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Abstract: To overcome the problems of wind turbine (WT) degradation assessment, a new kernel entropy method based on supervisory control and data acquisition (SCADA) 
was proposed. This approach can be used to effectively monitor and assess WT performance degradation. First, a new condition monitoring method based on a kernel 
entropy component analysis (KECA) was developed for nonlinear data. Then, the squared prediction error (SPE) was used to monitor the WT health state. Due to the 
diversity and nonlinearity of SCADA data, fault features are easily overwhelmed by other vibration signals. To address this, a new kernel entropy partial least squares 
(KEPLS) algorithm was introduced. The proposed kernel entropy method improves the performance prediction by considering higher order information. Furthermore, changes 
in the prediction residual can be used to define certain limits to realize early warning of WT faults. Finally, the method was applied to actual SCADA data of a wind farm. The 
results show that the method can accurately evaluate the health state of WTs, thus verifying the effectiveness and feasibility of the proposed method. 
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1 INTRODUCTION 
 

With the intensification of the energy crisis, wind 
energy has become an important source of renewable 
energy and has gradually played a significant role in the 
global energy mix. In general, wind turbines (WTs) operate 
in harsh environments under dramatically fluctuating 
operating conditions and are often subjected to strong 
mechanical stress. Their operating state and load bearing 
conditions are random and unstable. Therefore, methods to 
improve availability of WTs, reduce operation and 
maintenance costs, and enhance the economic benefits of 
wind farms are of great significance. To date extensive 
research has been carried out on condition monitoring and 
fault diagnosis of key components of the WT [1-6]. 
Condition monitoring systems (CMSs) are capable of 
processing high frequency signals. However, due to data 
acquisition problems, incomplete data, and the inability to 
analyze all fault information, many scholars have recently 
adopted prognostics and health management (PHM) 
systems [7-13]. Failure PHM of WTs, including the 
development of assessment systems for monitoring and 
managing the health status of WTs across their entire life 
cycle, have become an important research focus. Various 
algorithms and intelligent models are used as part of PHM, 
which can monitor, predict, and manage the health of WT 
systems in order to achieve condition-based or predictive 
maintenance. Performance degradation prognostics and 
health assessment of WTs form the basis of PHM research. 

In recent years, data-driven multivariate statistical 
monitoring methods have been widely used for condition 
monitoring of industrial processes [14]. The core idea is to 
transform the input space into a feature space and a residual 
space through dimensionality reduction. A set of low-
dimensional variables containing important features that 
summarize the information carried by high-dimensional 
data can be constructed using multivariate statistical 
monitoring methods, such as principal component analysis 
(PCA), partial least squares (PLS) approach, independent 
component analysis (ICA), and other related algorithms 
[15]. The data are then projected onto a higher-dimensional 
squared prediction error (SPE) and Hotelling's T2 statistical 

relationship is calculated to determine whether the 
component has exceeded a predefined control limit and 
whether the situation is abnormal. 

Principal component analysis is the most widely used 
algorithm in multivariate statistical monitoring and can 
effectively reduce the dimensionality of data while 
retaining the maximum variance of the original data. 
However, the PCA algorithm targets linear systems, 
whereas WT monitoring data, which mainly come from 
supervisory control and data acquisition (SCADA) 
systems, are multivariate and nonlinear, and exhibit strong 
coupling among variables. The application of PCA to 
SCADA data is not ideal. Accordingly, Scholkopf et al. 
[16] introduced kernel PCA (KPCA), which combines the 
kernel function with the PCA algorithm. The kernel 
function can be used to extend PCA to a high-dimensional 
feature space by eliminating the nonlinearity of process 
variables to achieve more effective process monitoring. In 
2010, Robert Jenssen [17] proposed kernel entropy 
component analysis (KECA), which combines the kernel 
function with the concept of information entropy. Through 
kernel mapping, data are mapped to a high-dimensional 
space, which solves the nonlinear data problem, and the 
dimensionality of the data in the high-dimensional feature 
space is reduced based on the size of the kernel entropy. 
Therefore, more feature information can be retained by 
building deep kernels. In contrast to PCA and KPCA, 
which use the eigenvalue size as an index, KECA reduces 
the dimension by disclosing the structure of the dataset 
through information entropy to more effectively reveal the 
data. 

Wind turbine condition monitoring based on KECA 
can only determine whether the state is abnormal and 
whether a fault has occurred within a certain period of time, 
but cannot predict fault trends in advance, identify 
potential faults, or evaluate the health status of the WT. Yi 
Liu, Qing-Yang Wu and Junghui Chen investigated an 
active selection of information data for sequential quality 
enhancement of soft sensor models with latent variables 
[18].Yi Liu, Chao Yang, Zengliang Gao and Yuan Yao 
proposed ensemble deep kernel learning with application 
to quality prediction in industrial polymerization processes 
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[19]. Kaixin Liu, Zhengyang Ma, Yi Liu, Jianguo Yang 
and Yuan Yao reported enhanced defect detection in 
carbon fiber reinforced polymer composites via generative 
kernel principal component thermography [20]. Hongying 
Deng, Keyun Yang, Yi Liu and Shengchang Zhang 
proposed actively exploring informative data for smart 
modeling of industrial multiphase flow processes [21]. To 
this end, considering the non-linear and non-stationary 
characteristics of SCADA data, a new fault prediction 
method based on kernel entropy PLS (KEPLS) is proposed. 
The algorithm uses Renyi entropy to realize feature vector 
arrangement and dimensionality reduction, which can 
better characterize the angle information between different 
nonlinear features. In addition, KEPLS can effectively 
extract high-order statistics and overcome the problem of 
non-stationary data to a certain extent. It can also solve the 
problem faced by traditional KPLS, which can only 
represent second-order statistics, and often ignores the 
problem of fault information implicit in high-order 
statistics.  

Thus, to better monitor the condition of WT 
components and predict future faults, this paper proposes a 
KEPLS predictive model that not only extracts multi-scale 
information more effectively but also analyzes the residual 
error to achieve more accurate fault prediction. In addition, 

a fuzzy comprehensive evaluation method and radar chart 
method were used to perform a visual analysis of a WT 
gearbox health assessment in one dimension and multiple 
dimensions to better understand the experimental results 
from an objective and visual perspective. 

The rest of this paper is organized as follows. Section 
2 describes a generalized model framework for condition 
monitoring and fault prediction of WTs. Section 3 outlines 
the experimental data cleaning process. Section 4 
summarizes the condition monitoring method based on the 
KECA and SPE. Section 5 describes the failure prediction 
framework using the KEPLS model. In section 6, the 
results of applying the method to specific case study are 
presented. Finally, the main conclusions of this work are 
summarized in section 7. 
 
2 GENERALIZED MODEL FRAMEWORK 
 

The condition monitoring and fault prediction of WTs 
were studied. A flowchart of the algorithm is presented in 
Fig. 1. The algorithm is divided into three stages, as 
follows. 

 

 
Figure 1 Flowchart of proposed algorithm 

 
(1) Condition monitoring based on KECA: 
There is a complex nonlinear relationship between 

parameters of the SCADA system. When a fault occurs, 
several parameters will change. However, changes in each 
parameter may be caused by multiple faults. To 
characterize the SCADA data, the KECA algorithm is 
combined with SPE statistics and applied to WT condition 
monitoring. 

(2) Fault prediction based on KEPLS: 
Principal component information extracted with the 

KECA algorithm was more detailed and has the advantage 
of containing deep hidden relationships. After extracting 
the KECA features, a KEPLS prediction model is 
established and applied to WT gearbox fault prediction. 
The model was compared with the KPLS predictive model 

to verify that the KEPLS algorithm can avoid the influence 
of nonlinear data on the analysis results and effectively 
improve the prediction accuracy of model. 

(3) Health assessment based on fusion residuals: 
According to the changes in residual characteristics 

generated by the KEPLS predictive model, potential 
gearbox faults were detected, and the health status of the 
gearbox was assessed. The single monitoring and analysis 
of a residual characteristic cannot comprehensively 
analyze the health status of the gearbox. Predictions of the 
gearbox oil temperature residual, bearing temperature 
residual, and lubricating oil inlet pressure residual were 
combined to enhance the reliability of the assessment. 
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3 DATA PREPROCESSING 
 

Data preprocessing refers to operations such as 
cleaning, filtering, removing, and converting redundant 
data. Furthermore, data quality can be improved through 
appropriate parameter selection [13], structured model 
representation of unstructured data, and fusion of multiple 
multi-scale data, and further development of methods for 
acquiring fault characteristic data [22]. 
 
3.1 Outlier Elimination 
 

Outliers in the data include both outliers and 
duplicates, which are usually caused by measurement 
errors, missing records, or abnormalities. Duplicate points 
can be easily found and filtered out by observing the wind 
speed and power time series. Since there are no labels in 
the data set, an unsupervised detection method was adopted 
to define outliers from the perspectives of distance, 
probability, and density of the feature space. The local 
outlier factor (LOF) method based on the density local 
outlier idea was used to identify outliers. 

The LOF algorithm can be described as follows. The 
LOF algorithm judges whether the point is abnormal by 
comparing the density of each point p and the neighbouring 
point k; the lower the density of the point p, the more likely 
that it is an abnormal point. The density of points is 
calculated by the distance between points. The farther the 
distance between the points, the lower the density. 
Conversely, the closer the distance, the higher the density. 
The local outlier factor algorithm produces the anomaly 
score of a sample by calculating the "local reachable 
density". The greater the local density of a sample point, 
the more likely that this point is an anomaly. 
 

 
Figure 2 Comparison of data before and after preprocessing 

 
To further analyze valid data between the cut-in and 

cut-out wind speed, as shown in Fig. 2, three types of 
abnormal data under normal operating conditions of the 
WT and their typical characteristics are defined: 
(1) Accumulation point (first category, second category): 
A horizontal line of accumulation points at the bottom or 
middle part of the curve is often caused by wind 
abandonment, power rationing, communication failures, 
etc. First category accumulation points correspond to the 
initial points identified by expert screening. In this case, the 
output power is very small or continuously less than or 
equal to zero for a period of time. Second category 
accumulation points are abnormal points that occur when 
the output power is lower than the normal output and does 
not change (or rarely changes) with wind speed for a 
continuous period of time. These data cannot directly 

indicate abnormal functioning or malfunctioning of the 
WT and will affect the accuracy of the WT health status 
prediction. The key characteristic parameters such as wind 
speed, output power and pitch angle of the accumulation 
point have typical time series characteristics, and the first 
type of accumulation point and the second type of 
accumulation point are identified in turn based on 
engineering experience. First, the original data set is 
screened based on expert experience and physical laws. 
Second, the abnormal points caused by wind curtailment 
and power rationing are screened out based on the pitch 
angle information. Therefore, the accumulation points of 
the first and second types are eliminated. 
(2) Outliers (third category): Outlier data with scattered 
characteristics are often caused by random factors such as 
sensor abnormalities, noise, and fluctuations in operating 
conditions. The fluctuation of outliers is random but 
objectively reflects the actual operating conditions of the 
WT to a certain extent. However, accuracy of the 
probabilistic density-based health state prediction model of 
the WT is affected by high outlier ratios and large 
dispersion. 

Results of the wind power data preprocessing are 
shown in Fig. 2. Accumulation points and outliers can be 
observed in the raw data. For example, when the output 
power is 1000 kW, a small number of data points fall 
within a wind speed of 15 - 25 m/s, which are considered 
abnormal data. After the LOF method is applied to filter 
out abnormal data, the abnormal data detection method is 
effective. 
 
3.2 GMM Classification 
 

The Gaussian mixture modeling (GMM) method was 
used to adaptively divide the working conditions and 
capture the quasi-linear wind power data. 

The Gaussian mixture model clusters data based on its 
statistical distribution. If "natural sub-categories exist" in 
the sample data, then observations in a certain sub-category 
are considered to come from a certain statistical 
distribution, and the whole observation comes from 
multiple statistically distributed random samples with a 
finite mixture distribution. Data with a non-Gaussian 
distribution is usually decomposed into a linear 
combination of several Gaussian distribution functions: 
 

   
1

, 
n

i i i
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H x p N  


                                                               (1) 

 
where pi is the prior probability of the i-th component, 

which satisfies  
1
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   is the 

gaussian distribution function of the i-th component; and 
parameters μi and δi are the mean and variance of the 
density function, respectively. Using the expectation-
maximization (EM) clustering algorithm, when sample 
data X is known and class z is unknown, the logarithmic 
likelihood function is maximized through iteration to 

determine the estimated value of component parameters 


 

and 


, as follows: 
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A finite Gaussian mixture model for wind power data 

was established. According to mean value μi (centroid-
like), variance δi and the proportion (mixing probability) pi 
of wind speed variables of each component, the segmented 
quasi-linear wind speed and output power data were 
obtained. 

From the raw data, the state of each WT part cannot be 
clearly observed. Therefore, raw data must be labeled using 
the clustering method. 

SCADA data were clustered using the GMM method, 
and the clustering number was 3. The wind power data are 
the initial input data, and the data are expanded to all 
categories according to the wind data classification results. 
First, the Gaussian mixture model was fitted. The mixing 
ratio of the first type was 0.395318 and the average value 
was 5.375820, that of the second type was 0.389258, with 
an average value of 9.196038, and that of third type was 
0.215425 and the mean value was 14.237322. Then, the 
Gaussian mixture model was clustered, and the labels of 
each vector were obtained and stored in a file for future 
invocation. 

The classification results of the Gaussian mixture 
model were clearly divided into three categories, as shown 
in Fig. 3. It can be seen from Fig. 3 that the wind speed 
range of the second category is approximately 5 ~ 13.2 m/s 
(μ ± 2σ). Considering that the performance degradation of 
the wind turbine will lead to an increase in the rated wind 
speed, and the subspace of the working conditions will be 

further divided when extracting features, the wind power 
data in the range of 5 ~ 15 m/s are captured to form a new 
data set. Next, the model passed to the KECA model as 
training data for the next step of the KECA. 
 

 
Figure 3 Visualization of classification result 

 
4 WIND TURBINE CONDITION MONITORING BASED ON 

KECA  
4.1 Kernel Entropy Component Analysis 
 

According to the principle of KECA, after the principal 
component model is established, monitoring statistics 
between the principal component model and the data to be 
detected determine whether any abnormalities are present. 
Here, the SPE of residual spatial statistics was selected. 
The SPE statistic reflects the degree of deviation between 
the model and test value at any given moment. The formula 
for calculating the SPE statistic is: 
 

 T T T
i i i i R R iSPE E E t I P P t                                          (3) 

 
where ti is the i-th core element of input vector x in the 
feature space and PR is the feature vector extracted by 
KECA. 

 

 
Figure 4 Kernel entropy component analysis (KECA) algorithm for wind turbine gearbox condition monitoring 

 
When the confidence level is γ, the control limit of the 

SPE statistic can be calculated using the following formula: 
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     is the 

critical value of the standard normal distribution test level 
γ. If SPE SPE , the SPE statistic of the input vector is 

normal. 
In this paper, the KECA algorithm was proposed to 

realize WT condition monitoring. The specific 
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implementation can be divided into two parts: offline 
training and online monitoring. A flowchart of the KECA 
algorithm for WT condition monitoring is presented in Fig. 
4. (1) Offline training: 
Step 1: Select normal working condition data, then 
preprocess and standardize the data. 
Step 2: Build a kernel matrix for the sample data. The 
kernel matrix is then decomposed to obtain the 
corresponding eigenvalues and eigenvectors, and the 
quadratic entropy of Rényi is calculated. The 
corresponding pivot element is selected according to the 
contribution rate of Rényi's quadratic entropy. The 
principal component with a cumulative contribution rate 
higher than 95% was selected in this work. 
Step 3: Establish the KECA monitoring model for data 
under normal working conditions. 

(2) Online monitoring: 
Step 1: Preprocess and standardize the data online in the 
same way as the training data. 
Step 2: Calculate the corresponding kernel matrix and pivot 
matrix. 
Step 3: Calculate the SPE statistics and compare them with 
the control limit of 99% confidence to determine whether 
a fault will occur. 
 
4.2 Analysis and Comparison of Condition Monitoring 

Results Based on KECA  
 

Data from the SCADA system of a wind farm was 
adopted. Wind speed, output power, gearbox oil 
temperature, gearbox bearing temperature, and gearbox 
lubricating oil inlet pressure were selected as the 
experimental parameters. Parameter data with a sampling 
time of 1 h from February 21 to March 1 were used as the 
experimental training data set. The corresponding data 
from March 2 to March 11 were used to verify the model 
and data from March 12 to April 16 as the testing data set. 

To verify the effectiveness of the KECA algorithm for 
WT condition monitoring, principal elements of the 
experimental training samples were first extracted to 
establish a monitoring model, then the model verification 
samples were used as the test data set in the monitoring 
phase and the SPE statistics were calculated. It can be seen 
from the actual situation that the gearbox is under normal 
operating conditions during this time period and the 
operating state is normal. KECA-SPE has fewer false alarm 
points. The dotted line in the figure represents the 99% 
control limit, and the solid line represents the SPE change 
curve under normal operation. If it is higher than the 
threshold limit, it is regarded as a fault, otherwise, it is 
regarded as normal. Therefore the SPE statistic calculated 
by the model should be below the threshold limit. 

Fig. 5 shows the change in SPE of the WT gearbox 
under normal operating conditions obtained using PCA, 
KPCA, and KECA. The dotted line represents the 99% 
control limit. The main reason for dramatic changes in the 
SPE over time is that environmental conditions such as 
wind speed, wind direction, and ambient temperature can 
cause frequent changes in the working conditions. Several 
false alarm points can be observed in Fig. 5. Compared 
with the KPCA and KECA, PCA exhibited the worst 
prediction performance mainly due to nonlinearity of the 
WT gearbox data. The effect of the principal component 

after the nonlinear change is better. The KECA result is 
better than that of the KPCA because the KECA uses 
Rényi's second entropy to select the principal elements, 
which can reveal the structure of the data and extract deep 
information. 

The test sample was used as the input of the monitoring 
model. The actual data show that the WT was shut down 
on April 16 due to the high temperature of the main shaft 
caused by a faulty gearbox. The WT condition was 
monitored using the PCA, KPCA, and KECA. The results 
are shown in Fig. 6. False alarm points can be observed on 
each of the three graphs. However, the SPE value of the 
false alarm point on the PCA graph was larger than that of 
the fault point. Due to abnormal data points generated 
between March 30 and April 10, the method cannot 
distinguish between a false alarm point or fault point. This 
phenomenon was rarely observed with KPCA and KECA, 
showing the limitations of PCA for nonlinear data 
processing. Although both KPCA and KECA can 
effectively monitor the fault state of the WT, the KECA 
model exhibited better monitoring effects. 
 

 
(a) PCA model 

 
(b) KPCA model 

 
(c) KECA model 

Figure 5 Comparison of squared prediction error (SPE) results obtained using 
the PCA, KPCA, and KECA model for monitoring the condition of the wind 

turbine. The graphs show changes in the SPE over time under normal operating 
conditions 

 
The KECA model also discovered the fault state faster 

than the other two methods. Although the KECA produces 
a small number of false alarm points, these were likely 
caused by the increase in the volume of data and 
insufficient data preprocessing or due to environmental 
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factors. False alarm points cannot be avoided with the 
frequently changing WT operating conditions. However, in 
general, the KECA resulted in fewer false alarm points 
compared with the other methods. 
 

 
(a) PCA model 

 
(b) KPCA model 

 
(c) KECA model 

Figure 6 Comparison of squared prediction error (SPE) results obtained using 
the PCA, KPCA, and KECA models for monitoring the condition of the wind 

turbine. The graphs show changes in the SPE over time under normal operating 
conditions 

 
5 PREDICTION MODEL BASED ON KEPLS 
5.1 Principles of KEPLS Algorithm 
 

Similar to the core idea of KPCA, the KPLS algorithm 
extracts feature vectors by maximizing the variance. 
However, in general, if the eigenvectors are only extracted 
according to the magnitude of the eigenvalues, the high-
order information entropy of the raw sample variable will 
not be expressed well. Entropy is a concept representing 
the amount of information contained. Studies have shown 
that by introducing entropy information, the KECA 
algorithm can achieve better nonlinear processing results 
than the KPCA algorithm [23-25]. Therefore, drawing on 
the principle of KECA, the KPLS algorithm can also be 
used to extract the eigenvalues and eigenvectors according 
to the information entropy. Thus, the KEPLS algorithm is 
proposed for WT fault prediction. 

The KEPLS algorithm projects the data from the low-
dimensional input space to the high-dimensional feature 
space through kernel mapping, converts nonlinear data into 
linear data, and then selects features in the high-
dimensional feature space according to the entropy, in 
order to achieve data dimensionality reduction. 

Information entropy is a measure of uncertainty in a 
system. Here, Rényi entropy was used in the KPLS kernel 
entropy component analysis. Rényi entropy is defined as: 
 

   2log dH p p x x                                                       (5) 

 
where p(x) is the pdf of the data D. 

Since Eq. (5) is a monotone function, it can be 
expressed as: 
 

   2 dV p p x x                                                               (6) 

 
The Parzen window density estimator can be used to 

estimate Eq. (6) and the following formula is obtained: 
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Substituting Eq. (7) into Eq. (6), the following 

equation is obtained: 
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The volume integral of the Gaussian function is still a 

Gaussian function and the sign simplification of Eq. (8) can 

be obtained as  2 i jW x ,x . Using the Gaussian function 

as the kernel function, it can be expressed as follows: 
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where I is a vector of all ones and K is an N× N kernel 
matrix. 

Eigen-decomposition, T TK EDE   , is 

performed on kernel matrix K where  1, ..., ND diag   ; 

E is the corresponding eigenvector matrix  1, ..., NE e e . 

Hence, the following equation can be obtained [17, 26]: 
 

   2T
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1
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                                                                 (10) 

 
The generalized eigenvector in the PLS algorithm is 

T TX YY X  and weight vector ω is the eigenvector 
corresponding to the largest eigenvalue of the generalized 
eigen matrix. 
 

T TX YY X                                                              (11) 
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Scoring vector t of X is calculated as 
 
t X                                                                                                 (12) 
 

However, in the kernel feature space, ω and t cannot 
be directly obtained. First, the nonlinear iterative partial 
least squares (NIPALS) algorithm needs to be kernelized. 
From Eq. (11) and Eq. (12), the following formula can be 
obtained: 
 

T TXX YY X X                                                              (13) 
 

That is to say: 
 

T TXX YY t t                                                                         (14) 
 

TKYY t t                                                                           (15) 
 

In the KPLS algorithm, the principal component score 
vector t is the eigenvector corresponding to the maximum 

eigenvalue of T TXX YY . In the KEPLS algorithm, the 
corresponding Rényi entropy value can be calculated 
according to Eq. (10) and the eigenvalue with the largest 
contribution to the Rényi entropy estimation and its 
corresponding  eigenvector can be selected, which is score 
matrix t in KEPLS. Then, score u of the predictor variable 
is calculated according to the value of t. 

In summary, the specific steps of the KEPLS algorithm 
can be listed as follows: 
(1) Calculate score vector ti of process variable X in the 
high-dimensional space using the above method and 
unitize ti. 

(2) Load the matrix of predictor variables: T
i iq Y t . 

(3) Calculate the score matrix of the predictor variable as 

i iu Yq  and unitize ui. 

(4) Repeat Steps (2) - (4) until ui values converge. 
(5) Calculate the residual information that reflects  x  

and Y, as follows: 
 

   T T T T T T
i i i i i i i i i i i i i i i i iK I t t K I t t K t t K K t t t t K t t           (16) 

 
T

1i i i i iY Y t t Y                                                               (17) 

 
5.2 Results and Analysis of Trend Prediction Based on 

KEPLS 
 

To verify the effectiveness of the KEPLS predictive 
model, information from the experimental training samples 
was extracted and used to build the predictive model. 
Information from the model verification sample was used 
as test data. The prediction outputs are the target parameter 
values, which were compared with the actual target 
parameters to determine the accuracy and reliability of the 
proposed model. The mean absolute error (MAE) and mean 
relative error (MRE) were used to evaluate the predictive 
model, and are calculated as follows: 
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where y(i) is the predicted value of the target parameter, 

 y i


 is the actual value of the target parameter, and n is 

the number of samples. 
Fig. 7 shows the results of the KEPLS model. The 

predictions were compared with those of the traditional 
KPLS model to demonstrate advantages of the method, as 
shown in Fig. 8. 
 

 
(a) Actual and predicted oil temperature in gearbox 

 
(b) Actual and predicted bearing temperature in gearbox 

 
(c) Actual and predicted lubricating oil inlet pressure in gearbox 

Figure 7 Comparison of actual target parameters and KEPLS model predictions 
 
 
Table 1 Mean absolute error (MAE) and mean relative error (MRE) of KPLS and 

KEPLS model predictions 
Target 

parameters 
Model MAE MRE 

Oil temperature KPLS 3.3620 0.0725 
KEPLS 0.4128 0.0078 

Bearing 
temperature 

KPLS 3.6275 0.1310 
KEPLS 0.2727 0.0082 

Lubricating oil 
inlet pressure 

KPLS 0.1462 0.0594 
KEPLS 0.0220 0.0081 
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(a) Actual and predicted oil temperature in gearbox 

 
(b) Actual and predicted bearing temperature in gearbox 

 
(c) Actual and predicted lubricating oil inlet pressure in gearbox 

Figure 8 Comparison of actual target parameters and KPLS model predictions 
 

Fig. 7 and Fig. 8 show the differences between the 
predicted values of the KEPLS model and the KPLS model, 
respectively, versus the actual parameters. Tab. 1 compares 
the error values obtained for the KPLS model and KEPLS 
model. Based on the error results presented in Tab. 1, the 
MAE and MRE of the KEPLS model are relatively small, 
suggesting that the output of the model can be directly 
compared with the actual temperature to evaluate whether 
the WT is in an abnormal operating state. If the difference 
between the predicted value and the actual value of the 
continuous data increases, that is, if the residual increases 
continuously for a period of time, it indicates a fault. 
Comparing the error results presented in Tabl. 1, it can be 
found that the proposed model has a higher fitting accuracy 
than the KPLS model. 

Fig. 9 shows the predicted gearbox oil temperature, 
gearbox bearing temperature, and gearbox lubricating oil 
inlet pressure. Excluding the influence of model accuracy, 
the gearbox oil temperature and bearing temperature of this 
WT were abnormally high around March 26. However, the 
gearbox lubricating oil inlet pressure was only slightly 
higher than normal around April 1, representing a lag. The 
residual value was calculated to further analyze the 
prediction residual in order to determine the cause and 
timeframe of the temperature abnormality. The result is 
shown in Fig. 10. 
 

 
(a) Actual and predicted oil temperature in gearbox 

 
(b) Actual and predicted bearing temperature in gearbox 

 
(c) Actual and predicted lubricating oil inlet pressure in gearbox 

Figure 9 Comparison of actual target parameters and KEPLS model predictions 
over time based on data from March 12 to April 16 

 
5.3 Residual Prediction Analysis Based on KEPLS 
 

When the gearbox is operating normally, the mean 
value of the predicted residuals should be close to zero with 
a very small standard deviation due to the high prediction 
accuracy of the KEPLS model. When the gearbox produces 
fault symptoms, the residual characteristics will exhibit 
abnormal fluctuations and the hidden gearbox fault can be 
detected based on changes in the statistical characteristics 
of the residual. 

Here, the kernel density estimation was used to 
calculate the residual error threshold. When the residual 
error of the predictive model exceeds a certain set 
threshold, it indicates that there may be a fault and an early 
fault alarm will be issued. However, the residual of a single 
parameter is not enough to determine the overall health of 
the gear. The fusion analysis of multiple residuals of all 
predicted parameters is more stable and reliable. To this 
end, this paper proposes the fusion residual concept, 
defined as: 
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where λi is the i-th residual error (i = 1, 2, …, n); Li is the 
threshold value of the i-th residual; and αi is the weight 
factor affecting the health state of the gearbox. The weight 
factor will be different for different WTs. The value of the 
weight factor can be deduced from the early operating state 
of the WT. 

Fig. 10 presents the target parameter residuals 
predicted using the KEPLS model. The upper threshold 
value of the residuals is calculated using the kernel density 
estimation (KDE) as the high temperature (high pressure) 
alarm line. When the residual value exceeds the threshold 
value, the gearbox is in an abnormal state and the high 
temperature (high pressure) alarm is issued. After March 
26, the temperature of the gearbox spindle exceeded the 
high temperature alarm line and the temperature of the 
spindle remained abnormal, as shown in Fig. 10. 
Furthermore, the oil temperature continued to exceed the 
high-temperature alarm threshold after March 26. The 
residual pressure diagram of the gearbox lubricating oil 
inlet shows that residual fluctuation occurred after April 1. 
Compared with gearbox oil temperature and bearing 
temperature, the abnormal situation of gearbox lubricating 
oil inlet pressure lags behind. 
 

 
(a) Gearbox oil temperature 

 
(b) Gearbox bearing temperature 

 
(c) Gearbox lubricating oil inlet pressure 

Figure 10 Prediction residual 
 

Based on the trends of the two residuals, namely, 
temperature of the gearbox spindle and oil temperature, it 
can be inferred that the abnormal temperatures of the 
gearbox components of the WT may be due to a high 

temperature fault caused by bearing friction. The gearbox 
fault is caused by heating the oil in the gearbox via heat 
transfer. In addition, high temperature failure will also 
cause the oil inlet pressure to change, but more slowly. 
Therefore, monitoring the target parameters using the 
predictive model can achieve early fault prediction when 
abnormal conditions occur in the gearbox. However, the 
target parameters do not change concurrently and the 
maximum time difference is about 5 days. Therefore, 
monitoring only one parameter will likely lead to errors in 
the prediction results. In view of the above possible 
problems, the method of multi-parameter fusion residuals 
was adopted. Through fusion analysis of the residuals of 
multiple target parameters of the gearbox, mutual 
restrictive relationships were considered in order to avoid 
one-sidedness and errors. 

According to Eq. (20), the fusion residuals of the three 
target residuals generated the KEPLS model were 
calculated. The weight factor was selected using trial and 
error, and the results are shown in Fig. 11. Comparing Fig. 
9 and Fig. 10, it can be seen that after fusion, the residual 
error is more sensitive to abnormal conditions and fewer 
abnormal assessments are made under normal conditions. 
 

 
Figure 11 Fusion residual 

 
6 CASE STUDY 
 

According to the health status classification principle, 
the prediction results for the abnormal state parameters of 
the WT were divided into five grades: 
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In this study, the combined triangular and half 
trapezoidal distributed membership function was adopted 
to define the health status class membership function 
according to the actual degradation of WT performance 
during the early stage: 
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According to the actual operating data of the WT in the 

early stage, the following values were selected: a1 = 1.5, a2 
= 4.86, a3 = 8.54, a4 = 11.56, a5 = 14.58 and a6 = 16. Then, 
a fuzzy comprehensive evaluation was carried out to 
analyze the health status of the WT as accurately as 
possible. 

The radar chart, also referred to as the network chart is 
a graphical method of displaying multivariate data in the 
form of a two-dimensional chart of three or more 
quantitative variables on a single axis starting from the 
same point. The relative position and angle of the shaft are 
usually uniform. The chart is equivalent to a parallel 
coordinate diagram with radially arranged axes. The radar 
chart is mainly used to evaluate operating conditions in 
terms of profitability, productivity, liquidity, and safety. 
Here, the radar chart is applied to the health assessment of 
a WT to obtain a more intuitive representation of the 
results.

 

 
Figure 12 Wind turbine health assessment results 

 

 
(a) Health status                                      (b) Good status                                               (c) Attention status 

 

(d) Deterioration status                                 (e)  Disease status 
Figure 13 Radar charts of wind turbine health indicators on different dates 

 
7 CONCLUSION 
 

This paper proposed an algorithm for monitoring and 
assessment of wind turbine degradation performance based 
on the kernel entropy method. The method can be used to 

monitor the state of a wind turbine gearbox, predict 
multivariate process data, and comprehensively evaluate 
the health state of the gearbox according to multi-model 
information fusion and residual error prediction. The 
KECA algorithm was applied to assess the wind turbine 



Yong-Sheng QI et al.: A Kernel Entropy Method and its Application in Monitoring and Assessment of Wind Turbine Degradation Performance 

674                                                                                                                                                                                                            Technical Gazette 29, 2(2022), 664-675 

state by introducing the Rényi quadratic entropy and 
selecting the principal element based on the entropy value 
to process the nonlinear SCADA data. This approach 
reveals structural information of the data, and also ensures 
that information is not lost, to the greatest extent possible. 
Then, the proposed KEPLS method was used to improve 
the prediction performance by considering higher-order 
information. The method not only extracts multi-scale 
information better but can also be used to perform a fusion 
analysis on multiple residuals obtained from the predictive 
model, thereby enhancing the stability and reliability of the 
algorithm. Finally, an actual wind farm case study was 
used to demonstrate that the prediction model and 
assessment method are accurate, simple, and intuitive, and 
can be used to evaluate the health status of WT 
components. The proposed method has good application 
prospects for WT health monitoring. 
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