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Abstract: Regarding the practicality of the quality evaluation model, the lack of quantitative experimental evaluation affects the effective use of the quality model, and also 
a lack of effective guidance for choosing the model. Aiming at this problem, based on the sensitivity of the quality evaluation model to code defects, a machine learning-
based quality evaluation attribute validity verification method is proposed. This method conducts comparative experiments by controlling variables. First, extract the basic 
metric elements; then, convert them into quality attributes of the software; finally, to verify the quality evaluation model and the effectiveness of medium quality attributes, 
this paper compares machine learning methods based on quality attributes with those based on text features, and conducts experimental evaluation in two data sets. The 
result shows that the effectiveness of quality attributes under control variables is better, and leads by 15% in AdaBoostClassifier; when the text feature extraction method is 
increased to 50 - 150 dimensions, the performance of the text feature in the four machine learning algorithms overtakes the quality attributes; but when the peak is reached, 
quality attributes are more stable. This also provides a direction for the optimization of the quality model and the use of quality assessment in different situations. 
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1 INTRODUCTION 
 

The software has penetrated all areas of social life. A 
software project with unstable quality may lead to failure, 
paralysis, and even to the huge catastrophic consequences 
of the entire system [1]. Therefore, it is necessary to 
conduct code quality assessments during the software 
development process. 

Software quality assurance is a systematic activity that 
runs through the entire software development process. If a 
clear assessment of the quality can be given, the pros and 
cons of different versions of the software and the degree of 
improvement can be given through comparison, which 
provides valuable references to the industry personnel [2]. 
Software quality is broadly defined as "the software 
produced meets express and implied requirements" [3]. For 
this reason, as a user, the artificial definition becomes a 
factor that needs to be involved in the software quality 
evaluation method. 

Our research mainly focuses on the quality of software 
code. The goal of software quality evaluation is to use 
metrics to calculate and ultimately transform into 
quantitatively evaluated quality indicators, which allows us 
to track the reliability of a specific software project 
simultaneously. The basic metrics of software code mainly 
includes the number of modules, the number of code lines, 
the number of comment lines, the ratio of code comments, 
the fan-in and fan-out of functions, the instability factors, 
the number of abstract classes, the number of classes, the 
depth of function calls, complexity, the repetition rate, etc. 
The quality model is a composite conversion of the basic 
code measurement results, that is, to transform the basic 
measurement calculated by the measurement tool of 
source-code to a composite one using a mathematical 
model to obtain the artificially defined quality attributes. 
These quality attributes are defined by many experts in the 
field, which can better describe the situation of the software 
from various aspects, and at the same time provide 
relatively traceable standards for the evaluation of software 
quality. Many well-known quality models have been 
proposed in the literature related to software quality, such 
as McCall's [4], Boehm's [5], ISO/IEC 9126 [3], Dromey's 
[6], SQuaRE [7], QMOOD [8], SQO-OSS [9] and many 

other less well-known models. Most of the early quality 
models only emphasized abstract views on quality factors, 
which did not prove the effect of applying them in practice. 
Although in continuous model research, people try to solve 
these problems using integrated tools and specific 
techniques to merge basic metrics to a higher level of 
abstraction [10], quality is a multi-faceted concept and still 
requires some form of standardization and enumeration. 
Therefore, it is also necessary to confirm whether the 
existing quality model's evaluation of the code can more 
accurately describe the overall situation of the code, to 
facilitate the evaluation of the software quality. 

Software quality includes many aspects, and software 
defects are one of the important indicators. Typically, the 
way to evaluate problems in a software project is based on 
data acquired during the history of software development 
and defects discovered, with the help of methods such as 
machine learning. Therefore, this paper aims at the 
problem that the performance of the quality evaluation 
model in the evaluation of code quality cannot be 
quantitatively measured. Based on the sensitivity of the 
quality evaluation model to code defects, a machine 
learning-based quality evaluation attribute validity 
verification method is proposed. Perform horizontal and 
vertical comparisons in multiple machine learning 
algorithms to verify the performance of the quality 
evaluation model in different situations, and provide 
support for the future research direction of the quality 
model and the guidance for the application of quality 
evaluation. 

This paper firstly focuses on a review of the existing 
research work on the quality evaluation model. 
Specifically, this type of method analyses the basic 
measurement elements of the software code and then 
performs compound calculations using formulas to convert 
the basic measurement into defined indicators that describe 
the condition of the software. At present, there are many 
such models. The attribute definitions of each are varied, 
and the conversion formulas of the metric are also 
different. Therefore, this paper mainly chooses one of the 
most commonly used models QMOOD for research and 
conducting evaluation subsequent experiments later. After 
selecting the model, this paper uses the source-code 
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measurement tool to calculate the basic measurement and 
corresponds the measurement result to the parameters in 
the model using the corresponding mapping method. 
Finally, the quality attributes that the experiment needs 
would be calculated. As for the selection of measurement 
tools this paper mainly selects open-source measurement 
tools for java language code and explains the relevant 
conditions of the measurement tools, and gives the 
correspondence between the mapping parameters. 

After determining the measurement tools and models, 
this paper will conduct comparative experiments based on 
the method of controlling variables to study the accuracy 
of the quality evaluation model for the evaluation of code 
quality. This paper compares the machine learning method 
based on quality attributes with the machine learning 
method based on text feature extraction and conducts 
experimental evaluation on the same data set. Comparing 
two different feature extraction methods as input, the 
training performance of the same type of machine learning 
model for code quality evaluation shows the effectiveness 
of the quality attribute on the characteristics of the software 
code itself. In the experiment, the sample code in the 
control data set, the splitting method of the training set and 
the test set, and the machine learning model are kept 
consistent. The defect situation is used as the output to 
compare the accuracy of the final trained model. And it 
conducts in-depth experiments to discuss the pros and cons 
of the quality evaluation model in the evaluation of code 
quality in different situations to provide data support for 
the selection of evaluation methods in varying situations. 

First, this paper summarizes the methods of software 
quality evaluation and selects the commonly used quality 
models to illustrate and implement them in experiments. 
Secondly, it concludes the existing source-code 
measurement tools and applies them in experiments. Then 
it summarizes and implements the commonly used models 
and feature extraction methods of machine learning. The 
experimental part verifies the usability and accuracy of the 
quality assessment by comparing the results of 
experimental data. Finally, the full text is summarized in 
combination with related research, and the directions that 
are worth paying attention to in the future are preliminarily 
discussed. 
 
2 SOFTWARE QUALITY ASSESSMENT 
2.1 Existing Research on Quality Assessment and the 

Goals of This Paper 
 

Software quality is an important field of software 
testing. The quality of software products is measured 
according to their ability to meet the goals of developers 
and user needs. The quality evaluation mechanism relies 
on a quality model, which usually defines the constituent 
factors and evaluates and summarizes the pros and cons of 
individual metrics. So the judgment of whether the quality 
evaluation mechanism can better describe the software 
quality, meanwhile, whether the quality attributes can 
better generalize the code and apply it to the evaluation of 
the code quality will become problems that need to be 
urgently confirmed. 

As mentioned above, the quality of the code can be 
described quantitatively by a well-defined model, and each 
model will give a corresponding quality index. In recent 

years, scholars have studied the integrated multi-version 
quality measurement framework [11]. The inquiry explains 
the relevance of the quality model evaluation results to 
defect information, change information, and other data. 
But it cannot be proven whether the quality evaluation 
results can describe the code situation more 
comprehensively and accurately or whether they can be 
used to evaluate the quality of the code. This paper will 
choose a more commonly used and excellent model in 
previous studies for research and apply it to prove the 
accuracy, representativeness, and usability of the quality 
evaluation results, which also explores the help of quality 
attributes in evaluating code defects to fill in the gap here. 
 
2.2 The Selection and Association of Quality Models and 

Software Metrics 
 

Since the quality model provides a basis for defining 
the association between a set of quality attributes and 
measurement elements, it is needed to select a model to 
evaluate quality at first. Existing scholars divide software 
quality models into two categories: basic models and 
customized models. Generally speaking, the project team 
can choose an existing ready-to-use model or use a custom 
design to meet specific goals. The only prerequisite is that 
it can be put into operation as a function of mapping 
specific attributes and code metrics. Through the 
investigation of various studies, such as [12-14] using ISO 
quality standards as a reference point, the system 
characteristics are mapped into a subset of quality 
characteristics. Among them, ISO-square is a real model of 
the basic model. Compared with the customized model, it 
has some limitations and cannot be shaped according to 
specific needs or used for certain specific products. Of 
course, the quality model can also be customized to meet 
the requirements of a specific environment [15]. In this 
view, people can use the composition parameters of the 
existing model and define new weights for them to obtain 
new formulas for related attributes. If necessary, it is 
possible to replace the original component metrics with a 
new set of metrics. 
 

Table 1 QMOOD quality model [8] 
Quality  

Attributes 
Index Computation Equation 

Reusability 
−0.25 * Coupling + 0.25 * Cohesion + 0.5 * 

Messaging + 0.5 * DesignSize 

Flexibility 
0.25 * Encapsulation − 0.25 * Coupling + 0.5 * 

Composition + 0.5 *Polymorphism 

Understand-
Ability 

−0.33 * Abstraction + 0.33 * Encapsulation − 0.33 
* Coupling + 0.33 * Cohesion − 0.33 * 

Polymorphism − 0.33 * Complexity − 0.33 * 
DesignSize 

Functionality 
0.12 * Cohesion + 0.22 * Polymorphism + 0.22 * 

Messaging + 0.22 * DesignSize + 0.22 * 
Hierarchies 

Extendibility 
0.5 * Abstraction − 0.5 * Coupling + 0.5 * 

Inheritance + 0.5 * Polymorphism 

Effectiveness 
0.2 * Abstraction + 0.2 * Encapsulation + 0.2 * 

Composition + 0.2 * Inheritance + 0.2 * 
Polymorphism 

 
With the research of the previous work, this paper 

chooses QMOOD with better performance as the quality 
model for experimental research. As shown in Tab. 1, 
QMOOD [8] directly shows the mechanism of converting 
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a set of metrics as parameters into six quality 
characteristics. 
 
3 USE SOFTWARE MEASUREMENT TOOLS FOR 

SOURCE-CODE MEASUREMENT 
3.1 Overview of Measurement Tools 
 

Mining the historical research of software 
measurement and setting up novel measurement elements 
with a strong correlation with software quality is the key to 
constructing a high-quality model. Existing research 
divides the metrics into two categories. The first category 
focuses on the code size and internal complexity of 
program modules; the second category focuses on the 
analysis of the software development process, from the 
analysis of code modification characteristics, developers, 
the perspectives of experience, inter-module dependencies, 
and project team organizational structure to design the 
metric. 

The software measurement tool is a program that 
extracts several attributes of source-code entities and 
converts general measurement definitions into 
corresponding values. There are countless open source 
tools, free software, and commercial applications, such as 
C and C++ Code Counter (CCCC), Chidamber & Kemerer 
Java Metrics (CKJM), Dependency Finder, Sonar, Source 
Monitor, JHawk, IBM Rational Logiscope, and McCabe 
QA. They are different in various aspects, such as language 
support, measurement support, open-source/closed-source, 
applicable software size, output file format, user interface, 
etc. Of course, you can also choose to develop your tools, 
or you can choose existing tools according to your 
preferences. Among them, many tools also provide the 
option of exporting metrics to XML/CSV files for 
subsequent processing using spreadsheet programs or in a 
database environment. 
 
3.2 Selection and Application of Measurement Tools 
 

Once the tool can count code metrics and the results 
are imported into the database, the quality attributes can be 
enumerated as a function of the basic metrics specified by 
the selected quality model, as described in section 2.2. 

This paper chooses the more convenient and 
commonly used CKJM tool on the market to measure the 
source code. It is an open-source command-line 
measurement calculation tool used to extract source-code 
measurement for the selected input code. This tool can 
count nineteen sizes and structure metrics for each class. 
CKJM deals with class files, so as a prerequisite, the 
project should be fully compiled to enable the tool to start 
statistics. To this end, all source-code in the data set is 
compiled and passed, and command-line scripts for 
building software are required. The sample size of the data 
set which the paper used in the experiment is very large. 
Therefore, a small command-line batch script must be 
written. In addition, the path of all directories containing 
.class files must be specified. Metrics are planned to be 
redirected to a .csv file, which is an option provided by the 
tool itself. Once all the metric data are obtained, they will 
be used as input parameters for the selected quality model. 
This paper uses the latest version of CKJM-extended 2.0 
(Chidamber and Kemerer Java Metrics and many other 

metrics) for experiments in the subsequent experimental 
part, which is an enhanced version relative to the original 
CKJM version [16]. After completing the preliminary 
basic work, batches call scripts from the command line to 
start CKJM for each running script, one sample source 
code at a time. After collecting the output in the CSV file, 
it can be easily imported into any spreadsheet program for 
further analysis. 

It should be noted that the indicator names provided by 
CKJM are not the same as those described in the QMOOD 
model, but many similarities have been identified. For 
example, in a previous job, by using specific code metrics 
(such as CBO, DIT, WMC, and NOC, etc.) as the input 
parameters of the QMOOD quality model, some quality 
attributes of the software (such as reusability, flexibility, 
scalability and so on) are quantified [17]. In addition, 
according to Bansiya et al., in the lowest-level model 
design, the indicators used to evaluate design attributes 
may change, or a set of different design indicators can be 
used to evaluate quality attributes [8]. Therefore, the 
mapping of CKJM tool measurement data to QMOOD 
indicators and equivalent substitute indicators has been 
recorded in Tab. 2 [17]. In the follow-up experimental 
research of this paper, this paper plans to convert these 
metrics extracted from the source code into quality 
indicators, and use six quality attributes as the result data 
of the evaluation software to describe the code situation, 
which can then be used as a feature extraction method for 
the code in training machine learning models. And the 
follow-up research uses experiments to compare whether 
the quality attributes are more comprehensive and accurate 
than the basic metric description of the code. 
 

Table 2 QMOOD properties & equivalent substitute metrics [17] 
Design 

Property / 
QMOOD 

Design Metric / QMOOD 
Equivalent metric 
substitute(in this 

paper) 

Coupling Direct Class Coupling (DCC) 
Coupling between 

object classes 
(CBO) 

Cohesion 
Cohesion Among Methods of 

Classes (CAM) 
Same as in 
QMOOD 

Messaging Class Interface Size (CIS) 
Number of public 
Methods (NPM) 

Design Size Design Size in Classes (DSC) 
Number of Classes 

(NOC) 

Encapsulation Data Access Metric (DAM) 
Same as in 
QMOOD 

Composition 
Measure of Aggregation 

(MOA) 
Same as in 
QMOOD 

Polymorphism 
Number of Polymorphic 

Methods (NOP) 
Coupling Between 
Methods (CBM) 

Abstraction 
Average Number of 

Ancestors(ANA) 
Inheritance 

Coupling (IC) 

Complexity Number of Methods (NOM) 
Weighted methods 
per Class (WMC) 

Hierarchies 
Number of Hierarchies 

(NOH) 

Depth of 
Inheritance Tree 

(DIT) 

Inheritance 
Measure of Functional 

Abstraction (MFA) 
Same as in 
QMOOD 

 
4 MACHINE LEARNING MODEL AND FEATURE 

EXTRACTION 
 

Nowadays, machine learning algorithms have become 
a normal and advanced method for solving fuzzy problems. 
In other words, machine learning can be used to solve 



Tianze GUO et al.: An Experimental Study on Attribute Validity of Code Quality Evaluation Model 

Tehnički vjesnik 29, 2(2022), 472-482                                                                                                                                                                                                               475 

problems where the exact results are not known, where 
what is good and what is bad is not strictly defined, or 
where it is strictly defined and costs too much. This paper 
uses the method named machine learning to solve such 
problems, which can be improved by obtaining standards 
or models that conform to the judgments of experts and can 
also improve the accuracy and the efficiency of the large-
scale evaluations. This paper uses quality attributes to 
evaluate code defects. Code defect is an important aspect 
of code quality. Since code quality is similar to a doctor's 
diagnosis, each doctor may evaluate it differently after 
seeing the same patient. And doctors will use different 
methods with different conclusions. Another example is 
the evaluation of film releases. Each different group of 
people gives different evaluation criteria for watching 
different movies, and it is also difficult to define personal 
opinions. There is no unified standard like this, which is 
relatively subjective and can be understood as a strong 
personification. If you want to obtain a more recognized 
model, machine learning algorithms can be used. For 
unknown results, when judging and evaluating based on 
existing experience, machine learning models are usually 
one of the most effective and commonly used methods in 
today's methods. Training valid data sets, obtaining models 
that are closer to human standards (reality), resulting in 
more accurate evaluation results than the analysis of 
industry insiders, can save costs and improve efficiency 
when confirming the usability of models. 

The traditional way of checking the code is mainly 
carried out by a manual walk-through. After the machine 
learning algorithm is used, the marked input and output can 
be used as the training set, and the model can be called for 
learning so that the actual y and the proposed y^ tend to be 
consistent. After the model is determined, the test set can 
be used for the accuracy judgment, and it can be applied to 
the evaluation and analysis of all similar projects. The 
model obtained by using machine learning algorithms will 
be more efficient and reasonable than expert evaluation or 
empirical judgment. The follow-up comparison 
experiments in this paper mainly use the results of quality 
evaluation using QMOOD and traditional text feature 
extraction as input and control variables. Then the 
performance of the trained model is compared to judge the 
accuracy, comprehensiveness, and usability of the 
QMOOD quality evaluation data. 
 
4.1 Feature Extraction Method 
 

In machine learning, the input and output need to be 
determined before training the model. For the data and the 
source code as the sample, the first thing to do is to extract 
the features of the code and extract the key features that can 
represent the code to make the input matrix. This is the first 
step in machine learning to transform the input matrix. 
Among them, the commonly used feature extraction 
method for the source code is TF-IDF scoring. TF-IDF 
(term frequency-inverse document frequency) is a 
commonly used weighting technique for information 
retrieval and text mining. It is a statistical method used to 
evaluate a word for a document set or the importance of 
one document in a corpus. The importance of a word 
increases in proportion to the number of times it appears in 

the document, but at the same time, it decreases in inverse 
proportion to the frequency of its appearance in the corpus. 
(1) TF is used for the term frequency: it means the 
frequency of the term (keyword) in the text. 

This number is usually normalized (usually the 
number of occurrences of the word divided by the total 
number of words in the paper) to prevent it from being 
biased towards longer documents. 

Formula: 
 

,

,

i j
ij

k jk

n
tf

n



                                                                        (1) 

 
Ie: 

 
TF

The number of occurrences of  in acertain type of entry

The number of entries in this category







  (2) 

 
where ni,j is the number of times the word appears in the 
file dj, and the denominator is the sum of the number of 
times all words in the file dj appearance. 
(2) IDF is InverseDocumentFrequency: The IDF of a 
particular word can be obtained by dividing the total 
number of documents by the number of documents 
containing the word and then taking the logarithm of the 
obtained quotient. 

If fewer documents are containing the term t, the larger 
is the IDF, which means that the term has a good ability to 
distinguish categories. 

Formula: 
 

 : 
i

i j

D
idf

j t d



                                                                 (3) 

 
Among them, |D| is the total number of files in the 

corpus.  : i jj t d  Represents the number of files 

containing the term ti (ie, the number of files with ni,j ≠ 0). 
If the word is not in the corpus, it will cause the 

denominator to be zero, so in general, use  1 : i jj t d  . 

Ie: 
 
IDF

The sum of documents in the corpus
log

The number of documents contain in the term +1



   
 

   (4) 

 
The reason for adding 1 to the denominator is to 

prevent the denominator from being 0; 
(3) TF-IDF is actually: TF × IDF. 

A high word frequency in a particular document and a 
low document frequency of the word in the entire 
document collection can produce a high-weight TF-IDF. 
Therefore, TF-IDF tends to filter out common words and 
keep important words. 

Formula: 
 

IDF = TF TF × IDF                                                          (5) 
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TF-IDF is often used in machine learning as a feature 
extraction method of input text for keyword extraction and 
text summarization. Therefore, in the follow-up 
experiments, this paper will apply the TF-IDF algorithm to 
score the source code and convert the data set into an input 
matrix that can be recognized by the model. 
 
4.2 Machine Learning Model Selection 
 

Existing commonly used machine learning models 
have been integrated into some very powerful machine 
learning libraries provided by Python third parties. In the 
follow-up of this paper, this paper mainly chooses several 
commonly used models in sklearn [18] for comparison 
experiments. It covers all aspects from data preprocessing 
to training models. The actual use of sci-kit-learn can 
greatly save us time to write authorcode and reduce the 
amount of our code so that it will have more energy to 
analyze the data distribution, adjust the model and modify 
the hyperparameters. There are several commonly used 
models in sklearn: 
(1) SVC: Its full name is SVM for Classification. SVM is 
a support vector machine (support vector machine), which 
is a classification algorithm, but regression can also be 
done. Different models can be made using the input data (if 
the input label is a continuous value, it is used for 
regression; if the input label is categorical value, SVC () is 
used for classification). In seeking to minimize the 
structured risk, the generalization ability of the learning 
machine can be improved, and the experience risk and 
confidence range can be minimized, to achieve the goal of 
obtaining good statistical laws even with small statistical 
sample size. Generally speaking, it is a two-class 
classification model. Its basic model is defined as the linear 
classifier with the largest interval in the feature space. That 
is, the learning strategy of the support vector machine is to 
maximize the interval, which can finally be transformed 
into a convex quadratic solving planning problem. The 
SVM algorithm in sklearn is implemented in the package 
sklearn.svm. 

Formula: 
 

   signf x x b                                                       (6) 

 
(2) MLPClassifier: Multilayer Perceptron (MLP) is also 
called Artificial Neural Network (ANN) [18]. In addition 
to the input and output layers, there can be multiple hidden 
layers between them. The simplest MLP only contains a 
hidden layer, which is a three-layer structure, as shown in 
Fig. 1. 

As can be seen from the above figure, the layers of the 
multi-layer perceptron are fully connected. The bottom 
layer of the multi-layer perceptron is the input layer, the 
middle is the hidden layer, and the last is the output layer. 
The most basic problem to be solved by the neural network 
is the classification problem. Passing the feature value into 
the hidden layer and training the parameters of the neural 
network (W, weight; b, bias) using the data with the result, 
so that the output value consistent with the result is given, 
and it can be used to predict the new. The three-layer MLP 
mentioned above can be summed up with the formula that 
the function G is softmax: 

            2 2 1 1f x G b W s b W x                             (7) 

 
Therefore, all the parameters of MLP are the 

connection weights and biases between each layer, 
including W1, b1, W2, and b2; 
 

 
Figure 1 MLP three-layer structure diagram 

 
(3) RandomForestClassifier [19]: Randomforest is a very 
representative Bagging ensemble algorithm. All its base 
evaluators are decision trees. The forest composed of 
classification trees is called Random Forest Classifier, and 
the forest integrated by regression trees is called Random 
Forest Regressor. It is a meta-estimator, suitable for 
multiple decision tree classifiers on each sub-sample of the 
data set, and uses the average to improve prediction 
accuracy and control overfitting. The sub-sample size is 
always the same as the original input sample size, but if 
bootstrap = True (the default value), the replacement will 
be used to draw the sample. This algorithm is implemented 
in the sklearn.ensemble. RandomForestClassifier method 
in sklearn. 

Formula: 
 

    1
max

T
ttY

H x arg h x





                                 (8) 

 
The essence of the random forest algorithm is a 

classifier ensemble algorithm based on decision trees, in 
which each tree relies on a random vector. All vectors in 
the random forest are independent and identically 
distributed. Random Forest is to randomize the column 
variables and row observations of the data set, generate 
multiple classification numbers, and finally summarize the 
results of the classification tree. Compared with the neural 
network, it reduces the number of calculations and 
improves prediction accuracy. The algorithm is not 
sensitive to multivariate collinearity and is more robust to 
missing and unbalanced data, and can well adapt to up to 
thousands of explanatory variables data set. 
(4) AdaBoostClassifier: Adaboost is a common boosting 
learning model. Boosting is a machine learning technology 
that can be used for regression and classification problems. 
It generates weak prediction models (such as decision 
trees) at each step, and the weight is added to the overall 
model; if the generation of the weak prediction model at 
each step is based on the gradient of the loss function, then 
it is called gradient boosting. The significance of this 
technology is that if a problem has a weak predictive 
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model, then a strong predictive model can be obtained by 
upgrading the technology. Adaptive Boosting is just an 
iterative algorithm. In each iteration, a new learner is 
generated on the training set, and then the learner is used 
to predict all samples to evaluate the importance of each 
sample. The Adaboost algorithm uses the linear 
combination of the base classifiers as a strong classifier, 
and at the same time gives the base classifier with a smaller 
classification error rates a large weight, and gives the base 
classifier with a larger classification error rate a small 
weight. The linear combination constructed is: 
 

   1

T
t tt

f x h x


                                                         (9) 

 
The final classifier is to perform the sign function 

conversion based on the linear combination, and get the 
formula: 
 

       1
sign sign

T
t tt

G x f x h x


                       (10) 

 
QuadraticDiscriminantAnalysis: Discriminant 

analysis in sklearn mainly includes two types, 
LinearDiscriminantAnalysis and 
QuadraticDiscriminantAnalysis. Linear discriminant 
analysis is a classification model that selects a projection 
hyperplane in the k-dimensional space to make the distance 
between the projections of different categories on the 
hyperplane as close as possible, and the distance between 
the projections of different categories as far as possible. In 
LDA, it assumes that each category of data obeys Gaussian 
distribution and has the same covariance matrix ∑. 
QuadraticDiscriminantAnalysis is similar to LDA. The 
difference is that it can form a nonlinear boundary and the 
Gaussian distributions to which different classes belong 
have different covariance matrices. Therefore, the formula 
[20] is obtained: 
 

       T 11 1
log log

2 2 kk kk x kx k x              (11) 

 
5 COMPARATIVE EXPERIMENT 
5.1 Experimental Design 
 
(1) Experimental method: The experiment in this paper 
adopts the controlled variable method to conduct 
comparative experiments, that is, control irrelevant 
variables to be consistent, reduce the influence of other 
factors on the results, and finally obtain the performance of 
the unique variable from the difference of the results. 
(2) Irrelevant variables: data set (composed of the sample, 
training set, and test set), input matrix format (dimension), 
machine learning model. 
(3) Experimental process: 
 This paper firstly selects an open-source data set. The 
data set sample should be the source code and contain the 
code quality information. Therefore, this paper selects the 
appropriate part from the defects4j data set used in similar 
researches as the experimental data set. The data set 
contains multiple code files written in java language, which 
meets the requirements of the code measurement tool 

CKJM. At the same time, TF-IDF can also be used for 
feature extraction; 
 There is 172 pieces of defect information in all samples 
in the open-source set. Therefore, to balance the positive 
and negative sets, this paper extracts 172 samples of defect 
information as positive samples, and randomly selects the 
other 172 from the remaining samples as negative samples, 
forming the follow-up data set of the experiment in this 
paper. Then according to the selection of 6:4, the training 
set and the test set are allocated. 
 Next, according to the script mentioned in section 3.2 
of the previous paper. The CKJM tool is used to count the 
measurement results of all code files in the data set, and 
convert them into the corresponding quality attributes 
using the QMOOD model to obtain six quality evaluation 
results of QMOOD for each sample. Take these six results 
as the six-dimensional input matrix of each sample, that is, 
describe the code using these quality attributes. 
 Similarly, this paper uses the commonly used feature 
extraction method TF-IDF to extract all samples in the 
same data set and convert them into a six-dimensional 
input matrix as input. 
 Put two input matrices of the same format into the 
same five models for training, and then compare the 
accuracy of the models using the test set. Finally, a 
conclusion is drawn by comparing the performance 
differences of the model with two different input situations. 
 
5.2 Basic Experimental Results 
 

To increase the persuasiveness of the experiment and 
the amount of experimentation, this paper has selected five 
additional models including SVC, MLPClassifier, 
RandomForestClassifier, AdaBoostClassifier, and 
QuadraticDiscriminantAnalysis in addition to the five 
commonly used machine learning models studied in 
Section 4.2. These ten models are commonly used learning 
models in the sklearn library. The data set used in this paper 
contains 344 code files, which includes 172 samples of 
defect information, 206 samples in the training set, and 138 
samples in the test set. The input matrices of the two 
training models are 6 - dimensional, and the QMOOD 
quality evaluation results and the TF-IDF feature 
extraction are used for conversion respectively. The 
performance of the models trained in the two ways is 
shown in Tab. 3. Because all the results exceed 73 ÷ 138 = 
52.9%, it shows that the training of the model is effective.  
 

Table 3 The accuracy of the results obtained by different inputs in the model 
Input 

 
Model 

QMOOD TF-IDF 

SVC 0.688406 0.666667 
MLPClassifier 0.681159 0.659420 

RandomForestClassifier 0.768116 0.702899 
AdaBoostClassifier 0.775362 0.623188 

QuadraticDiscriminantAnalysis 0.666667 0.644928 
BaggingClassifier 0.717391 0.710144 

KNeighborsClassifier 0.717391 0.666667 
PassiveAggressiveClassifier 0.710144 0.586957 

Perceptron 0.724638 0.688406 
SGDClassifier 0.717391 0.702899 

 
Therefore, it is not difficult to see from the results that 

QMOOD as input data performs better than the input 
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model obtained by TF-IDF in the 10 models. In addition, 
the RandomForestClassifier and AdaBoostClassifier 
models perform more prominently. 

At the same time, this experiment is to further study 
whether the QMOOD quality model can better describe the 
code and evaluate the defects relative to the measurement 
results, that is, the effectiveness of the quality attributes. 
CKJM also explored the statistical results of the unified 
data set as input and compared the performance of the same 
data set in 10 models under the QMOOD model evaluation 
and CKJM measurement statistical results as the input data 
acquisition method. The results are as follows in Tab. 4. 
This paper found that the QMOOD evaluation result as an 
input performs better in the 10 models than the basic metric 
training result obtained by CKJM. 
 

Table 4 The accuracy of the model trained by CKJM extracting input 
Input 

 
Model 

CKJM 

SVC 0.681159 
MLPClassifier 0.666667 

RandomForestClassifier 0.724638 
AdaBoostClassifier 0.731884 

QuadraticDiscriminantAnalysis 0.536232 
BaggingClassifier 0.688406 

KNeighborsClassifier 0.644928 
PassiveAggressiveClassifier 0.579710 

Perceptron 0.666667 
SGDClassifier 0.695652 

 
Among them, each row under QMOOD, CKJM, and 

TF-IDF represents the accuracy of the data set using three 
different methods to obtain the input matrix to train the 
model. All results are the average of the results of multiple 
runs to eliminate noise. 
 
5.3 In-Depth Experimental Results 
 

In addition, to give more guidance on the choice of 
quality assessment methods, this paper added the 
dimensions extracted by TF-IDF in addition to the above 
experiment, that is, took the feature words with a wider 
range of importance rankings in the code, and vertically 
explored the changes in the accuracy of each model when 
the dimensionality of the feature matrix was higher.  
 

 
Figure 2 Changes of 5 models in different dimensions of TF-IDF 

 
After the selected dimension of the text feature 

extraction method becomes higher, it is horizontally 
compared with the QMOOD quality evaluation results to 

verify the effectiveness under different extraction 
conditions, and then provide evidence-based guidance for 
subsequent people to choose the method when applying. 
(1) Longitudinal comparison: This paper selected a 
different number of text feature words, that is, the 
performance of training TF-IDF in different dimensions, 
including 10, 50, 100, 150, and 200 dimensions to conduct 
experiments, to explore the previous paper. The vertical 
performance trends of the five key machine learning 
models obtained are transformed into a line chart as shown 
in Fig. 2. 

It is obvious that the four models include 
MLPClassifier, RandomForestClassifier, 
AdaBoostClassifier, and QuadraticDiscriminantAnalysis 
rises as the dimensionality increases, and then falls after 
reaching the extreme value. Of course, the extreme values 
of different models are also different; the SVC model has 
been rising, obviously under 200 dimensions. The accuracy 
rate is not the extreme value of this model. 
(2) Horizontal comparison: This paper selects QMOOD 
quality evaluation and TF-IDF text features in the above 
process and compares the performance in each dimension 
based on these five machine learning models. Because 
there are six quality attributes of QMOOD and they will 
not change with the change of dimensions, then take the 
data from the previous step, only change the number of 
feature extractions of TF-IDF. Furthermore, it explores the 
practicability of the quality assessment model in various 
situations and the pros and cons of methods based on text 
features. Compare the histogram tactics of 6, 10, 50, 100, 
150, and 200 dimensions respectively as shown in Fig. 3 to 
Fig. 8. 
 

 
Figure 3 Comparison of QMOOD and TF-IDF of 5 models in 6 dimensions 

 

 
Figure 4 Comparison of QMOOD and TF-IDF of 5 models in 10 dimensions 
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Figure 5 Comparison of QMOOD and TF-IDF of 5 models in 50 dimensions 

 

 
Figure 6 Comparison of QMOOD and TF-IDF of 5 models in 100 dimensions 

 

 
Figure 7 Comparison of QMOOD and TF-IDF of 5 models in 150 dimensions 

 

 
Figure 8 Comparison of QMOOD and TF-IDF of 5 models in 200 dimensions 

To verify the reliability of the method in more practical 
applications and provide better experimental data support, 
this paper selects another set of data and also conducts 
experiments following the above process. There are a total 
of 600 code files in this set of data, including 120 defect 
information, the experimental results obtained are shown 
in Fig. 9 to Fig. 15. 
 

 
Figure 9 Changes of 5 models in different dimensions of TF-IDF 

 

 
Figure 10 Comparison of QMOOD and TF-IDF of 5 models in 6 dimensions 

 

 
Figure 11 Comparison of QMOOD and TF-IDF of 5 models in 10 dimensions 

 

 
Figure 12 Comparison of QMOOD and TF-IDF of 5 models in 50 dimensions 
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Figure 13 Comparison of QMOOD and TF-IDF of 5 models in 100 dimensions 

 

 
Figure 14 Comparison of QMOOD and TF-IDF of 5 models in 150 dimensions 

 

  
Figure 15 Comparison of QMOOD and TF-IDF of 5 models in 200 dimensions 

 
The author observed that the results obtained by the 

two data sets are the same. In the control variables, 
QMOOD performed better than TF-IDF; in the vertical 
comparison, TF-IDF showed the same changes in the five 
machine learning models when the dimensionality 
changed; except for the horizontal comparison, the 
MLPClassifier model was in the second place. In the 
results obtained from the group data set, as the 
dimensionality changes from the extreme value, there is a 
situation where QMOOD again achieves overtake in high 
dimensions. It can be seen that the machine learning model 
of MLPClassifier is unstable when the text features are in 
high dimensions. 
 
5.4 Experimental Conclusions and Suggestions 
 

According to the experimental results in Section 5.2 
and 5.3, it is not difficult to find the following conclusions: 

(1) In the basic experiment of control variables, that is, at 
the same latitude, among the 10 selected models, the model 
trained with the QMOOD evaluation result as the input 
performed better than the model obtained by TF-IDF and 
CKJM. Therefore, this paper can explain that the model 
obtained when the QMOOD evaluation result is the only 
variable as the input is better than the model obtained by 
TF-IDF, and the accuracy of the evaluation is improved by 
at least 2%. It can be concluded based on machine learning 
that QMOOD quality attributes can better describe the code 
itself, can more comprehensively and accurately describe 
the overall situation of the code, the evaluation results of 
the quality model are more meaningful for the code. The 
quality situation is evaluated promptly; and because the 
model obtained from the QMOOD evaluation result as 
input is better than the model obtained from the CKJM 
result input, the accuracy rate is improved. Therefore, the 
paper can conclude that the quality attributes in the 
QMOOD model can better describe the code itself 
compared to the basic metrics. Therefore, the definition of 
the quality attributes in the model is reasonable and 
scientific, and at the same time, the quality evaluation of 
the code is more usable. 
(2) In the in-depth experiment, according to the results of 
machine learning, with the increase of feature words 
selected by TF-IDF, namely the increase of dimension, the 
performance of the model is positively correlated with the 
dimension at the beginning, and some models begin to 
decline after reaching the extreme value. This is in line 
with the law of the algorithm itself, that is, as the feature 
words increase, the feature matrix is more complete, which 
can better cover the code situation, and then better evaluate 
the code; but after the dimensionality increases to a certain 
extent, the feature words only continue to increase. It will 
increase noise because the feature words extracted by TF-
IDF are sorted according to their importance to the code, 
and the addition of more and more feature words will affect 
the overall judgment. In the same way, adding more and 
more representative quality attributes to the quality model 
and increasing the dimension can also improve the 
effectiveness of the quality model. This is also a common 
way to optimize the quality model. This research direction 
is Scientific and reasonable. 

At the same time, after in-depth experiments and based 
on experimental data, this paper can also put forward some 
guiding opinions for the subsequent quality evaluation in 
different situations: 
(1) At low dimensions, that is, below 50 dimensions, the 
introduction of the QMOOD quality model can better 
evaluate defects compared to conventional text feature 
extraction methods and can be better combined with 
machine learning models as an effective feature extraction 
method. In addition, because QMOOD performs better in 
the RandomForestClassifier and AdaBoostClassifier 
models. Compared with other models, the random forest 
algorithm itself improves the prediction accuracy and 
stability, and its accuracy rate is improved by the most, 
reaching over 6%. Therefore, this experiment can see that 
the QMOOD model can cooperate with better models in 
the quality assessment based on machine learning to 
achieve superimposed effects. 
(2) Between 50 and 150 dimensions, this paper 
recommends using high-dimensional text feature 
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extraction forms when using the four machine learning 
models of SVC, MLPClassifier, RandomForestClassifier, 
and AdaBoostClassifier. Quality attributes as input are 
slightly inferior; 
(3) In the 150 - 200 dimension, because 
AdaBoostClassifier has slipped from the extreme value 
more obviously, this paper recommends using QMOOD as 
the feature extraction effect in this case. In both sets of data 
sets, MLPClassifier has slipped from extreme values in 
high dimensions, and its performance is unstable. 
Therefore, it also recommends choosing QMOOD for 
feature extraction. Under the two models of SVC and 
RandomForestClassifier, the matching effect of selecting 
high-dimensional text feature extraction is better; 
(4) The QuadraticDiscriminantAnalysis model is more 
compatible with the QMOOD quality model in any 
dimension, and it does not need to be considered separately 
in the application. 
 
6 RELATED WORK 
 

The status of software quality assessment technology 
in software development has gradually improved, and 
quality models and quality measurement tools have 
received more and more attention. Researchers have many 
commonly used models to measure software quality. 
Therefore, many times, after the quality evaluation model 
is proposed, it is necessary to determine whether the quality 
attribute definition of the existing model is reasonable and 
effective, whether the result of the quality evaluation is 
accurate and can fully explain the code situation, and 
whether it is helpful for the application of code quality 
evaluation, that is the effectiveness of the quality 
assessment model. 

In the work of predecessors, the verification was 
mainly conducted among a few software versions, and only 
the relevance of the quality factors in the software of 
known quality to the actual quality situation was explored, 
and the quality evaluation model was not applied to the 
uncertain quality. In the evaluation of the situation, there is 
no large amount of data to support, there is lack of 
comparison with other evaluation methods, and it is 
impossible to make supporting suggestions for the actual 
work of quality evaluation in various situations. For 
example, Chawla MK and Chhabra I proposed an 
integrated cross-version quality measurement framework 
in 2016 [11], which is more prominent and novel in such 
studies in recent years. The exploration illustrates the 
quality model evaluation results and vulnerability 
information and changes, the relevance of data such as 
information. However, it has not directly verified the 
effectiveness of the proposed quality model in the actual 
prediction and quality evaluation process for unknown 
codes, nor has it passed a large number of experiments to 
compare the pros and cons of other evaluation methods in 
actual performance. It is based on the concept to verify the 
relevance of the proposed attributes in the individual 
software. 

In addition, recent research has increasingly applied 
machine learning algorithms to related research on code 
evaluation including the code smell prediction technology 
that has attracted more attention in software quality in 
recent years. For example, M. Agnihotri and A. Chug in 

the study from 2020 introduced the use of random forest 
machine learning algorithms to perform object-oriented 
software measurement of code smell prediction [21]. 
Alshaaby A. and others also analyzed the machine learning 
technology for detecting code smell in 2020 and compared 
the performance of several algorithms. Among them, J48 
and Random Forest algorithm performed better and 
pointed out that more research is needed to promote the 
machine. Application of learning algorithm in detecting 
code smell [22] including a data-driven method using 
machine learning for vulnerability detection proposed by J. 
A. Harer et al. in 2018, and a performance comparison [23] 
can show that the application of machine learning 
algorithms to the evaluation of code quality is reliable. 
Predecessors have also proved the effectiveness and 
feasibility of machine learning algorithms in the field of 
code quality evaluation, which is also a development trend 
in recent years. 

Therefore, this paper proposes a method for validating 
the effectiveness of a quality model based on machine 
learning, which can fill the gaps in the previous research 
on quality models and can also quantitatively verify the 
effect of evaluation. Use the difference between quality 
attributes and other eigenvalues through machine learning, 
conduct a large number of experiments to explore the 
performance of attributes proposed by the quality model, 
and provide a new solution for verifying whether the 
quality model you want to use or the newly proposed 
quality model is a more effective plan. It also provides 
data-supported guidelines for subsequent practical 
applications based on codes. Appropriate methods can be 
selected for evaluation in different situations, and a 
verification and comparison method can also be provided 
when selecting a quality model. 
 
7 CONCLUSION 
 

In this paper, the focus is on quality models, 
measurement tools, feature extraction methods, and 
various machine learning models. In the experiment, 
comparative experiments are carried out by controlling 
variables and in-depth experiments are carried out. Finally, 
two conclusions can be drawn from the experimental 
results: under the same requirements, compared with the 
traditional text feature extraction method, the QMOOD 
quality evaluation model has improved the accuracy of 
defect prediction by more than 1% in both data sets. The 
quality attributes definition ratio of the QMOOD quality 
evaluation model is only based on statistical data. Basic 
metrics are more meaningful, reasonable, and effective; at 
the same time, it is verified that the current common way 
of optimizing quality models is to add more representative 
quality attributes, that is, to increase dimensions. This 
research direction is scientific and reasonable, researchers 
can also use the method proposed in this paper to verify 
after optimization. In addition, this paper is also a guide in 
different situations for subsequent practical applications. 

Therefore, according to the research in this paper and 
the above experimental conclusions, the verification 
method proposed in this paper can well illustrate the 
usability and effectiveness of the quality assessment 
model. In subsequent research, by combining the quality 
model with better machine learning models, or even deep 
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learning models, it can be better applied to the evaluation 
technology of code quality information such as defects. 
The machine learning-based quality evaluation attribute 
validity verification method proposed in this paper verifies 
the performance of the quality evaluation model in the 
actual application of quality evaluation. It can 
quantitatively evaluate the validity of the quality model and 
give the application of experimenters. The guidelines fill 
the gap here and provide directions and powerful tools for 
future research. This paper hopes to provide some 
verifiable methods for the subsequent research on quality 
model optimization, so that the quality assessment applied 
to more links in the software testing process can be more 
in line with expectations, to help existing research achieve 
better results. 
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