
 
Abstract—In this paper, a de-noising approach in conjunction 

with channel estimation (CE) algorithm for OFDM systems using 
singular spectrum analysis (SSA) is presented.  In the proposed 
algorithm, the initial CE is computed with the aid of traditional 
linear minimum mean square error (LMMSE) algorithm, and 
then further channel is evaluated by considering the low rank 
eigenvalue approximation of channel correlation matrix related 
to channel using SSA. Simulation results on bit error rate (BER) 
revealed that the method attains an improvement of 7 dB, 5 dB 
and 3 dB compared to common LSE, MMSE and SVD based 
methods respectively. With the help of statistical correlation co-
efficient (C) and kurtosis (k), the SSA method utilized to de-noise 
the received OFDM signal in addition to CE. In the process of de-
noising, the received OFDM signal will be decomposed into 
different empirical orthogonal functions (EOFs) based on the 
singular values. It was established that the correlation coefficients 
worked well in identifying useful EOFs only up to moderate 
SNR 12dB. For low SNR<12 dB, kurtosis was found to be a 
useful measure for identifying the useful EOFs. In addition to 
outperforming the existing methods, with this de-noising 
approach, the mean square error (MSE) of channel estimator is 
further improved approximately 1 dB more in SNR at the cost of 
computational complexity. 

Index Terms—BER, Channel Estimation, OFDM, SVD, SSA, 
Wireless Communications.  

I. INTRODUCTION

rthogonal frequency division multiplexing (OFDM) has 
been accepted globally to cater the need of data rate 

requirement of multimedia communication systems. With 
advances in signal processing algorithms the multiple-input 
multiple-output (MIMO) with OFDM is considered as the vital  
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methods [1]-[3]. Channel estimation (CE) plays a key role in 
these systems. In [1], the channel correlation matrix is made  
low rank by singular value decomposition (SVD) was 
presented to reduce the complexity of channel matrix 
inversion. Interpolation methods with pilot-based 
methodologies i.e. like block-type and comb-type 
arrangements are widely used for OFDM CE to better identify 
the channel properties [2]-[5]. These methods result in reduced 
efficiency because of transmission of training data additionally 
to the original data. Mathematical signal processing operations 
such as least squares (LS) and minimum mean square error 
(MMSE) estimators were deployed for OFDM CE [7]-[8]; 
majority of CE methods are the modified forms of LS 
estimation (LSE) and MMSE. To reduce the computational 
complexity, both time and frequency interpolation is employed 
for massive MIMO-OFDM systems based on DFT with 
utilizing different pilot patterns is presented [9]. The Krylov 
subspace technique with multi-stage nested Wiener filter 
(MSNWF) for low rank approximation is presented in [10] for 
OFDM CE. All forms of OFDM CE methods and its 
challenges were best illustrated in [11]-[12]. A different 
strategy of pilot patterns along with basic OFDM blocks was 
presented in [13] for OFDM CE under multipath fading 
channels, it jointly estimates the channel and carrier frequency 
offset (CFO) in a semi blind approach. 

Without use of channel statistics and pilot tones, a coded 
neural network based method was presented in [14]. To further 
improve the accuracy of OFDM CE, lower modulation 
schemes with blind CE [15], and low rank approximation for 
OFDM CE [16] were presented.  In similar lines, a novel blind 
subspace approach was presented in [17] by combining minor 
component analysis (MCA) and independent component 
analysis (ICA). LMMSE estimation using artificial channel 
attempts made in [18], which eliminates the channel covariance 
matrix. De-noising approaches based OFDM CE was presented 
in [19]-[20], which inspired us to use singular spectrum 
analysis (SSA) technique in conjunction with statistical 
analysis for CE and de-noising.  In order to reduce the 
complexity of algorithms, learning automata based channel 
estimation was presented in [21]. MIMO-OFDM channel 
estimation using compressive sensing based LSE and MMSE 
was described in [22] and the nonlinear mode decomposition 
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method and its application to wireless communication was 
presented in [23]. 

In [24] the de-noising of received OFDM symbol with 
decomposed highly correlated empirical orthogonal functions 
(EOFs) using statistical correlation analysis, worked well for 
high signal to noise ratios (SNR). But under small SNR, the 
performance is degraded. In order to improve the performance 
even under small SNR scenario, we proposed the use of 
statistical kurtosis analysis in addition to correlation, which 
was presented in the next sections. Section II describes the 
mathematical background of basic wireless OFDM transceiver 
system, section III presents the proposed signal processing 
method based on SSA and its use in channel estimation (CE) 
along with de-noising. Finally, section III depicts simulation 
results and conclusions in section IV.  

II. WIRELESS OFDM TRANSCEIVER SYSTEM 

The typical wireless OFDM transmitter, as depicted in fig.1, 

modifies the input binary data Tb onto PSK/QAM mapper 

bF ( k )  and then implements IFFT on parallel transformed 

data. 
N 1

j2 n k / N
b b

k 0

f ( n ) F ( k )e ,n 0,1,2,..... N 1




              (1) 

where N is the number of sub carriers. For data bf ( n ) , the 

cyclic prefix (CP) is added to ensure zero ISI, cpf ( n ) is then 

changed to a domain suitable for wireless OFDM 
broadcasting.  
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Fig.  1.  Typical OFDM transmitter model 
 

Figure 2 shows the receiver model showing proposed 
channel estimation and de-noising blocks using SSA. The 
digital converted signal at OFDM receiver can be viewed as 

 

R cp CIRy ( n ) f ( n ) h ( n,k ) w( n )                 (2) 
 

where symbol indicates the convolution; w( n ) and  

CIRh ( n ) are additive white Gaussian noise (AWGN) with zero 

mean and unit variance and the channel impulse response 
(CIR) to be estimated respectively. In general, the channel is 
non-linear time varying wireless multipath fading channel and 
the CIRh ( n )  can be modeled as  

 

    




   M

N 1
j ( t )

M M
M 0

h t, a ( t ) e ( t ( t ))              (3) 

 

where, ik , i ( n )  and w( n ) are delay incurred, corresponding 

attenuation and unit sample response occurred in ith path. 
M ( t ) represents the angular Doppler frequency shift due to 

time varying. Finally, the received OFDM signal Ry ( n )  is 

represented in frequency domain as i.e. Fourier transform of 
eq (2) 

R cp CIRY ( k ) F ( k )H ( k ) W ( k )                  (4) 

 
The RY ( k ) is now used for channel estimation. The time 

varying CIR is to be properly estimated to perfectly recover 
the original transmitted binary sequence. 
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Fig.  2.  OFDM Receiver model showing propsed channel estimation and 
denoising blocks using SSA 

 

Broom-head and King [25]-[26] developed the 
methodological steps for SSA as shown in Fig. 3:  
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Fig.  3.  SSA processing steps 

 

As depicted in Fig. 3, the embedding and SVD are part of 
decomposition; grouping and diagonal averaging comes under 
reconstruction stage. 

A. Decomposition 

i. Embedding 

The first step in the decomposition step of basic SSA 
algorithm is the embedding, where the data is changed into the 
trajectory matrix consists of overlapped data segments. Let the 
data be  1 .... nx x x . In the embedding step, window length 

L is considered in such a way that, where 2<L<N/2 to embed 
the initial data. TX is written as 

1 2
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 
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                 (5) 

ii. Singular value decomposition (SVD) 

After the embedding step, apply SVD to the trajectory 
matrix TX and obtain the decomposed trajectory matrices Ti for 
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i=1,…L. The outcome of applying SVD to TX decomposes as 
'XT U V D  called as eigentriples. Ui for 1<i<L is a K×L 

orthogonal matrix. Di for 1<i<L is a diagonal matrix order of 
L. Vi for 1<i<L is L×L square orthonormal matrix. In this step 
TX, has L many singular values which are 

1 2 ......... L    > thus the ith eigentriple of Ti can be 

written as T
i i iU V   for i=1,2,…,d, So the trajectory 

matrix  TX can be denoted as 
 

1 2 .....x dT T T T     

     1 1 1 ....T T
d d dV U VU     

     
1

d

i

TU V
i i i




                   (6) 

B. Reconstruction 
i. Regrouping 

The grouping step of the reconstruction stage is 
decomposing the L×K matrix Ti into subgroups. The grouping 
step of the reconstruction stage is a partition of the set of 
indices 1, 2,....d  into the collection of m disjoint subsets 

of  1, ......... mI I I . 
iIT  is a sum of jT ,where j   iI .so xT can 

be expanded as 
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                           (7) 

ii. Diagonal Averaging 

In this step is to transform the grouping matrices 
iIT  into a 

new time series of length N.  
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III. PROPOSED SIGNAL PROCESSING METHOD BASED ON SSA 

In this proposed method, similar lines as done in SVD, 
using the traditional LMMSE method the initial CE will be 
done; and then the channel will be tracked by performing the 
rank reduction of channel correlation matrix for optimum 
complexity using SSA. Previously in [1], the approximation is 
done using SVD, but it was assumed that the channel was slow 
fading i.e. the channel is unaltered during broadcast of one 
OFDM signal. Here, that assumption is eliminated in this 
proposed method. 

A. LMMSE Estimation 

Let ( )Tb n = the transmitted symbol, ( )Ry n = the received 

symbols, CIRh = the assumed CIR, CIRĥ = the estimated CIR 

using proposed SSA based method based and CIRLĥ = the 

estimated CIR using the least squares (LS) estimated channel,  
 

 TR R RY y (0 ), y (1),............y ( N 1)                      (5) 

 TT T TB b (0 ),b (1),............b ( N 1)                           (6) 

 TCIR CIR CIR CIRh h (0 ),h (1),............h ( N 1) 
                

(7) 
T

CIR CIR CIR CIR
ˆ ˆ ˆ ˆh h (0 ),h (1),............h ( N 1)                    

(8) 

T

CIRL CIRL CIRL CIRL
ˆ ˆ ˆ ˆh h (0 ),h ( 1),............h ( N 1)                   (9) 

 
The LMMSE estimated CIR is [1] 

 

CIR CIRL CIRL CIRL

1
ˆ ˆ ˆCIRLE CIRLH H H H

ˆ ˆH R R H                                 (10) 

 
The vector notation of above defined variables is given below 

  CIR CIR CIR CIR

112 H
H H H H n CIRL

ˆR R BB H


   

 

CIRLĤ is transform domain LS estimated CIR 

 
CIR CIR

H
H H CIR CIRR E H H                          (11) 

 
CIR CIRL

H
ˆ CIR CIRLH H

ˆR E H H                         (12) 

 
CIRL CIRL

H
ˆ ˆ CIRL CIRLH H

ˆ ˆR E H H                         (13) 

 
To reduce the complexity, the matrix inversion in equation 
(10), is replaced with average of communicated data [1]. 
Initially, CE is computed with the aid of traditional LMMSE, 
and then further channel is evaluated using matrix related to 
channel 

  
CIR CIR CIR CIR

1

CIR H H H H CIRL
ˆ ˆH R R I H

SNR

 
   
                       

(14) 

 
Finally, the estimated CIR is uniquely proportional to 
correlation matrix, so the same 

CIR CIRH HR is now reduced to low 

rank using SVD method [1]. In the SVD method, it was 
assumed as that the channel was slow fading i.e. the channel is 
unaltered during broadcast of one OFDM signal. So, here a 
low rank approximation is used with SSA. SSA can be viewed 
as SVD with overlapped data segment, which eliminates the 
above mentioned assumption.  

B. Rank reduction of correlation matrix with the aid of SSA 

As per the methodological steps of SSA, the matrix
CIR CIRH HR  

is modified with its overlapping segments. Then SVD of 
channel correlation matrix is given by 

 

CIR CIR

H
H HR U U                   (15) 

 

 0 1 N 1U u ,u ,............u  , u0, u1, …..uN-1 are column vectors. 

 contains all decomposed singular values in decreasing order 
as diagonal matrix  0 1 N 1I , ,............     . As the first few 
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represent the important components and last few related to 
unimportant one, so now the rank of matrix is reduced by 
considering first p singular values and remaining made to 
forcible zeros. Then equation (15) gets simplified to 
 

H
CIR CIRL

ˆ ˆH U U H                            (16) 
 

where  contains modified diagonal matrix containing first 
few p values and remaining are zeros. This (16) represents the 
estimated channel. 
 

C. SSA based denoising of received OFDM symbol using 
Pearson correlation and kurtosis 

Singular spectrum analysis (SSA) decomposes the received 
OFDM symbol into different empirical orthogonal function 
(EOF) based on eigenvalue driven singular value 
decomposition (SVD). First few EOFs represent the important 
components of the signal and last EOFs represent the un-
important or noisy components of the signal. The selection of 
EOFs is based on either correlation or kurtosis values.  

Under high SNR scenarios, EOFs with high correlation 
values represents the required signal and low correlation value 
indicates undesired noisy versions. In order to de-noise the 
OFDM signal, a correlation threshold is proposed here for 
selection of signal EOFs.  

For effective de-noising, at typically low SNR situations, in 
addition to correlation coefficient we propose to use another 
statistical measure kurtosis is also used for selection of 
appropriate EOFs. In general, a high value of kurtosis 
indicates random component present in EOF. So, eliminating 
EOFs having high kurtosis values amounts reducing the 
random noise component present in the received OFDM 
symbol.  For this purpose, a kurtosis threshold on is proposed 
for selection of useful number of EOFs. 

The subsequent steps are proposed to de-noise the OFDM 
signal. The received signal is disintegrated into empirical 
orthogonal functions (EOF). EOFs will be generated by 
considering different eigenvalues during reconstruction 
process. By considering the best EOFs, the modified OFDM 
symbol will be constructed, which represents de-noised 
version. The best available EOF is selected based on the 
Pearson correlation ( XYC ), a statistical measure.  

  

   
1

2 2

1 1

cov( , )
n

i ii
XY n n

X Y
i ii i

x x y yX Y
C

x x y y 


 

 
 

 


 

        (17) 

 
where ,x y represent the mean of x and y respectively.  

The correlation will be computed for all EOFs with recieved 
signal.  
 

(i) Threshold  for selection of reliable EOFs 

The threshold for selection of signal EOFs is presented here 
using mean and stanadard deviation (std) of all evaluated 
correlation values.  

 
 
 

th _ c 1 2 i N 1

1 2 i N 1

mean C ,C ,...,C ....C

std C ,C ,...,C ....C

 






                  (18) 

where, iC  is the correlation value of ith EOF with received 

signal; i=1, 2….N-1. So, as part of the de-noising process the 
EOFs above the computed threshold will be considered. 

(ii) Kurtosis for selection of appropriate EOFs 

For effective denoising, at typically low SNR situations, in 
addition to correlation coefficient  we propose to use another 
statistical measure kurtosis( k )is also used for selection of 
appropriate EOFs. 

 

 4

4
3

E x
k





                 (19) 

 

where  ,  are the mean and  standard deviation of x. In 

general, the randomness of a typical signal can be measured by 
means Kurtosis.  

 
(iii) Threshold  on Kurtosis for selection of reliable EOFs 

In general a high value of kurtosis indicates random 
component present in EOF. So, eliminating EOFs having high 
kurtosis values amounts reducing the random noise component 
present in the received OFDM symbol.  For this purpose, a 
threshold ( th _ k ) on kurtosis is proposed for selection of 

useful number of EOFs. This threshold ( th _ k ) is taken as 

mean of kurtosis values plus the stanadard deviation of 
kurtosis values.  

 

 
 

th _ k 1 2 i N 1

1 2 i N 1

mean k ,k ,.....k ,....k

std k ,k ,.....k ,....k

 






                  (20) 

 

where ik  is kurtosis value of ith EOF component; i=1, 2….N-1. 

The de-noised signal ( dy n( ) ) is reconstructed using selected 

EOFs based on the th _ c , th _ k values. This dy n( )  serves as 

input to the channel estimation algorithm proposed in this 
paper. The performance of the proposed channel estimation 
method is studied through different simulations presented in 
the following section.  

IV. SIMULATION RESULTS AND ANALYSIS 

The simulation results and its analysis were presented in 
this section. To evaluate the performance of the presented SSA 
based technique, the subsequent simulation parameters, are 
utilized. In simulations, different types of noisy scenarios were 
considered, such as impulsive noise and Gaussian noise. 
During de-noising, the received signal is decomposed in to 
their equivalent EOF components. Correlation co-efficient (C) 
and kurtosis (k) values for all EOFs are calculated and 
tabulated in Table II at SNR=23dB. 

Correlation co-efficient between each decomposed EOF and 
received signal ku of each decomposed EOF  For the 
correlation values shown in Table II, mean is 0.49, standard 
deviation is 0.2144 and computed threshold as per (18) is 

th _ c 0.2756  . 
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TABLE I.  SIMULATION PARAMETERS UTILIZED FOR PRESENTED SSA 

BASED TECHNIQUE VALIDATION [11] 

Simulation Parameters Considered values 

Carrier Frequency 5 GHz 

System bandwidth 80 MHz 

Sub carrier spacing 6.83 kHz 

Modulation BPSK, QPSK, 16 QAM and 64 QAM 

N-point IFFT 256 - point IFFT 

Length of Cyclic Prefix 16 samples 

Doppler Frequency 100 Hz, 500 Hz and 1000Hz 

 

TABLE II.  CALCULATED CORRELATION AND KURTOSIS VALUES OF 

DECOMPOSED EOFS @ SNR=23DB 

 E1(n) E2(n) E3(n) E4(n) E5(n) E6(n) E7(n) 

C 0.721 0.7053 0.5621 0.5383 0.4945 0.2518 0.1562 

k 2.0271 3.5214 5.1617 4.7306 5.3852 7.1716 7.2764 
 

Hence, the EOFs having correlation values above 

th _ c 0.2756  , i.e., the EOFs 1E ( n )  to 5E ( n ) are selected for 

de-noising. Similarly, in case of kurtosis values, mean is 
5.0391, standrad deviation is 1.8779 and computed threshold 
as per (20) is th _ k = 6.917. Hence, the EOFs having kurtosis 

values below th _ k = 6.917, i.e., the EOFs 1E ( n )  to 5E ( n ) are 

selected for de-noising. It can be noticed here that both 
thresolds th _ c  and th _ k  selected same five EOFs ( 1E ( n )  to 

5E ( n ) ) for eleimination of uncorrelated and random noise 

components from the received OFDM symbol. 
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Fig.  4.  Correlation values of different EOF with received OFDM symbol 

 
At high SNRs,the correlation values, presented in Table-II, 

are monotonically decreasing in nature, as shown in Fig. 4. 
This makes the selection of EOFs very easy. 

At low values of SNR say 3 dB, for same OFDMsymbol, 
the calculated correlation and kurtosis values are presented in 
Table-III. The correlation values, as shown in Fig. 5, are not 
monotonically decreasing. This makes the selection of EOFs 
difficult. Here the mean of correlation values is 0.4678, 

standard deviation is 0.2671 and calculated threshold 

th _ c 0.2007  .  

TABLE III.  CALCULATED CORRELATION AND KURTOSIS VALUES AT 3DB 

 E1(n) E2(n) E3(n) E4(n) E5(n) E6(n) E7(n) 

PCC 0.1961 0.8192 0.6591 0.6294 0.5892 0.1944 0.1873 

ku 2.1193 3.4742 5.1738 4.7576 5.4735 7.564 7.8764 

 
As per the explained procedure the EOFs below threshold 
value should be removed.  In that case, 1E ( n )  to 5E ( n ) are to 

be considered for final reconstruction of denoised OFDM 
signal discarding the first EOF. In fact, in SSA, the first 
component corresponds to first singular value and represents 
the important component of the signal. Hence reconsrtuction 
without 1E ( n ) will not give approprite denoised signal. In 

such situations at low SNRs, the  kurtosis will become a useful 
measure. 
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Fig.  5.  Correlation values of different EOF with received OFDM symbol 

for SNR of 3 dB 

The mean of kurtosis values  is 5.2055, standard deviation 
is 2.0612 and computed threshold th _ k 7.2668  . Hence, the 

EOFs having kurtosis values below th _ k 7.2668   will be 

considered. This selection will include the first EOF. Finally, 
the denoised signal is reconstructed using 1E ( n )  to 5E ( n ) . So 

kurtosis is a useful mesure for selectionof EOFs at low values 
of SNR. 

To establish this concept, further simulations are carried out 
at different SNRs . The result presented in Fig. 6, reveals that 
correlation is capable of identifying useful EOFs only for 
SNR 12dB, whereas for SNRs < 12dB, kurtosis will be 
useful measure to identify useful EOFs. 

The resulting denoised signal dy n( )  will used for further 

precessing for channel estimation by proposed method. One of 
the prime merits of the proposed SSA based technique is that 
use of overlapping data segments. 

The constellation methods such as BPSK, QPSK, 16-QAM 
and 64-QAM are considered for BER computation. The 
propsed SSA based technique performance is compared with 
LSE [3], MMSE [7], SVD [1] methods. The simulations are 
presented in Fig. 7 to Fig. 8 to show the superiority of the 
proposed method. It can be seen from Fig. 7, under BPSK 
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constellation that there is a linear trend among methods for all 
SNR vaues. For a BER of 10-3, the proposed SSA based signal 
processing method provides an improvement of  7 dB 
compared to LS, 4 dB compared to MMSE and 1.5 dB  for 
BPSK constellation. 
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Fig.  6.  Correlation values of EOFs with received OFDM symbol for 

different values SNR 
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Fig.  7.  BER plot of OFDM transceiver using BPSK and QPSK modulation 

Schemes 
 

In Fig. 7, for QPSK constellation, for small SNR values 
there is a extra enhancement than higher SNR values. Here for 
a BER of 10-3, the proposed method outperforms the LSE 
method by 8 dB, MMSE by 6 dB and SVD by 3 dB. For 16-
QAM, the proposed method has shown an improved 
performance by 6 dB over LSE, 5 dB over MMSE and 3 dB 
over SVD based methods as depicted in Fig. 8. 

From Fig. 8 for 64 QAM constellation, it can be seen an 
enhancement of 7 dB, 4 dB  and 2 dB respectively as 
compared to LSE, MMSE and SVD based methods. All the 
simulations aimed at studying the efficacy of the proposed 
method have clearly demonstrated that comparing to LSE, 
MMSE and SVD based methods,the propsed SSA based 
method provides better performance.  

In addition, the mean square error (MSE) of CIR estimation 
is also evalauated and shown in Fig. 9, indicates an 
improvement for SSA based technique. 

With the addition of de-noising stage the performance of 
presented SSA based technique is further improved. The 
results presented in Fig. 10 establish the fact that it effectively 
reduces the signal noise, and hence improves the estimation 
performance. With this denoising approach, the MSE of 

channel estimator has been further improved which translated 
to approximately 1 dB improvement in SNR at the receiver. 
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Fig.  8.  Comparison of BER: 16 QAM and 64-QAM constellation 

 

0 5 10 15 20 25 30
-12

-9

-6

-3

0

C
ha

nn
el

 M
ea

n 
S

qu
ar

e 
E

rr
or

 (
M

S
E

) 
in

 d
B

Signal to Noise Ratio (dB)

 

 

LSE
MMSE
SVD
SSA

 
Fig.  9.  Channel MSE comparison 

 
 

In addition to outperforming the existing methods, this 
additional 1 dB SNR improvement is achieved at the cost of 
computations involved during the de-noising process. 
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Fig.  10.  Channel MSE evaluation with and without inclusion of de-noising 
block 
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The normalized root mean square error (NRMSE) of 
channel impulse response is computed for different channel 
environments, to further launch the effectiveness of the 
presented SSA based technique. 
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NRMSE (dB) 20 log

h (n)

    (21) 

 

where N is length of the CIR, CIRh (n ) and CIRĥ (n ) is assumed 

and estimated impulse response respectively. 
 

TABLE IV.  NRMSE (DB) COMPUTED UNDER DIFFERENT CHANNEL 

ENVIRONMENTS 

 I II III IV V 

NRMSE (dB) -8.29 -5.63 -6.23 -8.41 -6.25 

 
The evaluated NRMSE values, as shown in Table IV, are 

very low and indicate the effectiveness of the proposed SSA 
based technique for OFDM CE. 

V. CONCLUSION 

A method based on singular spectrum analysis (SSA) has 
been presented here for OFDM channel estimation (CE). With 
the use of overlapping data segments in the processing steps of 
SSA makes it useful for OFDM CE under fast fading 
conditions. In the proposed algorithm, the initial CE is 
computed with the aid of traditional LMMSE algorithm, and 
then further channel is evaluated by considering the low rank 
eigenvalue approximation of channel matrix using SSA. The 
BER and channel error MSE results were compared with well-
established CE methods such as LSE, MMSE and SVD. 
Simulation results revealed that the method attained 7 dB 
improvement compared to common LSE, 5 dB over MMSE 
and almost 3 dB improvement over SVD. SSA used here for 
two purposes i.e. CE and de-noising, which further improved 
estimation accuracy. As part of de-noising purpose, SSA 
decomposed the received OFDM symbol into different 
empirical orthogonal functions (EOFs) as in the order of 
singular values and noisy reduced signal was combined with 
either highly correlated EOFs or kurtosis computed EOFs.  
Correlated EOFs were identified based on either with 
threshold on correlation or with threshold on kurtosis 
calculated between received signal and EOFs. It was 
demonstrated that the correlation coefficients worked well in 
identifying useful EOFs only up to moderate SNR 12dB. For 
low SNR<12 dB, kurtosis was found to be a useful measure 
for identifying the useful EOFs. With this de-noising 
approach, the MSE of channel estimator has been further 
improved which translated to approximately 1 dB 
improvement in signal-to-noise ratio at the receiver. In 
addition to outperforming the existing methods, this additional 
1 dB SNR improvement was achieved at the cost of 
computations involved during the de-noising process. 
Complete simulation analysis under all fading channels 

revealed the efficacy of the proposed system. The real time 
computational complexity analysis will fully explore 
effectiveness of the proposed method will be the possible 
future scope. 
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