
472 Technical Gazette 29, 2(2022), 472-482

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20211029115834
Original scientific paper

An Experimental Study on Attribute Validity of Code Quality Evaluation Model

Tianze GUO, Hanli BAI*, Yunzhan GONG, Yawen WANG, Dahai JIN

Abstract: Regarding the practicality of the quality evaluation model, the lack of quantitative experimental evaluation affects the effective use of the quality model, and also
a lack of effective guidance for choosing the model. Aiming at this problem, based on the sensitivity of the quality evaluation model to code defects, a machine learning-
based quality evaluation attribute validity verification method is proposed. This method conducts comparative experiments by controlling variables. First, extract the basic
metric elements; then, convert them into quality attributes of the software; finally, to verify the quality evaluation model and the effectiveness of medium quality attributes,
this paper compares machine learning methods based on quality attributes with those based on text features, and conducts experimental evaluation in two data sets. The
result shows that the effectiveness of quality attributes under control variables is better, and leads by 15% in AdaBoostClassifier; when the text feature extraction method is
increased to 50 - 150 dimensions, the performance of the text feature in the four machine learning algorithms overtakes the quality attributes; but when the peak is reached,
quality attributes are more stable. This also provides a direction for the optimization of the quality model and the use of quality assessment in different situations.

Keywords: Code metrics; Feature extraction; Machine learning; Quality evaluation

1 INTRODUCTION

The software has penetrated all areas of social life. A
software project with unstable quality may lead to failure,
paralysis, and even to the huge catastrophic consequences
of the entire system [1]. Therefore, it is necessary to
conduct code quality assessments during the software
development process.

Software quality assurance is a systematic activity that
runs through the entire software development process. If a
clear assessment of the quality can be given, the pros and
cons of different versions of the software and the degree of
improvement can be given through comparison, which
provides valuable references to the industry personnel [2].
Software quality is broadly defined as "the software
produced meets express and implied requirements" [3]. For
this reason, as a user, the artificial definition becomes a
factor that needs to be involved in the software quality
evaluation method.

Our research mainly focuses on the quality of software
code. The goal of software quality evaluation is to use
metrics to calculate and ultimately transform into
quantitatively evaluated quality indicators, which allows us
to track the reliability of a specific software project
simultaneously. The basic metrics of software code mainly
includes the number of modules, the number of code lines,
the number of comment lines, the ratio of code comments,
the fan-in and fan-out of functions, the instability factors,
the number of abstract classes, the number of classes, the
depth of function calls, complexity, the repetition rate, etc.
The quality model is a composite conversion of the basic
code measurement results, that is, to transform the basic
measurement calculated by the measurement tool of
source-code to a composite one using a mathematical
model to obtain the artificially defined quality attributes.
These quality attributes are defined by many experts in the
field, which can better describe the situation of the software
from various aspects, and at the same time provide
relatively traceable standards for the evaluation of software
quality. Many well-known quality models have been
proposed in the literature related to software quality, such
as McCall's [4], Boehm's [5], ISO/IEC 9126 [3], Dromey's
[6], SQuaRE [7], QMOOD [8], SQO-OSS [9] and many

other less well-known models. Most of the early quality
models only emphasized abstract views on quality factors,
which did not prove the effect of applying them in practice.
Although in continuous model research, people try to solve
these problems using integrated tools and specific
techniques to merge basic metrics to a higher level of
abstraction [10], quality is a multi-faceted concept and still
requires some form of standardization and enumeration.
Therefore, it is also necessary to confirm whether the
existing quality model's evaluation of the code can more
accurately describe the overall situation of the code, to
facilitate the evaluation of the software quality.

Software quality includes many aspects, and software
defects are one of the important indicators. Typically, the
way to evaluate problems in a software project is based on
data acquired during the history of software development
and defects discovered, with the help of methods such as
machine learning. Therefore, this paper aims at the
problem that the performance of the quality evaluation
model in the evaluation of code quality cannot be
quantitatively measured. Based on the sensitivity of the
quality evaluation model to code defects, a machine
learning-based quality evaluation attribute validity
verification method is proposed. Perform horizontal and
vertical comparisons in multiple machine learning
algorithms to verify the performance of the quality
evaluation model in different situations, and provide
support for the future research direction of the quality
model and the guidance for the application of quality
evaluation.

This paper firstly focuses on a review of the existing
research work on the quality evaluation model.
Specifically, this type of method analyses the basic
measurement elements of the software code and then
performs compound calculations using formulas to convert
the basic measurement into defined indicators that describe
the condition of the software. At present, there are many
such models. The attribute definitions of each are varied,
and the conversion formulas of the metric are also
different. Therefore, this paper mainly chooses one of the
most commonly used models QMOOD for research and
conducting evaluation subsequent experiments later. After
selecting the model, this paper uses the source-code

Tianze GUO et al.: An Experimental Study on Attribute Validity of Code Quality Evaluation Model

Tehnički vjesnik 29, 2(2022), 472-482 473

measurement tool to calculate the basic measurement and
corresponds the measurement result to the parameters in
the model using the corresponding mapping method.
Finally, the quality attributes that the experiment needs
would be calculated. As for the selection of measurement
tools this paper mainly selects open-source measurement
tools for java language code and explains the relevant
conditions of the measurement tools, and gives the
correspondence between the mapping parameters.

After determining the measurement tools and models,
this paper will conduct comparative experiments based on
the method of controlling variables to study the accuracy
of the quality evaluation model for the evaluation of code
quality. This paper compares the machine learning method
based on quality attributes with the machine learning
method based on text feature extraction and conducts
experimental evaluation on the same data set. Comparing
two different feature extraction methods as input, the
training performance of the same type of machine learning
model for code quality evaluation shows the effectiveness
of the quality attribute on the characteristics of the software
code itself. In the experiment, the sample code in the
control data set, the splitting method of the training set and
the test set, and the machine learning model are kept
consistent. The defect situation is used as the output to
compare the accuracy of the final trained model. And it
conducts in-depth experiments to discuss the pros and cons
of the quality evaluation model in the evaluation of code
quality in different situations to provide data support for
the selection of evaluation methods in varying situations.

First, this paper summarizes the methods of software
quality evaluation and selects the commonly used quality
models to illustrate and implement them in experiments.
Secondly, it concludes the existing source-code
measurement tools and applies them in experiments. Then
it summarizes and implements the commonly used models
and feature extraction methods of machine learning. The
experimental part verifies the usability and accuracy of the
quality assessment by comparing the results of
experimental data. Finally, the full text is summarized in
combination with related research, and the directions that
are worth paying attention to in the future are preliminarily
discussed.

2 SOFTWARE QUALITY ASSESSMENT
2.1 Existing Research on Quality Assessment and the

Goals of This Paper

Software quality is an important field of software
testing. The quality of software products is measured
according to their ability to meet the goals of developers
and user needs. The quality evaluation mechanism relies
on a quality model, which usually defines the constituent
factors and evaluates and summarizes the pros and cons of
individual metrics. So the judgment of whether the quality
evaluation mechanism can better describe the software
quality, meanwhile, whether the quality attributes can
better generalize the code and apply it to the evaluation of
the code quality will become problems that need to be
urgently confirmed.

As mentioned above, the quality of the code can be
described quantitatively by a well-defined model, and each
model will give a corresponding quality index. In recent

years, scholars have studied the integrated multi-version
quality measurement framework [11]. The inquiry explains
the relevance of the quality model evaluation results to
defect information, change information, and other data.
But it cannot be proven whether the quality evaluation
results can describe the code situation more
comprehensively and accurately or whether they can be
used to evaluate the quality of the code. This paper will
choose a more commonly used and excellent model in
previous studies for research and apply it to prove the
accuracy, representativeness, and usability of the quality
evaluation results, which also explores the help of quality
attributes in evaluating code defects to fill in the gap here.

2.2 The Selection and Association of Quality Models and

Software Metrics

Since the quality model provides a basis for defining
the association between a set of quality attributes and
measurement elements, it is needed to select a model to
evaluate quality at first. Existing scholars divide software
quality models into two categories: basic models and
customized models. Generally speaking, the project team
can choose an existing ready-to-use model or use a custom
design to meet specific goals. The only prerequisite is that
it can be put into operation as a function of mapping
specific attributes and code metrics. Through the
investigation of various studies, such as [12-14] using ISO
quality standards as a reference point, the system
characteristics are mapped into a subset of quality
characteristics. Among them, ISO-square is a real model of
the basic model. Compared with the customized model, it
has some limitations and cannot be shaped according to
specific needs or used for certain specific products. Of
course, the quality model can also be customized to meet
the requirements of a specific environment [15]. In this
view, people can use the composition parameters of the
existing model and define new weights for them to obtain
new formulas for related attributes. If necessary, it is
possible to replace the original component metrics with a
new set of metrics.

Table 1 QMOOD quality model [8]
Quality

Attributes
Index Computation Equation

Reusability
−0.25 * Coupling + 0.25 * Cohesion + 0.5 *

Messaging + 0.5 * DesignSize

Flexibility
0.25 * Encapsulation − 0.25 * Coupling + 0.5 *

Composition + 0.5 *Polymorphism

Understand-
Ability

−0.33 * Abstraction + 0.33 * Encapsulation − 0.33
* Coupling + 0.33 * Cohesion − 0.33 *

Polymorphism − 0.33 * Complexity − 0.33 *
DesignSize

Functionality
0.12 * Cohesion + 0.22 * Polymorphism + 0.22 *

Messaging + 0.22 * DesignSize + 0.22 *
Hierarchies

Extendibility
0.5 * Abstraction − 0.5 * Coupling + 0.5 *

Inheritance + 0.5 * Polymorphism

Effectiveness
0.2 * Abstraction + 0.2 * Encapsulation + 0.2 *

Composition + 0.2 * Inheritance + 0.2 *
Polymorphism

With the research of the previous work, this paper

chooses QMOOD with better performance as the quality
model for experimental research. As shown in Tab. 1,
QMOOD [8] directly shows the mechanism of converting

Tianze GUO et al.: An Experimental Study on Attribute Validity of Code Quality Evaluation Model

474 Technical Gazette 29, 2(2022), 472-482

a set of metrics as parameters into six quality
characteristics.

3 USE SOFTWARE MEASUREMENT TOOLS FOR

SOURCE-CODE MEASUREMENT
3.1 Overview of Measurement Tools

Mining the historical research of software
measurement and setting up novel measurement elements
with a strong correlation with software quality is the key to
constructing a high-quality model. Existing research
divides the metrics into two categories. The first category
focuses on the code size and internal complexity of
program modules; the second category focuses on the
analysis of the software development process, from the
analysis of code modification characteristics, developers,
the perspectives of experience, inter-module dependencies,
and project team organizational structure to design the
metric.

The software measurement tool is a program that
extracts several attributes of source-code entities and
converts general measurement definitions into
corresponding values. There are countless open source
tools, free software, and commercial applications, such as
C and C++ Code Counter (CCCC), Chidamber & Kemerer
Java Metrics (CKJM), Dependency Finder, Sonar, Source
Monitor, JHawk, IBM Rational Logiscope, and McCabe
QA. They are different in various aspects, such as language
support, measurement support, open-source/closed-source,
applicable software size, output file format, user interface,
etc. Of course, you can also choose to develop your tools,
or you can choose existing tools according to your
preferences. Among them, many tools also provide the
option of exporting metrics to XML/CSV files for
subsequent processing using spreadsheet programs or in a
database environment.

3.2 Selection and Application of Measurement Tools

Once the tool can count code metrics and the results
are imported into the database, the quality attributes can be
enumerated as a function of the basic metrics specified by
the selected quality model, as described in section 2.2.

This paper chooses the more convenient and
commonly used CKJM tool on the market to measure the
source code. It is an open-source command-line
measurement calculation tool used to extract source-code
measurement for the selected input code. This tool can
count nineteen sizes and structure metrics for each class.
CKJM deals with class files, so as a prerequisite, the
project should be fully compiled to enable the tool to start
statistics. To this end, all source-code in the data set is
compiled and passed, and command-line scripts for
building software are required. The sample size of the data
set which the paper used in the experiment is very large.
Therefore, a small command-line batch script must be
written. In addition, the path of all directories containing
.class files must be specified. Metrics are planned to be
redirected to a .csv file, which is an option provided by the
tool itself. Once all the metric data are obtained, they will
be used as input parameters for the selected quality model.
This paper uses the latest version of CKJM-extended 2.0
(Chidamber and Kemerer Java Metrics and many other

metrics) for experiments in the subsequent experimental
part, which is an enhanced version relative to the original
CKJM version [16]. After completing the preliminary
basic work, batches call scripts from the command line to
start CKJM for each running script, one sample source
code at a time. After collecting the output in the CSV file,
it can be easily imported into any spreadsheet program for
further analysis.

It should be noted that the indicator names provided by
CKJM are not the same as those described in the QMOOD
model, but many similarities have been identified. For
example, in a previous job, by using specific code metrics
(such as CBO, DIT, WMC, and NOC, etc.) as the input
parameters of the QMOOD quality model, some quality
attributes of the software (such as reusability, flexibility,
scalability and so on) are quantified [17]. In addition,
according to Bansiya et al., in the lowest-level model
design, the indicators used to evaluate design attributes
may change, or a set of different design indicators can be
used to evaluate quality attributes [8]. Therefore, the
mapping of CKJM tool measurement data to QMOOD
indicators and equivalent substitute indicators has been
recorded in Tab. 2 [17]. In the follow-up experimental
research of this paper, this paper plans to convert these
metrics extracted from the source code into quality
indicators, and use six quality attributes as the result data
of the evaluation software to describe the code situation,
which can then be used as a feature extraction method for
the code in training machine learning models. And the
follow-up research uses experiments to compare whether
the quality attributes are more comprehensive and accurate
than the basic metric description of the code.

Table 2 QMOOD properties & equivalent substitute metrics [17]
Design

Property /
QMOOD

Design Metric / QMOOD
Equivalent metric
substitute(in this

paper)

Coupling Direct Class Coupling (DCC)
Coupling between

object classes
(CBO)

Cohesion
Cohesion Among Methods of

Classes (CAM)
Same as in
QMOOD

Messaging Class Interface Size (CIS)
Number of public
Methods (NPM)

Design Size Design Size in Classes (DSC)
Number of Classes

(NOC)

Encapsulation Data Access Metric (DAM)
Same as in
QMOOD

Composition
Measure of Aggregation

(MOA)
Same as in
QMOOD

Polymorphism
Number of Polymorphic

Methods (NOP)
Coupling Between
Methods (CBM)

Abstraction
Average Number of

Ancestors(ANA)
Inheritance

Coupling (IC)

Complexity Number of Methods (NOM)
Weighted methods
per Class (WMC)

Hierarchies
Number of Hierarchies

(NOH)

Depth of
Inheritance Tree

(DIT)

Inheritance
Measure of Functional

Abstraction (MFA)
Same as in
QMOOD

4 MACHINE LEARNING MODEL AND FEATURE

EXTRACTION

Nowadays, machine learning algorithms have become
a normal and advanced method for solving fuzzy problems.
In other words, machine learning can be used to solve

Tianze GUO et al.: An Experimental Study on Attribute Validity of Code Quality Evaluation Model

Tehnički vjesnik 29, 2(2022), 472-482 475

problems where the exact results are not known, where
what is good and what is bad is not strictly defined, or
where it is strictly defined and costs too much. This paper
uses the method named machine learning to solve such
problems, which can be improved by obtaining standards
or models that conform to the judgments of experts and can
also improve the accuracy and the efficiency of the large-
scale evaluations. This paper uses quality attributes to
evaluate code defects. Code defect is an important aspect
of code quality. Since code quality is similar to a doctor's
diagnosis, each doctor may evaluate it differently after
seeing the same patient. And doctors will use different
methods with different conclusions. Another example is
the evaluation of film releases. Each different group of
people gives different evaluation criteria for watching
different movies, and it is also difficult to define personal
opinions. There is no unified standard like this, which is
relatively subjective and can be understood as a strong
personification. If you want to obtain a more recognized
model, machine learning algorithms can be used. For
unknown results, when judging and evaluating based on
existing experience, machine learning models are usually
one of the most effective and commonly used methods in
today's methods. Training valid data sets, obtaining models
that are closer to human standards (reality), resulting in
more accurate evaluation results than the analysis of
industry insiders, can save costs and improve efficiency
when confirming the usability of models.

The traditional way of checking the code is mainly
carried out by a manual walk-through. After the machine
learning algorithm is used, the marked input and output can
be used as the training set, and the model can be called for
learning so that the actual y and the proposed y^ tend to be
consistent. After the model is determined, the test set can
be used for the accuracy judgment, and it can be applied to
the evaluation and analysis of all similar projects. The
model obtained by using machine learning algorithms will
be more efficient and reasonable than expert evaluation or
empirical judgment. The follow-up comparison
experiments in this paper mainly use the results of quality
evaluation using QMOOD and traditional text feature
extraction as input and control variables. Then the
performance of the trained model is compared to judge the
accuracy, comprehensiveness, and usability of the
QMOOD quality evaluation data.

4.1 Feature Extraction Method

In machine learning, the input and output need to be
determined before training the model. For the data and the
source code as the sample, the first thing to do is to extract
the features of the code and extract the key features that can
represent the code to make the input matrix. This is the first
step in machine learning to transform the input matrix.
Among them, the commonly used feature extraction
method for the source code is TF-IDF scoring. TF-IDF
(term frequency-inverse document frequency) is a
commonly used weighting technique for information
retrieval and text mining. It is a statistical method used to
evaluate a word for a document set or the importance of
one document in a corpus. The importance of a word
increases in proportion to the number of times it appears in

the document, but at the same time, it decreases in inverse
proportion to the frequency of its appearance in the corpus.
(1) TF is used for the term frequency: it means the
frequency of the term (keyword) in the text.

This number is usually normalized (usually the
number of occurrences of the word divided by the total
number of words in the paper) to prevent it from being
biased towards longer documents.

Formula:

,

,

i j
ij

k jk

n
tf

n



 (1)

Ie:

TF

The number of occurrences of in acertain type of entry

The number of entries in this category







 (2)

where ni,j is the number of times the word appears in the
file dj, and the denominator is the sum of the number of
times all words in the file dj appearance.
(2) IDF is InverseDocumentFrequency: The IDF of a
particular word can be obtained by dividing the total
number of documents by the number of documents
containing the word and then taking the logarithm of the
obtained quotient.

If fewer documents are containing the term t, the larger
is the IDF, which means that the term has a good ability to
distinguish categories.

Formula:

 :
i

i j

D
idf

j t d



 (3)

Among them, |D| is the total number of files in the

corpus.  : i jj t d Represents the number of files

containing the term ti (ie, the number of files with ni,j ≠ 0).
If the word is not in the corpus, it will cause the

denominator to be zero, so in general, use  1 : i jj t d  .

Ie:

IDF

The sum of documents in the corpus
log

The number of documents contain in the term +1



   
 

 (4)

The reason for adding 1 to the denominator is to

prevent the denominator from being 0;
(3) TF-IDF is actually: TF × IDF.

A high word frequency in a particular document and a
low document frequency of the word in the entire
document collection can produce a high-weight TF-IDF.
Therefore, TF-IDF tends to filter out common words and
keep important words.

Formula:

IDF = TF TF × IDF (5)

Tianze GUO et al.: An Experimental Study on Attribute Validity of Code Quality Evaluation Model

476 Technical Gazette 29, 2(2022), 472-482

TF-IDF is often used in machine learning as a feature
extraction method of input text for keyword extraction and
text summarization. Therefore, in the follow-up
experiments, this paper will apply the TF-IDF algorithm to
score the source code and convert the data set into an input
matrix that can be recognized by the model.

4.2 Machine Learning Model Selection

Existing commonly used machine learning models
have been integrated into some very powerful machine
learning libraries provided by Python third parties. In the
follow-up of this paper, this paper mainly chooses several
commonly used models in sklearn [18] for comparison
experiments. It covers all aspects from data preprocessing
to training models. The actual use of sci-kit-learn can
greatly save us time to write authorcode and reduce the
amount of our code so that it will have more energy to
analyze the data distribution, adjust the model and modify
the hyperparameters. There are several commonly used
models in sklearn:
(1) SVC: Its full name is SVM for Classification. SVM is
a support vector machine (support vector machine), which
is a classification algorithm, but regression can also be
done. Different models can be made using the input data (if
the input label is a continuous value, it is used for
regression; if the input label is categorical value, SVC () is
used for classification). In seeking to minimize the
structured risk, the generalization ability of the learning
machine can be improved, and the experience risk and
confidence range can be minimized, to achieve the goal of
obtaining good statistical laws even with small statistical
sample size. Generally speaking, it is a two-class
classification model. Its basic model is defined as the linear
classifier with the largest interval in the feature space. That
is, the learning strategy of the support vector machine is to
maximize the interval, which can finally be transformed
into a convex quadratic solving planning problem. The
SVM algorithm in sklearn is implemented in the package
sklearn.svm.

Formula:

   signf x x b    (6)

(2) MLPClassifier: Multilayer Perceptron (MLP) is also
called Artificial Neural Network (ANN) [18]. In addition
to the input and output layers, there can be multiple hidden
layers between them. The simplest MLP only contains a
hidden layer, which is a three-layer structure, as shown in
Fig. 1.

As can be seen from the above figure, the layers of the
multi-layer perceptron are fully connected. The bottom
layer of the multi-layer perceptron is the input layer, the
middle is the hidden layer, and the last is the output layer.
The most basic problem to be solved by the neural network
is the classification problem. Passing the feature value into
the hidden layer and training the parameters of the neural
network (W, weight; b, bias) using the data with the result,
so that the output value consistent with the result is given,
and it can be used to predict the new. The three-layer MLP
mentioned above can be summed up with the formula that
the function G is softmax:

            2 2 1 1f x G b W s b W x   (7)

Therefore, all the parameters of MLP are the

connection weights and biases between each layer,
including W1, b1, W2, and b2;

Figure 1 MLP three-layer structure diagram

(3) RandomForestClassifier [19]: Randomforest is a very
representative Bagging ensemble algorithm. All its base
evaluators are decision trees. The forest composed of
classification trees is called Random Forest Classifier, and
the forest integrated by regression trees is called Random
Forest Regressor. It is a meta-estimator, suitable for
multiple decision tree classifiers on each sub-sample of the
data set, and uses the average to improve prediction
accuracy and control overfitting. The sub-sample size is
always the same as the original input sample size, but if
bootstrap = True (the default value), the replacement will
be used to draw the sample. This algorithm is implemented
in the sklearn.ensemble. RandomForestClassifier method
in sklearn.

Formula:

    1
max

T
ttY

H x arg h x





   (8)

The essence of the random forest algorithm is a

classifier ensemble algorithm based on decision trees, in
which each tree relies on a random vector. All vectors in
the random forest are independent and identically
distributed. Random Forest is to randomize the column
variables and row observations of the data set, generate
multiple classification numbers, and finally summarize the
results of the classification tree. Compared with the neural
network, it reduces the number of calculations and
improves prediction accuracy. The algorithm is not
sensitive to multivariate collinearity and is more robust to
missing and unbalanced data, and can well adapt to up to
thousands of explanatory variables data set.
(4) AdaBoostClassifier: Adaboost is a common boosting
learning model. Boosting is a machine learning technology
that can be used for regression and classification problems.
It generates weak prediction models (such as decision
trees) at each step, and the weight is added to the overall
model; if the generation of the weak prediction model at
each step is based on the gradient of the loss function, then
it is called gradient boosting. The significance of this
technology is that if a problem has a weak predictive

Tianze GUO et al.: An Experimental Study on Attribute Validity of Code Quality Evaluation Model

Tehnički vjesnik 29, 2(2022), 472-482 477

model, then a strong predictive model can be obtained by
upgrading the technology. Adaptive Boosting is just an
iterative algorithm. In each iteration, a new learner is
generated on the training set, and then the learner is used
to predict all samples to evaluate the importance of each
sample. The Adaboost algorithm uses the linear
combination of the base classifiers as a strong classifier,
and at the same time gives the base classifier with a smaller
classification error rates a large weight, and gives the base
classifier with a larger classification error rate a small
weight. The linear combination constructed is:

   1

T
t tt

f x h x


  (9)

The final classifier is to perform the sign function

conversion based on the linear combination, and get the
formula:

       1
sign sign

T
t tt

G x f x h x


   (10)

QuadraticDiscriminantAnalysis: Discriminant

analysis in sklearn mainly includes two types,
LinearDiscriminantAnalysis and
QuadraticDiscriminantAnalysis. Linear discriminant
analysis is a classification model that selects a projection
hyperplane in the k-dimensional space to make the distance
between the projections of different categories on the
hyperplane as close as possible, and the distance between
the projections of different categories as far as possible. In
LDA, it assumes that each category of data obeys Gaussian
distribution and has the same covariance matrix ∑.
QuadraticDiscriminantAnalysis is similar to LDA. The
difference is that it can form a nonlinear boundary and the
Gaussian distributions to which different classes belong
have different covariance matrices. Therefore, the formula
[20] is obtained:

       T 11 1
log log

2 2 kk kk x kx k x          (11)

5 COMPARATIVE EXPERIMENT
5.1 Experimental Design

(1) Experimental method: The experiment in this paper
adopts the controlled variable method to conduct
comparative experiments, that is, control irrelevant
variables to be consistent, reduce the influence of other
factors on the results, and finally obtain the performance of
the unique variable from the difference of the results.
(2) Irrelevant variables: data set (composed of the sample,
training set, and test set), input matrix format (dimension),
machine learning model.
(3) Experimental process:
 This paper firstly selects an open-source data set. The
data set sample should be the source code and contain the
code quality information. Therefore, this paper selects the
appropriate part from the defects4j data set used in similar
researches as the experimental data set. The data set
contains multiple code files written in java language, which
meets the requirements of the code measurement tool

CKJM. At the same time, TF-IDF can also be used for
feature extraction;
 There is 172 pieces of defect information in all samples
in the open-source set. Therefore, to balance the positive
and negative sets, this paper extracts 172 samples of defect
information as positive samples, and randomly selects the
other 172 from the remaining samples as negative samples,
forming the follow-up data set of the experiment in this
paper. Then according to the selection of 6:4, the training
set and the test set are allocated.
 Next, according to the script mentioned in section 3.2
of the previous paper. The CKJM tool is used to count the
measurement results of all code files in the data set, and
convert them into the corresponding quality attributes
using the QMOOD model to obtain six quality evaluation
results of QMOOD for each sample. Take these six results
as the six-dimensional input matrix of each sample, that is,
describe the code using these quality attributes.
 Similarly, this paper uses the commonly used feature
extraction method TF-IDF to extract all samples in the
same data set and convert them into a six-dimensional
input matrix as input.
 Put two input matrices of the same format into the
same five models for training, and then compare the
accuracy of the models using the test set. Finally, a
conclusion is drawn by comparing the performance
differences of the model with two different input situations.

5.2 Basic Experimental Results

To increase the persuasiveness of the experiment and
the amount of experimentation, this paper has selected five
additional models including SVC, MLPClassifier,
RandomForestClassifier, AdaBoostClassifier, and
QuadraticDiscriminantAnalysis in addition to the five
commonly used machine learning models studied in
Section 4.2. These ten models are commonly used learning
models in the sklearn library. The data set used in this paper
contains 344 code files, which includes 172 samples of
defect information, 206 samples in the training set, and 138
samples in the test set. The input matrices of the two
training models are 6 - dimensional, and the QMOOD
quality evaluation results and the TF-IDF feature
extraction are used for conversion respectively. The
performance of the models trained in the two ways is
shown in Tab. 3. Because all the results exceed 73 ÷ 138 =
52.9%, it shows that the training of the model is effective.

Table 3 The accuracy of the results obtained by different inputs in the model
Input

Model

QMOOD TF-IDF

SVC 0.688406 0.666667
MLPClassifier 0.681159 0.659420

RandomForestClassifier 0.768116 0.702899
AdaBoostClassifier 0.775362 0.623188

QuadraticDiscriminantAnalysis 0.666667 0.644928
BaggingClassifier 0.717391 0.710144

KNeighborsClassifier 0.717391 0.666667
PassiveAggressiveClassifier 0.710144 0.586957

Perceptron 0.724638 0.688406
SGDClassifier 0.717391 0.702899

Therefore, it is not difficult to see from the results that

QMOOD as input data performs better than the input

Tianze GUO et al.: An Experimental Study on Attribute Validity of Code Quality Evaluation Model

478 Technical Gazette 29, 2(2022), 472-482

model obtained by TF-IDF in the 10 models. In addition,
the RandomForestClassifier and AdaBoostClassifier
models perform more prominently.

At the same time, this experiment is to further study
whether the QMOOD quality model can better describe the
code and evaluate the defects relative to the measurement
results, that is, the effectiveness of the quality attributes.
CKJM also explored the statistical results of the unified
data set as input and compared the performance of the same
data set in 10 models under the QMOOD model evaluation
and CKJM measurement statistical results as the input data
acquisition method. The results are as follows in Tab. 4.
This paper found that the QMOOD evaluation result as an
input performs better in the 10 models than the basic metric
training result obtained by CKJM.

Table 4 The accuracy of the model trained by CKJM extracting input
Input

Model

CKJM

SVC 0.681159
MLPClassifier 0.666667

RandomForestClassifier 0.724638
AdaBoostClassifier 0.731884

QuadraticDiscriminantAnalysis 0.536232
BaggingClassifier 0.688406

KNeighborsClassifier 0.644928
PassiveAggressiveClassifier 0.579710

Perceptron 0.666667
SGDClassifier 0.695652

Among them, each row under QMOOD, CKJM, and

TF-IDF represents the accuracy of the data set using three
different methods to obtain the input matrix to train the
model. All results are the average of the results of multiple
runs to eliminate noise.

5.3 In-Depth Experimental Results

In addition, to give more guidance on the choice of
quality assessment methods, this paper added the
dimensions extracted by TF-IDF in addition to the above
experiment, that is, took the feature words with a wider
range of importance rankings in the code, and vertically
explored the changes in the accuracy of each model when
the dimensionality of the feature matrix was higher.

Figure 2 Changes of 5 models in different dimensions of TF-IDF

After the selected dimension of the text feature

extraction method becomes higher, it is horizontally
compared with the QMOOD quality evaluation results to

verify the effectiveness under different extraction
conditions, and then provide evidence-based guidance for
subsequent people to choose the method when applying.
(1) Longitudinal comparison: This paper selected a
different number of text feature words, that is, the
performance of training TF-IDF in different dimensions,
including 10, 50, 100, 150, and 200 dimensions to conduct
experiments, to explore the previous paper. The vertical
performance trends of the five key machine learning
models obtained are transformed into a line chart as shown
in Fig. 2.

It is obvious that the four models include
MLPClassifier, RandomForestClassifier,
AdaBoostClassifier, and QuadraticDiscriminantAnalysis
rises as the dimensionality increases, and then falls after
reaching the extreme value. Of course, the extreme values
of different models are also different; the SVC model has
been rising, obviously under 200 dimensions. The accuracy
rate is not the extreme value of this model.
(2) Horizontal comparison: This paper selects QMOOD
quality evaluation and TF-IDF text features in the above
process and compares the performance in each dimension
based on these five machine learning models. Because
there are six quality attributes of QMOOD and they will
not change with the change of dimensions, then take the
data from the previous step, only change the number of
feature extractions of TF-IDF. Furthermore, it explores the
practicability of the quality assessment model in various
situations and the pros and cons of methods based on text
features. Compare the histogram tactics of 6, 10, 50, 100,
150, and 200 dimensions respectively as shown in Fig. 3 to
Fig. 8.

Figure 3 Comparison of QMOOD and TF-IDF of 5 models in 6 dimensions

Figure 4 Comparison of QMOOD and TF-IDF of 5 models in 10 dimensions

Tianze GUO et al.: An Experimental Study on Attribute Validity of Code Quality Evaluation Model

Tehnički vjesnik 29, 2(2022), 472-482 479

Figure 5 Comparison of QMOOD and TF-IDF of 5 models in 50 dimensions

Figure 6 Comparison of QMOOD and TF-IDF of 5 models in 100 dimensions

Figure 7 Comparison of QMOOD and TF-IDF of 5 models in 150 dimensions

Figure 8 Comparison of QMOOD and TF-IDF of 5 models in 200 dimensions

To verify the reliability of the method in more practical
applications and provide better experimental data support,
this paper selects another set of data and also conducts
experiments following the above process. There are a total
of 600 code files in this set of data, including 120 defect
information, the experimental results obtained are shown
in Fig. 9 to Fig. 15.

Figure 9 Changes of 5 models in different dimensions of TF-IDF

Figure 10 Comparison of QMOOD and TF-IDF of 5 models in 6 dimensions

Figure 11 Comparison of QMOOD and TF-IDF of 5 models in 10 dimensions

Figure 12 Comparison of QMOOD and TF-IDF of 5 models in 50 dimensions

Tianze GUO et al.: An Experimental Study on Attribute Validity of Code Quality Evaluation Model

480 Technical Gazette 29, 2(2022), 472-482

Figure 13 Comparison of QMOOD and TF-IDF of 5 models in 100 dimensions

Figure 14 Comparison of QMOOD and TF-IDF of 5 models in 150 dimensions

Figure 15 Comparison of QMOOD and TF-IDF of 5 models in 200 dimensions

The author observed that the results obtained by the

two data sets are the same. In the control variables,
QMOOD performed better than TF-IDF; in the vertical
comparison, TF-IDF showed the same changes in the five
machine learning models when the dimensionality
changed; except for the horizontal comparison, the
MLPClassifier model was in the second place. In the
results obtained from the group data set, as the
dimensionality changes from the extreme value, there is a
situation where QMOOD again achieves overtake in high
dimensions. It can be seen that the machine learning model
of MLPClassifier is unstable when the text features are in
high dimensions.

5.4 Experimental Conclusions and Suggestions

According to the experimental results in Section 5.2
and 5.3, it is not difficult to find the following conclusions:

(1) In the basic experiment of control variables, that is, at
the same latitude, among the 10 selected models, the model
trained with the QMOOD evaluation result as the input
performed better than the model obtained by TF-IDF and
CKJM. Therefore, this paper can explain that the model
obtained when the QMOOD evaluation result is the only
variable as the input is better than the model obtained by
TF-IDF, and the accuracy of the evaluation is improved by
at least 2%. It can be concluded based on machine learning
that QMOOD quality attributes can better describe the code
itself, can more comprehensively and accurately describe
the overall situation of the code, the evaluation results of
the quality model are more meaningful for the code. The
quality situation is evaluated promptly; and because the
model obtained from the QMOOD evaluation result as
input is better than the model obtained from the CKJM
result input, the accuracy rate is improved. Therefore, the
paper can conclude that the quality attributes in the
QMOOD model can better describe the code itself
compared to the basic metrics. Therefore, the definition of
the quality attributes in the model is reasonable and
scientific, and at the same time, the quality evaluation of
the code is more usable.
(2) In the in-depth experiment, according to the results of
machine learning, with the increase of feature words
selected by TF-IDF, namely the increase of dimension, the
performance of the model is positively correlated with the
dimension at the beginning, and some models begin to
decline after reaching the extreme value. This is in line
with the law of the algorithm itself, that is, as the feature
words increase, the feature matrix is more complete, which
can better cover the code situation, and then better evaluate
the code; but after the dimensionality increases to a certain
extent, the feature words only continue to increase. It will
increase noise because the feature words extracted by TF-
IDF are sorted according to their importance to the code,
and the addition of more and more feature words will affect
the overall judgment. In the same way, adding more and
more representative quality attributes to the quality model
and increasing the dimension can also improve the
effectiveness of the quality model. This is also a common
way to optimize the quality model. This research direction
is Scientific and reasonable.

At the same time, after in-depth experiments and based
on experimental data, this paper can also put forward some
guiding opinions for the subsequent quality evaluation in
different situations:
(1) At low dimensions, that is, below 50 dimensions, the
introduction of the QMOOD quality model can better
evaluate defects compared to conventional text feature
extraction methods and can be better combined with
machine learning models as an effective feature extraction
method. In addition, because QMOOD performs better in
the RandomForestClassifier and AdaBoostClassifier
models. Compared with other models, the random forest
algorithm itself improves the prediction accuracy and
stability, and its accuracy rate is improved by the most,
reaching over 6%. Therefore, this experiment can see that
the QMOOD model can cooperate with better models in
the quality assessment based on machine learning to
achieve superimposed effects.
(2) Between 50 and 150 dimensions, this paper
recommends using high-dimensional text feature

Tianze GUO et al.: An Experimental Study on Attribute Validity of Code Quality Evaluation Model

Tehnički vjesnik 29, 2(2022), 472-482 481

extraction forms when using the four machine learning
models of SVC, MLPClassifier, RandomForestClassifier,
and AdaBoostClassifier. Quality attributes as input are
slightly inferior;
(3) In the 150 - 200 dimension, because
AdaBoostClassifier has slipped from the extreme value
more obviously, this paper recommends using QMOOD as
the feature extraction effect in this case. In both sets of data
sets, MLPClassifier has slipped from extreme values in
high dimensions, and its performance is unstable.
Therefore, it also recommends choosing QMOOD for
feature extraction. Under the two models of SVC and
RandomForestClassifier, the matching effect of selecting
high-dimensional text feature extraction is better;
(4) The QuadraticDiscriminantAnalysis model is more
compatible with the QMOOD quality model in any
dimension, and it does not need to be considered separately
in the application.

6 RELATED WORK

The status of software quality assessment technology
in software development has gradually improved, and
quality models and quality measurement tools have
received more and more attention. Researchers have many
commonly used models to measure software quality.
Therefore, many times, after the quality evaluation model
is proposed, it is necessary to determine whether the quality
attribute definition of the existing model is reasonable and
effective, whether the result of the quality evaluation is
accurate and can fully explain the code situation, and
whether it is helpful for the application of code quality
evaluation, that is the effectiveness of the quality
assessment model.

In the work of predecessors, the verification was
mainly conducted among a few software versions, and only
the relevance of the quality factors in the software of
known quality to the actual quality situation was explored,
and the quality evaluation model was not applied to the
uncertain quality. In the evaluation of the situation, there is
no large amount of data to support, there is lack of
comparison with other evaluation methods, and it is
impossible to make supporting suggestions for the actual
work of quality evaluation in various situations. For
example, Chawla MK and Chhabra I proposed an
integrated cross-version quality measurement framework
in 2016 [11], which is more prominent and novel in such
studies in recent years. The exploration illustrates the
quality model evaluation results and vulnerability
information and changes, the relevance of data such as
information. However, it has not directly verified the
effectiveness of the proposed quality model in the actual
prediction and quality evaluation process for unknown
codes, nor has it passed a large number of experiments to
compare the pros and cons of other evaluation methods in
actual performance. It is based on the concept to verify the
relevance of the proposed attributes in the individual
software.

In addition, recent research has increasingly applied
machine learning algorithms to related research on code
evaluation including the code smell prediction technology
that has attracted more attention in software quality in
recent years. For example, M. Agnihotri and A. Chug in

the study from 2020 introduced the use of random forest
machine learning algorithms to perform object-oriented
software measurement of code smell prediction [21].
Alshaaby A. and others also analyzed the machine learning
technology for detecting code smell in 2020 and compared
the performance of several algorithms. Among them, J48
and Random Forest algorithm performed better and
pointed out that more research is needed to promote the
machine. Application of learning algorithm in detecting
code smell [22] including a data-driven method using
machine learning for vulnerability detection proposed by J.
A. Harer et al. in 2018, and a performance comparison [23]
can show that the application of machine learning
algorithms to the evaluation of code quality is reliable.
Predecessors have also proved the effectiveness and
feasibility of machine learning algorithms in the field of
code quality evaluation, which is also a development trend
in recent years.

Therefore, this paper proposes a method for validating
the effectiveness of a quality model based on machine
learning, which can fill the gaps in the previous research
on quality models and can also quantitatively verify the
effect of evaluation. Use the difference between quality
attributes and other eigenvalues through machine learning,
conduct a large number of experiments to explore the
performance of attributes proposed by the quality model,
and provide a new solution for verifying whether the
quality model you want to use or the newly proposed
quality model is a more effective plan. It also provides
data-supported guidelines for subsequent practical
applications based on codes. Appropriate methods can be
selected for evaluation in different situations, and a
verification and comparison method can also be provided
when selecting a quality model.

7 CONCLUSION

In this paper, the focus is on quality models,
measurement tools, feature extraction methods, and
various machine learning models. In the experiment,
comparative experiments are carried out by controlling
variables and in-depth experiments are carried out. Finally,
two conclusions can be drawn from the experimental
results: under the same requirements, compared with the
traditional text feature extraction method, the QMOOD
quality evaluation model has improved the accuracy of
defect prediction by more than 1% in both data sets. The
quality attributes definition ratio of the QMOOD quality
evaluation model is only based on statistical data. Basic
metrics are more meaningful, reasonable, and effective; at
the same time, it is verified that the current common way
of optimizing quality models is to add more representative
quality attributes, that is, to increase dimensions. This
research direction is scientific and reasonable, researchers
can also use the method proposed in this paper to verify
after optimization. In addition, this paper is also a guide in
different situations for subsequent practical applications.

Therefore, according to the research in this paper and
the above experimental conclusions, the verification
method proposed in this paper can well illustrate the
usability and effectiveness of the quality assessment
model. In subsequent research, by combining the quality
model with better machine learning models, or even deep

Tianze GUO et al.: An Experimental Study on Attribute Validity of Code Quality Evaluation Model

482 Technical Gazette 29, 2(2022), 472-482

learning models, it can be better applied to the evaluation
technology of code quality information such as defects.
The machine learning-based quality evaluation attribute
validity verification method proposed in this paper verifies
the performance of the quality evaluation model in the
actual application of quality evaluation. It can
quantitatively evaluate the validity of the quality model and
give the application of experimenters. The guidelines fill
the gap here and provide directions and powerful tools for
future research. This paper hopes to provide some
verifiable methods for the subsequent research on quality
model optimization, so that the quality assessment applied
to more links in the software testing process can be more
in line with expectations, to help existing research achieve
better results.

Acknowledgment

This paper is supported by Guangxi Key Laboratory of
Cryptography and Information Security(No.GCIS202103).

8 REFERENCES

[1] Yunzhan, G. (2019). Who will guarantee the software quality?

Innovation World Weekly, 2019(05), 8+24-25.
[2] Walia, M. (2010). Realizing efficiency and effectiveness in

software testing through a comprehensive metrics model.
10th Annual International Software Testing Conference
(STC 2010), Infosys, White Paper, Infosys Technologies Ltd.

[3] Australia S. (2001). Software engineering - Product quality-
P. 1: Quality model. International Standard ISO/IEC 9126-1.

[4] McCall, J., Richards, P., & Walters, G. (1977). Factors in
software quality. NTIS AD-A049-014, 015, 055, 1977.

[5] Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M.,
McLeod, G., & Merritt, M. (1978). Characteristics of
software quality.

[6] Dromey, R. G. (1995). A model for software product quality.
IEEE Transactions on Software Engineering, 21, 146-162.
https://doi.org/10.1109/32.345830

[7] ISO (2005). Software engineering Software product Quality
Requirements and Evaluation (SQuaRE) Guide to SQuaRE,
ISO Geneva.

[8] Jagdish, B. & Carl, G. D. (2002). A hierarchical model for
object-oriented design quality assessment, Software
Engineering. IEEE Transactions on, 28(1), 4-17.
https://doi.org/10.1109/32.979986

[9] Spinellis, D., Gousios, G., Samoladas, I., et al. The SQO-
OSS Quality Model: Measurement-Based Open Source
Software Evaluation// 2008:2101-7.

[10] Kläs, M., Lochmann, K., & Heinemann, L. (2011).
Evaluating a Quality Model for Software Product
Assessment-A Case Study. Proceedings of SQMB'11.

[11] Chawla, M. K., & Chhabra, I. (2016). A quantitative
framework for integrated software quality measurement in
multi-versions systems. International Conference on
Internet of Things & Applications. IEEE.
https://doi.org/10.1109/IOTA.2016.7562743

[12] Jung, H. W. (2007). Validating the external quality sub
characteristics of software products according to ISO/IEC
9126. Computer Standards & Interfaces, 29(6), 653-661.
https://doi.org/10.1016/j.csi.2007.03.004

[13] Correia, J. P., Kanellopoulos, Y., & Visser, J. (2009). A
survey-based study of the mapping of system properties to
ISO/IEC 9126 maintainability characteristics, Software
Maintenance. ICSM 2009. IEEE International Conference
on, IEEE, 61-70. https://doi.org/10.1109/ICSM.2009.5306346

[14] Baggen, R., Correia, J. P., Schill, K., & Visser, J. (2012).
Standardized code quality benchmarking for improving
software maintainability. Software Quality Journal, 20(2),
287-307. https://doi.org/10.1007/s11219-011-9144-9

[15] Barney, S., Petersen, K., Svahnberg, M., Aurum, A., &
Barney, H. (2012). Software quality trade-offs: A systematic
map. Information and Software Technology, 54(7), 651-662.
https://doi.org/10.1016/j.infsof.2012.01.008

[16] Spinellis, D. (2005). Tool Writing: A Forgotten Art? IEEE
Software, 22(4), 9-11. https://doi.org/10.1109/MS.2005.111

[17] Chawla, M. K. & Chhabra, I. (2014). Implementation of an
object-oriented model to analyze relative progression of
source code versions with respect to software quality.
International Journal of Computer Applications, 107(10).
https://doi.org/10.5120/18790-0126

[18] Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2012).
Scikit-learn: Machine Learning in Python.

[19] Zhihua, Z. & Wang, J. (2009). Machine Learning and Its
Application 2009. Tsinghua University Press.

[20] Franklin, J. (2005). The elements of statistical learning: data
mining, inference and prediction. The Mathematical
Intelligencer, 27(2), 83-85. https://doi.org/10.1007/BF02985802

[21] Agnihotri, M. & Chug, A. (2020). Application of machine
learning algorithms for code smell prediction using object-
oriented software metrics. Journal of Statistics and
Management Systems, 23(7), 1159-1171.
https://doi.org/10.1080/09720510.2020.1799576

[22] Alshaaby, A., Aljamaan, H., Alshayeb, M. (2020). Bad
Smell Detection Using Machine Learning Techniques: A
Systematic Literature Review. Arabian Journal for Science
and Engineering. Section A, Sciences, 45(4), 2341-2369.
https://doi.org/10.1007/s13369-019-04311-w

[23] Harer, J. A., Kim, L. Y., Russell, R. L., et al. (2018).
Automated software vulnerability detection with machine
learning.

Contact information:

Tianze GUO, postgraduate
State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China
No. 10, Xitucheng Road, Haidian District, Beijing
E-mail: 2019111420gtz@bupt.edu.cn

Hanli BAI, Senior Engineer
(Corresponding author)
Institute of Computational Aerodynamics, China Aerodynamics Research and
Development Center,
No.6, South Section,Second Ring Road, Mianyang City, Sichuan Province,P.R.
China
E-mail: starworks@cardc.cn

Yunzhan GONG, professor
State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China
No. 10, Xitucheng Road, Haidian District, Beijing
E-mail: gongyz@bupt.edu.cn

Yawen WANG, Associate Professor
1. State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China
No. 10, Xitucheng Road, Haidian District, Beijing
2. Guangxi Key Laboratory of Cryptography and Information Security,
Guilin, Guangxi 541004, China
E-mail: wangyawen@bupt.edu.cn

Dahai JIN, Associate Professor
State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China
No. 10, Xitucheng Road, Haidian District, Beijing
E-mail: jindh@bupt.edu.cn

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

