IP coordinate values (x, y) and u corresponding to the neighboring fluid 

points NP are entered in Eq. (11). Once the coefficients are calculated, the x and y values of an 

IP are inserted into Eq. (11) to get the general variable value u. In this study, unlike the work of 

Tiwari and Vanke [17], these points were replaced with the correct tracking points, and in 

special cases, at least one of the NPs in the fluid field is not at one point in the image. This is 

done with the average between GP and IP points to predict the speed at a solid boundary. The 

four equations required to obtain the coefficients can be written in general terms as: 

 g(g�d� + (1 − g� 	)dh̀) + e(g�f� + (1 − g� 	)fh́) +  

 +)(g�d�f� + (1 − g� 	)fh̀dh̀) + ] = g� 	c + (1 − 	g� 	)cW 		 (12) 

 		0 = 1, 2, 3, 4  

αi is calculated: 

 g� = k0		0�	lK� ∈ 	 ǹoM�p1		0�	lK� ∈ 	 `bUo�p (13) 

The values of macroscopic parameters can be obtained by an image of any boundary 

conditions on the object with interpolation. Also, since the velocity of the boundary node is not 

known, the corresponding point of intersection as defined is changed by the normal gradient 

equation: 

 cW = qrqs = \st + esu + )(dsu + fst) (14) 

where vc vs⁄  is the gradient of the general macroscopic variable at the boundary intersection 

points of normal and the boundary and n is the normal unit vector toward the fluid domain. 

Eq. (12) in a general form reads: 

 			g(g�d� + (1 − g�)st�) + ewg�f� + (1 − g�)su�x +  

 +) yg�d�f� + (1 − g�)wd�st� + f�su�xz + ] = 	 g�c + (1 − 	g�) yqrqsz{| (15) 

 		0 = 1, 2, 3, 4  

For boundary conditions, the second-order extrapolation technique is applied. The central 

difference approximation formulation is used for the gradient of the general macroscopic 

variable at the boundary intersection points in the normal direction. 
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 }5~7]\Lf	)57]0�057 ∶ �c�� = 2c|{ − c{�(qrqs)|{ = r���r����  (16) 

�� represents the spatial distance between the corresponding GP and IP. Thus, one has 

(∂ρ/∂n)BI=0 mean density of ghost points equal to the density of image point from Eq. (16) 

[18]: 

 ��� = �{� (17) 

In this stage, knowing the value of the macroscopic variables by ����
 in Eq. (2) the ghost point 

and ρ ghost can be calculated. No equilibrium distribution functions ��TUT��
 or similar 

procedure are extrapolated to a density calculation. Tiwari [17] noted that this method is 

accurate for extrapolating the first-order non-equilibrium parts whereas extrapolating the no 

equilibrium part becomes second order. By having equilibrium and non-equilibrium of 

internal energy distribution and density functions, distribution ghost points can be obtained. 

 �R{�� = ������ + ����TUT��
 (18) 

2.3. THE LB METHOD WITH TOTAL VARIATION DIMINISHING 

In this scheme, the hybrid finite-difference is used to solve the energy equation. The function of 

equilibrium distribution described the momentum relaxation time, Lattice Boltzmann 

equation, Eqs. (1-10). The key alteration here is the extension of energy equation simulation: 

 
q�q� + q(��)qt + q(��)qu = �$� (19) 

Hence, a TVD scheme is used for the definition of convective terms of θ and U is strem velocity. 

According to Guo and Shu [19], higher stability can be achieved for an extra conservation 

equation with an additional distribution function. Also, the hybrid method's weakness is 

numerical instability which is not particularly suitable for low Reynolds. 

However, this study shows that, contrary to popular belief, existing TVD schemes not only do 

not suffer from this problem, but they can even improve the accuracy, stability, and 

convergence rate of numerical solutions. As mentioned in the present study, the hybrid finite 

difference is used to solve the energy equation. 

The key discrete temperature field equation reads as follows: 

 
��������q� + (!�)��(!�)�qt + (��)��(��)�qu = y���$�����∆t# + ���$�����∆u# z (20) 

To solve the above equation with a relatively low dissipation, a TVD scheme is applied to the 

convective values of �(i.e.,	�� , �� , … ). FD and FV methods have been considered to be accurate 

numerical methods with high-resolution techniques over the past few decades. Hirsch [21] 

presented a more detailed study of the new TVD limiting functions � = �(�),	with l being � = (�� − �� ��⁄ − ��), to calculate the convective terms in the flows with severe parameter 

gradients.	��, for example, can be obtained from the following relation: 

 				�� = �� + B$ �(�)(�� − ��) (21) 

�(�) can change any limiter or generate regular estimates for convection fluxes. These 

schemes have certain stability and accuracy [22]. 

The Superbee limiter function is very common not only because of its TVD characteristics but 

also because of its fine precision. It is considered as one of the best limiter functions available. 

Minmod has better stability and faster convergence than Superbee but has less accuracy due to 
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additional dissipations. Roe [23] proposed these two limiter functions. Therefore, these 

limiters are used for the measurement of convective fluxes. 

 

 

Fig. 1  Schematic illustration of the immersed boundary treatment 

 �bMa�� �� = ¡\d[0, ¡07(2�, 1) , ¡07(�, 2)] (22) 

 �¢�T£Up = k¡07(�, 1) 							0�					� ≥ 0	0																					0�						� ≤ 0  (23) 

 �¦§T	¨o §p§ = $B�o# (24) 

 �¦§T	©��� = $B�o (25) 

3. RESULTS AND DISCUSSION 

3.1. PROBLEM STATEMENT 

In this study, the effect of heat on an airfoil at Plunge oscillatory motion is investigated by the 

novel hybrid numerical method that consists of finite FD_LBM combine with ghost flow. This 

airfoil is one of the most widely used airfoils for numerical method validation. The simulation 

is computed at various Reynolds numbers, plunging NACA 0012 airfoil with a reduced 

frequency of 3.93, and no dimensional plunging amplitude of 0.0125. The mesh size depends on 

the length of the airfoil chord and domain size. Different mesh sizes are selected in a square 

domain with the length L of the lattice's chord 100 units. The obtained drag coefficients for 

different mesh sizes are compared to each other and to the experimental data. 

The effect of mesh size is shown in Table 1, for Re=50,000 and Re=100,000. As depicted in Table 

1, it can be seen that as the size of the mesh increased, the difference between the results of the 

simulation decreased. For choosing the best size mesh, the result has been compared with 

experimental data in Ref [20]. In Table 1, when the mesh size is increased from 1000×1000 to 

6800×1500, the maximum relative error of 0.1% is seen in the drag coefficient. Thus, all the 

following sections' results are obtained using a grid size of 4500×1500 in a rectangular domain. 

Thus, the drag coefficient variation Cd with different airfoil conditions was estimated. 
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Table 1  Mesh size effects on the results of drag coefficient at Reynolds 0.5×10
5
 and 10

5
 

The following relation expresses the harmonic motion of the immersion in the vertical 

direction: 

 ª(«) = ¨"¬U �07( 2Y«)			 (26) 

ª(«) is the dimensionless airfoil amplitude, A is amplitudes frequency and Cho is airfoil chord 

also « = �­®"¬U 	and	Yn = ¯ ∙ �LZ[ ∙ "¬U­® 		are the dimensionless time and reduced frequency 

respectively. For validation of the new LB method for plunge motion, the simulation results are 

compared with Lian and Shyy [24] who studied the aerodynamics coefficient at A/Cho=0.0125 

and Re=20,000 with 2D and FV in viscous –laminar model and meshing above 36500 nodes. 

The drag coefficients at Yn = 3.93 are computed. 

As shown in Figures 2 and 3, there is good overlap in the time history of the plunge drag 

between present calculations and the results of Lian and Shyy [24]. The difference between the 

results of the Cd and lift coefficient Cl is less than one percent. This comparison shows the 

accuracy of this simulation. 

It indicates the use of a suitable mesh with almost orthogonal cells and determining 

appropriate parameters in the simulation. Sutherland and Eucken’s relations are used to 

calculate the thermal conductivity and dynamic viscosity [25], [26]. Dynamic viscosity 

increases with the increase in temperature. As a result, the drag coefficient increases with the 

increase of the dynamic viscosity. For Newtonian fluids, the viscosity shear stress is 

proportional to the dynamic viscosity and the wall's normal velocity slope. In aerodynamics, 

drag is often undesirable and is known as a resistive force. The effect of temperature on the 

drag in the range of 200K to 400K is shown in Figure 4. As can be seen, the rise of the 

temperature from 200K to 300K increases the drag coefficient by 24.6%, from 300K to 400K. 

This indicates a more significant effect of dynamic viscosity at low temperatures, which affects 

the amount of drag. 

Re Size Cd simulation Cd in NASA Report [20] Error percentage 

Re=50,000 1000 ×1000 0.08424  

 

0.052 

-62.0% 

2000 ×1500 0.07074 -36.0% 

3000 ×1500 0.051064 1.8% 

4500 ×1500 0.0511054 1.7% 

6800 ×1500 0.051136 1.7% 

Re=100,000 1000 ×1000 0.06306  

 

0.037 

-70.5% 

2000 ×1500 0.05201 -40.6% 

3000 ×1500 0.03639 1.6% 

4500 ×1500 0.03643 1.5% 

6800 ×1500 0.03647 1.4% 



H. Saffarzadeh, M.H. Djavareshkian: Aerodynamic Simulation of Plunging Airfoil with Heat Effects and Lattice Boltzmann Technique 

 ENGINEERING MODELLING 35 (2022) 1, 1-18 9 

 

Fig. 2  Drag coefficient on Plunging NACA0012 airfoil at Re=20,000, A/Cho=0.0125, Y�=3.93 

 

Fig. 3  Lift coefficient on Plunging NACA0012 airfoil at Re=20,000, A/Cho=0.0125, Y�=3.93 

 

Fig. 4  Comparison of NACA0012 drag coefficient result with Hinz et al. [25] at Re=3000 

3.2 RESULTS 

It should be noted that, since the solver initiation in this simulation is static, the results for the 

initial periods for the aerodynamic coefficients do not reach their quasi-steady state, so that 
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the data after a few intervals have to be accepted. To compare the results with the FV method, 

results reported by Hinz et al. [25] are considered. The results of airfoil plunge oscillatory 

motion with Reynolds number 20,000, Mach number 0.001, reduce frequency 3.93, 

dimensional oscillation amplitude 0.0125 are shown in Figure 5. In this study, heat transfer in 

heating and cooling conditions on plunge oscillating airfoil is investigated. For this purpose, 

the NACA 0012 airfoil was simulated at streamflow temperatures of 300K and surface airfoil 

temperatures of 200K to 400K. Figure 5 shows the instantaneous lift coefficients for the 

oscillation period at temperatures of 200K, 300K, and 400K. As can be seen, with increasing 

cooling, the instantaneous lifting coefficient and heating reduce the maximum lifting. 

 

Fig. 5  Lift coefficient at different surface temperatures for NACA0012 at Reynolds 20,000 reduces the 

frequency by 3.93 and dimensionless oscillation amplitude by 0.0125 

 

Fig. 6  Drag coefficient at different surface temperature for NACA0012 at Reynolds 20,000 for reduced 

frequency by 3.93 and dimensionless oscillation amplitude by 0.0125 

Table 2 shows the maximum lift coefficients at different temperatures. One can notice that the 

lift coefficient curve's sinusoidal shape has slightly changed due to cooling and heating. 

Table 2  Maximum lift coefficients at different airfoil surface temperatures 

Ts 400K 350K 300K 250K 200K 

Cl max 1.0115 1.0574 1.0901 1.1191 1.1293 
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Fig. 7  Average Cd at different surface temperatures for NACA 0012 at Reynolds 20,000 reduces the 

frequency by 3.93 and dimensionless oscillation amplitude by 0.0125 

Figure 6 shows the instantaneous drag coefficients. The efficacy of heat transfer on the drag 

coefficient is very similar to lift coefficients and increases with the increase of the temperature 

and decreases with the decrease of the temperature. Figure 7 shows that the oscillatory average 

drag coefficient is affected by heat transfer. Also, with an increase of 50 degrees of the airfoil 

surface temperature relative to the free flow, the average drag coefficient of 10.7% can be seen. 

With an increase of 100 degrees, the average drag coefficient is approximately a 20.2% increase. 

In comparison, the mean drag coefficient decreased by 12.98 % with the cooling of 50 degrees 

and with the 100-degree it decreased by 38.91 %. Figures of the drag coefficient show that 

cooling has a greater effect on the drag coefficient than on heating. The increasing and decreasing 

trend of the oscillation coefficient relative to the oscillatory state may be due to dynamic 

viscosity changes, which are easily determined in the LB model with Eq. (6) at any particular 

time. Moreover, heat changes can be measured using the hybrid FD method with LB. The rise in 

viscous drag is related to the increase in surface temperature and the change in the viscous 

boundary layer's fluid properties. The Lattice method and the ghost boundary curve model 

represent variations in fluid viscosity by correctly approximating the airfoil's boundary layer. 

The cooling state's viscosity variations are greater than the heating state [27], so the influence of 

the cooling state's coefficient changes may be greater than the heating effect. Figures of the 

instantaneous and average drag coefficients also indicate that by raising the surface temperature, 

the airflow decreases the heat transfer over the instantaneous and intermediate drag coefficients 

due to the boundary layer's unsteady heating status. Oscillating airfoil has stable and more 

appropriate results during the boundary layer's cooling mode while heating the airfoil's surface 

reduces the flow time and increases the instability. This instability in conventional methods can 

affect the simulation algorithm and lead to divergence in results, but in this simulation using the 

TVD method, the stability and convergence rate have also increased. Table 3 shows that 

simulations without TVD at 400K has been divergence. Another conclusion drawn from the 

influence of heat transfer on the oscillation drag coefficient is that if the airfoil produces zero 

drag or no thrust at a specified frequency and amplitude, it can be converted into a thrust-

generation state. To illustrate this, we increased the frequency of the deceleration compared to 

the previous simulation. Figures 8 and 9 show the instantaneous and average drag coefficients, 

respectively. Figure 8 shown the coefficient of drag at different surface temperatures for an 

oscillating cycle. As can be seen in Figure 9 for the non-heat transfer mode (airfoil temperature 

and streamflow 300K), the average drag coefficient is approximately zero, and the temperature 

rise increases the drag and the decrease of the temperature causes the negative drag or thrust. 
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Figures 10 show when the surface temperature increases, the coefficient of lift increases. This 

amount of change is less compared to the drag coefficient changes. 

Table 3  Comparison of the drag coefficient for TVD code with Superbee, Minmod limiter, and without TVD 

for Plunging NACA0012 at Reynolds 2000 for reduced frequency by 3.93 and dimensionless oscillation 

amplitude by 0.0125 

* Not a Number 

 

Fig. 8  Drag coefficient at different surface temperatures for NACA0012 at Reynolds 20,000 reduces the 

frequency by 7.86 and dimensionless oscillation amplitude by 0.0125 

 

Fig. 9  The average drag coefficient at different surface temperatures for NACA0012 at Reynolds 20,000 

reduces the frequency by 7.86 and dimensionless oscillation amplitude by 0.0125 
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Method Grid Size 
Cdave at 
T=200K 

Cdave at 
T=300K 

CPU time 
Cdave at 
T=300K 

[21] 

Cdave at 
T=400K 

Cdave at 
T=400K 

[21] 

LBM 
4500 ×1500 0.016981 0.022144 243700 

  
  
0.022600 
  

NaN* 

  

  
0.027100 

  

6800 ×1500 0.015992 0.022506 372620 NaN 

Minmod 
4500 ×1500 0.016322 0.222582 226640 NaN 

6800 ×1500 0.016319 0.022486 338380 0.026600 

Superbee 
4500 ×1500 0.016487 0.022829 237490 0.027420 

6800 ×1500 0.016454 0.022600 353080 0.027145 

Van Albada 
4500 ×1500 0.015283 0.019930  220760 NaN 

6800 ×1500 0.015192 0.021381 328290  0.026016 

Van Leer 
4500 ×1500 0.015454 0.021463 217790  NaN 

6800 ×1500 0.016792 0.023631 317710  0.027642 
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Fig. 10  Lift coefficient at different surface temperatures for NACA0012 at Reynolds 20,000 reducing the 

frequency by 7.86 and dimensionless oscillation amplitude by 0.0125 

The change in oscillation frequency attributed to the approach suggested in this simulation 

does not affect the convergence and is stable. As seen at higher frequencies, the effect of heat 

transfer is attributed to less heat transfer time. In other terms, frequency Y�=3.93 for the 

maximum drag from 200K to 400K is reduced for almost 10.5 % while frequency Y�=7.86 for 

about 6.5 %. 

One of the most commonly used airfoils for MAV is the Selig-Donovan airfoil, SD7003, which 

often explores heat transfer's effect using the above technique. The following Figures 11 and 12 

indicate that cooling mode positively affects the airfoil's aerodynamic performance, i.e. the lift 

coefficient will increase and the drag coefficient will decrease. However, the heating of the airfoil 

surface by decreasing the lift coefficient and increasing the drag coefficient negatively affects the 

airfoil performance. So, the exact behavior of the previous airfoil can be observed here. 

Table 4 shows the average lift of drag ratio in heating, cooling, and without heat transfer on the 

airfoil surface. Comparing the non-heat-transfer state with cooling, the lift-to-drag average 

ratio increased by 68.54 percent and decreased by 19.46 percent in heating, which is a positive 

effect of cooling on this airfoil type. 

At the end of this study, we will discuss that due to temperature changes in the airfoil surface 

and dynamic solutions, improvements should be made by combining the LB_FD process with 

the TVD limiter. 

 

Table 4  Lift and drag average coefficients for different airfoil surface temperatures 

Clave/Cdave Clave Cdave Airfoil temperature 

19.4904 0.306 0.0157 Ts = 200K 

10.6818 0.235 0.022 Ts = 300K 

6.8518 0.185 0.027 Ts = 400K 

-6

-4

-2

0

2

4

6

8 8,2 8,4 8,6 8,8 9

C
l

t/λ

Ts=200K

Ts=300K

Ts=400K



H. Saffarzadeh, M.H. Djavareshkian: Aerodynamic Simulation of Plunging Airfoil with Heat Effects and Lattice Boltzmann Technique 

14 ENGINEERING MODELLING 35 (2022) 1, 1-18 

 

Fig. 11  Drag coefficient at different surface temperatures for SD7003 at Reynolds 20,000, reduces the 

frequency by 3.93 and dimensionless oscillation amplitude by 0.0125 

To increase computational speed, different limiters; Superbee, Minmod, Van Leer, and Van 

Albada, with a TVD scheme, are used in this simulation. The results of Superbee limiters 

proved it to be more adequate than Minmod limiters. When the temperature rises to near 

400K, the simulation in less grid for Van Albada and Van Leer limiters fails to simulate 

plunging airfoil. 

The best limiter to achieve greater stability is the Superbee. As described in [19], the approved 

Superbee limiter produces a significant numerical dispersion, limiting the major impact on 

numerical models' accuracy. The appropriate limiter should be selected based on the 

consistency and accuracy of the actual results. As shown in Table 4, the above method 

converges to a wider temperature range, and all limiters obtain acceptable results. Simply, the 

Superbee limiter obtains higher accuracy than the Minmod. TVD schemes are supposed to 

require more resolution time than LB-FD code due to additional computation. However, an 

exemplary comparison reveals that the current hybrid codes are more precise and require less 

CPU time than the LBM code. 

 

Fig. 12  Lift coefficient at different surface temperatures for SD7003 at Reynolds 20,000, reduces the 

frequency by 3.93 and dimensionless oscillation amplitude by 0.0125 
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4. CONCLUSIONS 

In the present research, combination of the finite deference and lattice Boltzmann numerical 

method with TVD characteristics is proposed to solve heat transfer behavior on the 

symmetrical and unsymmetrical airfoil, NACA0012 and SD7003, with plunge oscillations and 

to simulate airfoil surface boundary with ghost flow method. Boltzmann equations increase 

the resolution rate to calculate the dynamic behavior of the oscillation airfoil. Its combination 

with FD is used to calculate the heat transfer behavior and to converge the results over a wider 

range of the TVD method used as well as the Lattice coefficients. Also, since the LBM network 

is regular and Cartesian coordinates, the ghost flow method is used to obtain higher accuracy 

for identifying solid boundary curves. 

The main findings of this research are as follows: 

• The combination of the finite-difference and lattice Boltzmann method with the TVD 

characteristics is performed to obtain aerodynamic parameters, the energy equation is solved 

with FD and TVD technique, and with scalar equation solved with FD a flux limiter is derived. 

• It is combined in which fluid flow parameters are obtained in LBM, and the scalar equation 

is solved with the FD method with various flux limiter functions. 

• The new method can capture the details of flow more accurately and stably than other 

methods, at least in low- Reynolds-number flow. 

• The well-known functions of Superbee, Minmod, Van Albada and Van Leer were selected as 

flux limiters to be implemented in this study of benchmarks, and excellent compatibility 

with findings within available literature was obtained. 

• The innovative numerical method also has a lower computational cost than similar methods. 

• The hybrid method is also numerically much more efficient than the LBM code laminar flow. 

• The innovative numerical technique is also estimated based on its computational costs. The 

hybrid method has been shown to be much more numerically effective than the LBM code 

for laminar flow as opposed to popular assumption. 

• Eventually, one of the most important results of this new combined method lies in the 

convergence rate of the solution. For simulated flow on airfoils, TVD models provide 

converging faster and easier, resulting in CPU shorter computation time and lower 

computational costs. 

NOMENCLATURE 

a, b, c, d Coefficients of equation fi (x,t) Distribution function 

A Amplitudes oscillation ���� Equilibrium distribution functions 

A/Cho 
Non-dimensional amplitudes frequency 

to chord 
�R�".��

 The curve boundary equilibrium 

' Lattice velocity �R�S.��
 The normal node distribution function 

Cd Drag coefficient �R�TUT��  Non-equilibrium distribution function 

Cdave Drag average coefficients Y� Reduced frequency 

Cho Chord of the airfoil Nu Mean Nusselt number on the airfoil 

Cl Lift coefficient Pr Prandtl Number 

Clave Lift average coefficients P Pressure 

CP Specific heat *
P  Non-dimensional pressure 



H. Saffarzadeh, M.H. Djavareshkian: Aerodynamic Simulation of Plunging Airfoil with Heat Effects and Lattice Boltzmann Technique 

16 ENGINEERING MODELLING 35 (2022) 1, 1-18 

	'� Speed of sound in the lattice Re Reynolds Number 

ei Discrete velocity T Temperature 

freq Frequency Ts Different surface temperature ° Mach number 
θ Convective terms 

t Time  

u Velocity « Non-dimensional time 
U Freestream velocity 

wi Equilibrium distribution weight �(l) TVD limiting functions 

x,y Coordinate directions Subscripts 

α Thermal diffusivity GP Ghost Point 

cW  
The gradient of the general macroscopic 

variable 
IP Image Point 

c General macroscopic variables BI Boundary intersection 

λ Period per cycle Superscripts 

υ  Kinematic viscosity eq Equilibrium 

ρ Density neq Nonequilibrium 
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