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Summary 

Trimaran hull forms have been popular recently in both commercial and military usage 

due to reduction in resistance at high speeds, better stability, and greater deck area compared to 

conventional monohull vessels. Determination of the location of the side hulls is most critical 

to get higher hydrodynamic performance. Therefore, many studies in the literature are related 

to defining the location of the side hulls for trimaran vessels. Most of the studies have been 

carried out experimentally or numerically. In this study, an artificial neural network (ANN) 

model was used to predict the residual resistance coefficient of a trimaran model. The model 

uses four parameters which are the transverse and longitudinal positions of the side hulls, the 

longitudinal centre of buoyancy and the Froude number to predict the residual resistance of the 

trimaran model. The experimental data of the trimaran model were used to train the neural 

network model in order to develop a more reliable model. Several neural network models were 

developed and tested to find the one with minimum error. The study showed that the residual 

resistance coefficients of the trimaran model were predicted with high accuracy levels 

compared to the model experimental data. It was also shown that an ANN is a useful alternative 

method to model tests and numerical simulations. The developed model can be used to reduce 

the number of model tests or numerical simulations as well as to obtain the optimum location 

of the side hulls in terms of resistance. 
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1. Introduction 

Trimaran hull form usage, especially for high-speed naval vessels, passenger ferries and 

pleasure crafts, has recently increased due to reduction in resistance at high speeds. Trimarans 

have slender hull forms which means less wave-making resistance, and they offer high stability 

and seakeeping performance in addition to great deck area.  

The side hull location of trimarans may increase or decrease resistance due to the 

interaction between the generated waves from the main hull and the side hulls. Therefore, 

determination of the positioning of the side hulls should be investigated in detail in order to 

reduce resistance. Furthermore, the increase in demand for trimaran vessels leads researchers 

to study the effect of side hull positioning on trimaran hydrodynamics, motion characteristics 

and manoeuvrability. Most of the studies for trimaran vessels comprise experimental or 
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numerical investigation. Zhang [1] carried out experimental and theoretical studies to 

investigate the resistance, seakeeping performance and manoeuvrability of a trimaran fast ferry. 

The effect of side hull configurations on the performance of the trimaran vessel was presented. 

Larsson et al. [2] used numerical methods to investigate the effect of side hull configurations 

on the hydrodynamics of a trimaran ship. Yang et al. [3] used four different methods based on 

Euler’s equation and linear potential flow method to determine the optimum location of the side 

hulls of a trimaran vessel with decreased wave resistance. Degiuli et al. [4] used different 

methods of experimental determination of wave pattern resistance for a trimaran model based 

on wave height measurements in several longitudinal measurement cuts. Theoretical 

predictions of wave resistance were also obtained and a comparison between theoretical 

predictions and experimentally determined wave pattern resistance showed poor agreement. 

Doctors and Sahoo [5] compared the generated waves of a trimaran by using a theoretical 

method for different side hull positions, and the results were compared with experimental 

results. Mynard et al. [6] used numerical simulations, slender body theory and experiments to 

calculate the wave resistance of a trimaran hull form with various side hull positions. Mahmood 

and De Bo [7] carried out numerical simulations in order to obtain the fluid flow of a trimaran 

ship by using commercial software. The total resistance values were calculated for various 

Froude numbers and they were validated with model tests. Son et al. [8] carried out numerical 

simulations of a high-speed trimaran vessel with a round bilge hull to predict the total resistance 

value. Three different hull forms for the centre hull were analyzed and the results of the 

numerical method were compared with the experimental data. The interference effect between 

the hulls of multihulls is critical to obtain the optimum side hull positioning. Most of the studies 

related to the resistance of multihulls focus on investigation of the interference effect. Battistin 

[9] carried out experiments for sixteen different trimaran configurations using analytical and 

numerical methods. The importance of wave interference on the trimaran resistance was 

highlighted. Mizine et al. [10] performed numerical calculations for a trimaran ship in order to 

understand the factors leading to the interference effect, and the results were compared to model 

test data. Zaghi et al. [11] performed a combined experimental and numerical study that focused 

on the effect of the separation distance between the hulls for a high-speed catamaran. Farkas et 

al. [12] carried out a numerical investigation of the interference phenomenon for a series 60 

catamaran. The influence of forward speed and separation on interference was investigated 

using Computational Fluid Dynamics (CFD). Yildiz et al. [13] carried out numerical and 

experimental work to predict the total resistance and residual resistance of a trimaran for nine 

side hull configurations and the interference factors were calculated to determine the optimum 

side hull location. Duman et al. [14] carried out numerical analyses of a trimaran to investigate 

the interference effect between the main hull and side hulls. The interference effect was 

calculated by using the total resistance, residual resistance and wave resistance. All of these 

studies include experimental or numerical calculations to analyze the effect of the side hull 

locations on trimaran resistance. The residual resistance, wave resistance and interference effect 

results were analyzed to see the effect of the different layouts on the trimaran resistance. The 

researchers not only focused on the resistance of trimaran vessels but also on their stability, 

motion and manoeuvring characteristics. Khoob et al. [15] investigated the effect of the side 

hull locations on wave-induced motions and load responses for a trimaran ship using statistical 

short-term analysis. Zhang et al. [16] studied the roll motion of a trimaran vessel for different 

side hull configurations and showed the importance of the side hull locations on its dynamic 

stability. Gong et al. [17] used a hybrid numerical method to simulate a trimaran vessel with 

different layouts moving forward in waves, and the motion response and added resistance were 

calculated. Jiang et al. [18] carried out manoeuvring tests of a trimaran model with different 

layouts and the effect of the different positions of the side hulls on the manoeuvrability 

parameters were analyzed.  
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Experiments give the most reliable and accurate results. However, carrying out an 

experiment is time-consuming and expensive. An alternative to the experiment is numerical 

simulations using CFD which is also time-consuming, unless you have high capacity 

workstations to reduce the computational time, but this means extra cost.  

ANNs are another way to predict ship resistance, which are fast and cost-effective 

compared to experiments and numerical methods. The published papers of recent years show 

that ANNs are a useful tool for ship resistance prediction. For example; Origosa et al. [19] 

presented a neural network model to predict the form factor and wave resistance coefficient of 

ships by using the data of hull geometry coefficients and the forward speed. The results were 

compared with the Holtrop & Mennen method [20] and the proposed model gave accurate 

results. Grabowska and Szczuko [21] predicted the residual resistance coefficient of off-shore 

vessels by using an ANN with various training algorithms. The results were compared with 

model tests and good correlation was observed between the results. They also proposed new 

input parameters to improve the accuracy of the developed network. Cepowski [22] used an 

ANN to develop a function for the prediction of the added wave resistance of a ship. The 

experimental results of 14 ships were used to train the neural network model. Different neural 

network types were implemented and the best one with the minimum error used a multi-layer 

perceptron (MLP) algorithm. The developed function was also used to predict the resistance of 

ships which were not used in the training of the network, and the results were compared with 

experimental results to check its accuracy. The predicted results were compatible with the 

model test results. Yang et al. [23] used the Radial Basis Function neural network (RBFNN) to 

calculate the resistance of a 13500TEU container ship at different drafts. The results were 

compared with four different machine learning models and verified with experimental data. It 

was concluded that the prediction results of the RBFNN are more accurate. Kim et al. [24] 

proposed a predictor model to estimate the resistance of ice-going ships based on an ANN. 

Model test results and full-scale measurements were used to train six different ANN models. 

The developed model results were compared to the full-scale test data and semi-empirical 

formulas.  

There are also papers in the literature related to trimaran resistance prediction by using 

ANNs. Royce et al. [25] developed four different ANN models by using experimental results 

of trimaran hulls and predicted the trimaran residuary resistance, trim and sinkage. The results 

were obtained for three different side hull locations which were not considered in training the 

neural network. The results were compared with test results and good consistency was 

observed. Muk-Pavic et al. [26] developed a neural network model which was trained by using 

model tests to calculate the total resistance for a trimaran hull form, Tri-SWACH. The results 

showed the ANN’s potential to be a resistance prediction tool for Tri-SWACH preliminary 

design.  

This study seeks to develop a neural network model to predict the residual resistance 

coefficient of a trimaran hull for different side hull locations at various forward speeds. The 

neural network model predicts the resistance by use of trimaran parameters such as transverse 

position and longitudinal position of the side hulls, longitudinal centre of buoyancy and forward 

speed. The trimaran model test results were used to develop a reliable model and the neural 

network model prediction results showed good agreement when compared with the 

experimental results. 

2. Experimental data 

The trimaran model used in this study is a 1/125 scale high-speed displacement frigate-

type. The hull line plans and main dimensions of the model trimaran are presented in Figure 1 

and Table 1, respectively.  
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Table 1 Trimaran model characteristics 

 Center Hull Side Hull 

 (kg) 15.52 0.48 

LOA (m) 2.14 0.61 

LWL (m) 2.10 0.61 

BM (m) 0.21 0.03 

BWL (m) 0.19 0.03 

T (m) 0.07 0.06 

LCB (m) 0.97 0.31 

Static Wetted Area (m2) 0.48 0.06 

 

 

Fig. 1 Plan of the trimaran hull lines  

Nine different configurations were selected to investigate the effect of the longitudinal 

and transverse location of the side hulls. The longitudinal and transverse positions of the 

outriggers are given in Table 2. The longitudinal positions are defined as s' and the transverse 

positions are defined as t' (Figure 2).  

Table 2 Trimaran side hull configurations 

CONFIGURATION s'=s/L t'=t/B 

A 0.28 0.86 

B 0.23 0.86 

C 0.18 0.86 

D 0.28 1.07 

E 0.23 1.07 

F 0.18 1.07 

G 0.28 1.27 

H 0.23 1.27 

I 0.18 1.27 

 

 

Fig. 2 Trimaran transverse and longitudinal positions 

The experimental data used in this study was obtained by Carr and Dvorak [27] who 

carried out towing tank tests to calculate the residual resistance data of the trimaran hull for 
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each configuration at various forward speeds for the range of Froude numbers from 0.10 to 

0.50. Total resistance was obtained from the experiments and the residual resistance coefficient 

was calculated. The total resistance can be divided into residual resistance and friction 

resistance. 

 

𝑅𝑇 = 𝑅𝐹 + 𝑅𝑅                                                                       (1) 

 

The total resistance coefficient is calculated as: 

 

𝐶𝑇 =
𝑅𝑇

1
2  𝑆 𝑉2 

                                                                      (2) 

 

where  is the fluid density, S is the hull wetted surface area and V is the ship speed.  

 

As stated in equations (3) and (4), the friction resistance and friction resistance coefficient 

were calculated by using the ITTC friction line [28].  

 

𝑅𝐹 = 𝐶𝐹  
1

2
  𝑆 𝑉2                                                                 (3) 

 

𝐶𝐹 =
0.075

(𝑙𝑜𝑔𝑅𝑒 − 2)2
                                                               (4) 

 

Finally, the residual resistance coefficient can be calculated as: 

 

𝐶𝑅 = 𝐶𝑇 − 𝐶𝐹                                                                       (5) 

 

3. Artificial neural networks 

An ANN is an information processing method based on a biological nervous system that 

consists of neurons and their connections. Neurons are connected in several layers, 

interconnected by inputs and outputs. Figure 3 shows the model of a neuron which forms the 

basis for designing ANNs. A neural network has an input layer, hidden layers and an output 

layer. Each input (xi) passes through the hidden layers with a specific weight (wi). The output 

(y) of each neuron is the sum of each input added via bias (b) and transfer function (f) as follows: 

 

𝑦 = 𝑓𝑗 (∑ 𝑤𝑖𝑗𝑥𝑖

𝑛

𝑖=1

+ 𝑏𝑗)                                                        (6) 
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Fig. 3 Nonlinear model of a neuron [29] 

There are three activation functions often used in the hidden layer and the output layer. 

These functions are purelin, standard logistic function and hyperbolic tangent.  

Different neural network types such as Generalized Regression Neural Network (GRNN), 

Multi-layer Perceptron (MLP), Radial Basis Function, Support Vector Machines (SVM) can be 

used in resistance prediction problems. Multi-layer perceptron (MLP), which is the most widely 

used neural network type [29],[30], was used in this study for the prediction of the residual 

resistance coefficients of trimaran vessels. A multi-layer perceptron, which is a feedforward 

artificial network, with a backpropagation algorithm was applied. The structure of the MLPs 

can be seen in Figure 3.  

Determination of neural network topology is essential to develop a simple and reliable 

model. The number of hidden neurons and the training and learning algorithms should be 

decided carefully. Backpropagation algorithms are used for the training of multi-layer 

perceptron networks. In this study, Levenberg-Marquardt (LM), which is a type of quasi-

Newton algorithm, and the Scaled Conjugate Gradient (SCG) algorithm were used. In addition, 

Bayesian regularization (BR) was also applied which does not need a validation data set. BR 

offers a great advantage when the number of data for training is limited [31]. The parameters 

of the used training functions were taken as default values as shown in MATLAB Neural 

Network Toolbox [32]. The default values used for the training parameters are listed in Table 

3.  

Table 3 Training parameters’ values used for the neural network models 

Training Parameters Values 

Maximum number of epochs to train 1000 

Performance goal 0 

Maximum validation failures 100 

Minimum performance gradient 1e - 7 

Initial µ 0.001 

Decrease factor for µ 0.1 

Increase factor for µ 10 

Maximum value for µ 1e +10 

Epochs between displays 25 

Maximum time to train in seconds inf 

 

The mean squared error (MSE) values were obtained to evaluate the accuracy of the neural 

network as follows: 
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𝑀𝑆𝐸 =
1

𝑛
∑(

𝑎
− 

𝑒
)

2
                                                          (7)

𝑛

𝑖=1

 

where n is the number of available data, 
𝑎
 is the actual data (target) and 

𝑒
 is the output 

data. 

4. Results and discussion 

MATLAB Neural Network software [32] was used for the training and testing of the 

ANNs. The Froude number, LCB, and the longitudinal and transverse locations were used as 

the input data, and the residual resistance coefficient (CR) was obtained as the output data. The 

LCB was also made non-dimensional as the divided length of the hull (LCB/LWL) since the 

remaining input parameters (Froude number, s', t') are non-dimensional. The range of input and 

output data is between 0 and 1 so there is no need to apply an extra normalization.  

The experimental data belonging to the 8 different configurations of the side hulls used 

for the network development was divided into training, validation and test sets. The training 

data was used to train the model by adjusting the weights, the validation data set was used to 

avoid overfitting and to tune the weights, and the test data was used to test the accuracy of the 

ANN predictions.    

In this study, the provided experimental data for the 8 different configurations included 

192 cases in total which means 24 cases for each configuration. The dataset was randomly 

divided into training, validation and test datasets which comprise 134, 28 and 30 cases, 

respectively. It means that 70% of the total data was used for the training, 15% for validation 

and 15% for testing. Only configuration F was excluded for the case study and it was not used 

in the development of the neural network model.  

In order to obtain the most accurate neural network model which offers the lowest testing 

error, several models were developed with various numbers of neurons in the single hidden 

layer, and with different training and transfer functions. MSE errors of train, test and validation 

data sets for each tested model are shown in Table 4. The structure of the developed ANN 

models is shown in Figure 4. 

 

 

Fig. 4 Structure of the developed ANN model 
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Table 4 The tested neural networks with MSE values   

 

No. 

Number 

of 

hidden 

neurons 

 

Training 

function 

 

Transfer 

function 

 

Train 

 

Test 

 

Validation 

1 1 trainlm tansig-tansig 0.0484 0.0491 0.0478 

2 2 trainlm tansig-tansig 0.0510 0.0729 0.0421 

3 3 trainlm tansig-tansig 0.0199 0.0212 0.0206 

4 3 trainlm tansig-purelin 0.0491 0.0509 0.0471 

5 4 trainlm tansig-tansig 0.0257 0.0348 0.0225 

6 4 trainlm tansig-purelin 0.0292 0.0307 0.0310 

7 5 trainlm tansig-tansig 0.0259 0.0185 0.0152 

8 5 trainlm tansig-purelin 0.0206 0.0182 0.0205 

9 5 trainlm logsig-purelin 0.0343 0.0433 0.0471 

10* 6 trainlm tansig-purelin 0.0200 0.0154 0.0132 

11 7 trainlm tansig-purelin 0.0356 0.0371 0.0477 

12 8 trainlm tansig-purelin 0.0191 0.0214 0.0209 

13 9 trainlm tansig-purelin 0.0193 0.0198 0.0210 

14 10 trainlm tansig-purelin 0.0189 0.0376 0.0401 

15 6 trainlm tansig-tansig 0.0145 0.0347 0.0235 

16 6 trainlm tansig-logsig 0.1020 0.1636 0.1071 

17 6 trainlm logsig-logsig 0.1066 0.1901 0.0811 

18 6 trainscg logsig-tansig 0.1300 0.1067 0.0749 

19 6 trainscg tansig-purelin 0.0297 0.0454 0.0241 

20 6 trainlm purelin-purelin 0.0449 0.0384 0.0701 

21 15 trainlm purelin-purelin 0.0494 0.0552 0.0318 

22 6 trainbr tansig-purelin 0.0366 0.0338 NaN 

23 10 trainbr tansig-purelin 0.0379 0.0311 NaN 

24* 15 trainbr tansig-purelin 0.0122 0.0131 NaN 

25 10 trainbr logsig-purelin 0.0135 0.0153 NaN 

26 15 trainbr logsig-purelin 0.0082 0.0430 NaN 

                     *refers to the best ANN model 

The tested neural network with the lowest test MSE value is referred to as the most 

accurate neural network model. As can be seen from Table 4, the minimum test error was 

obtained in tests 10 and 24 with a test error of 0.0154 and 0.0131, respectively. The first network 

(number 10) with the lowest test error has 6 hidden neurons in the single hidden layer, and the 

LM algorithm was used for the training function. The activation functions for the hidden layer 

and output layer are tansig and purelin, respectively. It was also observed that the best ANN 

model with the lowest test error has the lowest validation error. However, it is not valid for the 

training errors and the best ANN model does not give the lowest training error. The lowest 

training error with the LM algorithm belongs to test number 15 which is 0.0145 and the test 
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error of this network is 0.0347, which can result in the overfitting problem. Table 4 also shows 

that increasing the number of hidden neurons to more than 6 with the LM algorithm did not 

improve the performance of the neural network model. The second network (number 24) with 

the lowest test error uses BR as the training function and has 15 hidden neurons in the single 

hidden layer. The activation functions for the hidden layer and the output layer are tansig and 

purelin, respectively. 

Both network models showed similar output values. Therefore, the ANN model with LM 

algorithm (number 10) was used in the rest of the study as the best neural network as it offers 

the fastest training function. Figure 5 shows the performance plot of the best neural network 

model. It shows that the developed neural network model performed 214 iterations in total and 

the best validation performance was achieved at the 114th iteration. 

The regression graphic between the predicted neural network values and experimental 

values is shown in Figure 6. The correlation coefficients (R) were obtained as 0.97335, 0.90383, 

0.97259 and 0.96637 for training, validation, test and all data-sets, respectively. It can be said 

that the developed model results are consistent with the experimental results while the R values 

are very close to 1.0.  

 

 

Fig. 5 Performance graphic for the most accurate neural network model 

 

Fig. 6 Regression graphics for the most accurate neural network model 
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Figure 7 shows the distribution of residuals between desired and ANN outputs for the 

best neural network model. In this figure, the residual or error is calculated as the difference 

between the predicted values and experimental values. The distribution of the error bars near 

the zero error line (orange line) indicates the more accurate predictions. It can be seen that the 

largest distribution of error is between -0.2 and 0.2.  

 

 

Fig. 7 Distribution of residuals between desired and ANN outputs 

The results of the developed network predictions are presented in Figure 8. Figure 8 

compares the residual resistance coefficient data from the experiments which were used to 

develop the network model, with the neural network predictions. The results of the comparison 

are given separately for each side hull configuration. The results show that the neural network 

predictions at every speed for all the configurations are in good agreement with the 

experimental results in general. The nonlinear nature of the experimental results can be seen 

from the figure and the developed neural network model captured it accurately. The actual 

results showed rapid changes, especially in the range of Froude numbers between 0.10 and 0.25, 

which were not observed in the predictions. The reason for the lack of neural network 

predictions in this region is the large variation of experimental data in this Froude number 

range. This could prohibit the neural network from appropriately developing the input-target 

relationship during training [21]. The number of data used in the network should be increased 

in this region to capture these rapid changes. The actual values in the Froude number range 

between 0.25 and 0.50 are smoother and the neural network model predictions coincide with 

the experimental results in this region. It is important that the developed neural network 

accurately predicted the main hump region in all the configurations and captured the trend of 

the curve.  
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Fig. 8 Comparison of residual resistance coefficients between experimental results and ANN predictions 

5. Case study     

A case study was carried out to check the accuracy of the developed neural network. In 

the case study, a configuration, whose data was not used for the development of the neural 

network, was chosen. This means that the data of the case configuration was not previously 

trained or tested in the developed neural network. Configuration F was chosen for the case 

study whose longitudinal position is 0.18 and transverse position is 1.07. The residual resistance 

coefficients of Configuration F were calculated for a range of Froude numbers between 0.10 

and 0.50 by using the developed network model.  

The results of the case study are shown in Figure 9. To show the accuracy of the neural network 

model, the results were compared with the experimental data. Figure 9 shows that the neural 

network predicted the data (which was not used for the development of the network) at an 

acceptable level. The experimental results show rapid changes over the whole Froude number 
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range, while the ANN results have a smooth line that captures the trend of the experimental 

data. It is important that the neural network accurately captured the main hump region between 

the Froude numbers 0.25 and 0.35.  

 

 

Fig. 9 Comparison of the ANN predictions and experimental results which were not used in the development of 

the neural network 

The relative errors were also calculated to show the accuracy of the neural network by 

using the following formula: 

 

𝜀 = |
𝐶𝑅𝐸𝑋𝑃

− 𝐶𝑅𝐴𝑁𝑁

𝐶𝑅𝐸𝑋𝑃

| ∗ 100                                                   (8) 

 

The maximum and minimum relative errors were calculated as 32.82% and 0.51%, 

respectively, while the mean average value for the relative error was 7.29%. The accuracy of 

the method can be improved by increasing the data number. However, the neural network 

results can be used at the preliminary design stage to predict the resistance curve when there is 

no experimental or simulation data. Carrying out experiments or numerical simulations gives 

more exact results, but ANN provides a faster prediction option in the preliminary design.   

6. Conclusion 

Determination of the side hull location is of utmost importance during the trimaran design 

stage. A reasonable resistance reduction can be obtained with careful consideration of side hull 

positioning which may lead to better performance and less fuel consumption. The location of 

the side hulls can be determined by carrying out towing tank tests or numerical simulations. 

Many transverse and longitudinal configurations can be generated, but this is time consuming 

when trying to find the optimum location. Using an ANN for resistance prediction is faster and 

easier than traditional methods.  

An ANN model for the prediction of the residual resistance coefficient of a trimaran 

vessel was presented in this study. The developed neural network comprises 4-6-1 neurons in 

the input layer, hidden layer and output layer, respectively. The input parameters were defined 

as transverse and longitudinal positions of the side hulls, the longitudinal centre of buoyancy 

and the Froude number. The experimental data include 8 different configurations of the side 

hulls with a range of Froude numbers between 0.10 and 0.50 which were used to develop the 

neural network. One configuration, which was not trained and tested in the developed neural 
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network, was used to test the accuracy of the neural network. The results showed that the 

developed ANN model is able to predict the residual resistance coefficient of the trimaran 

vessel over a wide speed range. The neural network model captured the complex nature of the 

trimaran resistance and the results show promising comparisons with experimental results for 

each configuration. The main hump region of the residual resistance was predicted accurately. 

The error histogram showed that a large part of the difference between the predicted and actual 

values was between -0.2 and 0.2. In addition, the mean average percentage of relative error was 

7.29% for the case study.  

The results showed that the ANN is a useful tool to predict the residual resistance 

coefficient of the trimaran vessel. Using an ANN does not eliminate the need for experiments 

or numerical simulations since the neural network is developed by using test data. However, it 

will decrease the number of test case for different configurations and different forward speeds, 

and can be used to find the optimum side hull location. Furthermore, with more data for 

different trimaran hull forms, it might be possible to predict the resistance of a given trimaran 

hull form.  

Even though the developed ANN model has good ability to predict the residual resistance 

of the trimaran vessel, it has some limitations. The developed ANN model does not capture all 

the trimaran hull forms and can only be used for trimaran hull forms similar to those used in 

this study. Moreover, the selected side hull configuration should stay in the ranges presented in 

Table 2 and the forward speed should be in the range of Froude numbers 0.10 to 0.50.  
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