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Abstract

Quantum computational supremacy may potentially endanger the current cryptographic protection methods.
Although quantum computers are still far from a practical implementation in information processing and
storage, they should not be overlooked in the context of cybersecurity. Quantum computers operate with
qubits - units of information that are governed by the fundamental principles of quantum physics, such as
quantum superposition of states and quantum coherence. In order to address the new challenge that quantum
computers pose to cybersecurity, the very principles of their operation have to be understood and are
overviewed in this contribution.
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1. Introduction

In October 2019. an article by Google scientists in the reputable journal Nature announced the experimental
realization of a quantum processor Sycamore, a network of 53 programmable superconducting qubits
(transmons) (Arute, 2019). The authors claimed that a problem which would have taken 10 000 years to be
solved on a state-of-the-art classical processor had been processed in less than 200 seconds on the quantum
one. The quantum supremacy of Sycamore with respect to the classical computers was questioned the very
same day by the IBM scientists (Pednault, 2019). Nevertheless, it prompted again the old arguments about
quantum computers and their ability to threat the global trade and cybersecurity.

It is the widely used RSA (Rivest et al., 1978) public-key cryptography that is considered particularly
vulnerable to quantum attacks. The RSA secret keys are generated as a product of two N-digit prime factors.
Their security relies on the general assumption that the opposite process of prime factorization, for which the
computational time increases exponentially with N, is practically impossible in any finite time for a large
enough N. The largest number factorized at present, even with the most powerful classical supercomputers
and the most advanced algorithms, is the 829-bit RSA-250 number (250 decimal digits) (Boudot, 2020). And
the next one is always a challenge - there is still no universal classical algorithm for the prime factorization.
However, quantum computers and quantum algorithms promise to change this fact. The Shor’s quantum
algorithm (Shor, 1997) is shown to reduce the exponential computational time to the polynomial one and
therefore potentially endanger the public-key cryptosystem.

In this work, the very principles of quantum computers and their relation to cybersecurity are presented.
Sec.2. introduces qubits, units of quantum information, whose functioning is based on the quantum-
mechanical concepts of superposition of states and quantum coherence. The subject of Sec.3. are the
experimental and theoretical challenges encountered in the actual realization of quantum processors and their
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scaling to the real-world working machines. The advances in quantum computing in the context of present
and future cybersecurity protocols and standardization are discussed in Sec.4. The concluding remarks are
given in Sec.5.

2. Qubits – basic units of quantum information and computing

In classical (electronic) computing, the basic units of information are bits, logical states which can assume
only two values, usually denoted by digits 0 and 1. The digits correspond to two physically distinguishable
states of an electronic device, usually the current or voltage levels of tiny semiconducting circuits. The binary
information is encoded in a series of bytes and sequentially processed through logic gates (electronic
switches). Regardless of their physical realization, the output of this process is deterministic, i.e., uniquely
defined by the input information and the applied gates.

These paradigmatic characteristics of the classical computing process – being sequential and deterministic –
are to be replaced by the terms simultaneous and probabilistic for quantum computers. The units of
information in quantum computing are qubits – the quantum bits. In analogy with classical bits, there are
only two computational states of qubits, denoted by 0 and 1, which present two different classical values of
some physical observable. The usual example of the qubit computational states 0 and 1 are the upward and
downward pointing electron spins, the two opposite projections of the electron internal angular momentum.

What makes the qubits fundamentally different from classical bits is that they obey the laws of quantum
physics that have no analogy in the classical world and often seem counter intuitive. In the quantum realm,
the electron spin does not point up or down. Neither is its orientation somewhere between up and down.
Instead, the spin points simultaneously up and down, i.e., it is in a quantum superposition of both states. It is
only in the process of measurement that the spin/qubit assumes only one of the two possible states. It is a
fundamentally random process, giving an ambiguous result 0 or 1 with certain probability for each of them.

It becomes even more intricated in a system of N mutually interacting qubits. There are 2N possible multi-
qubit states (different sets of single-electron spins) represented by the bit strings of type 0100…01110101. In
a quantum system, however, it is impossible, even in principle, to know in which of the states the qubits
actually are. Instead, the qubits are in a macroscopic coherent state – a linear superposition of 2N classical
states with the complex amplitudes allowing for their interference. While classical gates operate on each of
the 2N states in a succession, quantum gates are operators that act simultaneously on the quantum
superposition of states and translate them, all at once, into a new set of states (quantum parallelism). The
quantum coherence of the N-qubits wave function is destroyed only in the process of measurement, when the
quantum state collapses into one of the possible classical outcomes with probability determined by its
(complex) amplitude.

We are dealing with a “probabilistic computer, not any more with a Touring deterministic sequential
machine” (Feynman, 1982). The result of a single quantum measurement is not a unique function of the
input, but just one among the fundamentally random outputs. In order to find the final result, one needs to
repeat the quantum calculus, and then consider the obtained results by classical methods. A good quantum
algorithm is the one for which the exact answer corresponds to the most probable output superposition of
states, while the others are mostly suppressed. The time-price for checking of the possible results does not
depend significantly on N and the overall quantum computational time may still be considerably shorter than
the time needed by the most advanced classical algorithms. Moreover, there is a big advantage with respect
to the classical computing methods: in order to simultaneously examine 2N states of the system a quantum
computer needs only N qubits.

Quantum computers are not universal machines. The classical computational methods are deterministic and
thus more appropriate in cases where one needs to know the exact result of some calculation. Quantum
supremacy refers primarily to a complexity class of computational problems for which the computational
time/power cost increases exponentially with an increasing number of bits (components). For example, the
time needed to run the optimization analyses on a set of possible states described by N binary digits, with
regard to some criterion, grows as 2N. It explodes for large N’s and it may be hard or even impossible to
carry out the optimization in any reasonable time even on the best classical computers. However, the
quantum algorithm for a database search, proposed by Grover, reduces this computational time quadratically
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with respect to its classical counterpart (Grover, 1996). The already mentioned prime factorization is an even
more notable example. Using the quantum version of the fast Fourier transform, the Shor’s algorithm reduces
the prime-factorization computational time from an exponential to a polynomial dependence on N, retaining
at the same time a small error probability (Shor, 1997).

3. Implementation

It has been almost 40 years since Feynman suggested quantum computers as a powerful tool for simulating
quantum many-body systems (Feynman, 1982). Meanwhile, many computational codes and distinct
mathematical apparatus based on the quantum mechanical principles have been developed (Coles, 2018) and
a myriad of different physical realizations and architectures of quantum processors proposed by physicists
and informational scientists (Nielsen, 2010). The quantum IBM Q-Experience processors with 5 and 16
qubits were launched in a Cloud for the general public (QExperience, 2016). It has been estimated, however,
that at least 10 000 qubits are necessary for a useful quantum computer that can be implemented into existing
computational systems. Scaling from the actual experimental systems of at most 100 qubits to the large-scale
quantum computers, remains one of the main obstacles in their realization. It is not just a technological
problem. Rather, it is related to the fundamental quantum-mechanical process of decoherence. No quantum
system is completely isolated - due to the unintentional interactions of the quantum system with its
surroundings, it becomes rapidly and strongly entangled with the environmental degrees of freedom. They
provoke a gradual transition of the coherent quantum state into a single classical state (Schlosshauer, 2019).
Quantum decoherence, analogous to the quantum to classical transition in the measurement process, becomes
even more pronounced as the number of interacting qubits (quantum width) and/or gate cycles (quantum
depth) increases. The thermal effects point into the same direction. Actual quantum computers require very
low operating temperatures. Even temperatures as low as a few millikelvins may compete with the
comparatively small transition energies between the many-qubit-states and suffice to break its coherent
quantum state and translate it into a classical state. The interest of researchers is therefore directed towards
fault-tolerant quantum computing, which protects qubits from errors generated from environmental
interactions as well as from imprecise gate control (Lidar, 2013; Paler, 2015). The goal is to preserve the
quantum coherence long enough and with a small enough error, such to enable a successful quantum
calculation. One of the promising possibilities in this regard are transmons, the solid-state superconducting
qubits used also in the Sycamore and the Q-Experience processors, which are designed specifically to reduce
their sensitivity to noise (Schreier, 2008). Due to the many above discussed challenges, quantum computers
are still in their early stage. The numbers factorized on quantum computers so far are not bigger than 15.
Even the 53-qubit Sycamore, for which quantum supremacy was first announced (Arute, 2019), is far from
being capable of decoding the actual RSA cryptographic keys. It is estimated that it will take at least 10 to 20
years of scientific work for quantum computers to become real-world functioning devices. However, it seems
inevitable that, at some point in the relatively near future, quantum computers will become reality, at least in
some extent. Collaborative efforts have been set up between academia, government and business, and
oriented towards the first commercial applications of quantum computers (HSD Report, 2019). Meanwhile,
the advances in quantum computing, based on the concepts of quantum parallelism and interference, have
been implemented into the hybrid quantum-classical algorithms that can be run on digital computers,
enhancing their possibilities (Ajagekar, 2019). Applicable for example, in complex combinatorial problems
in molecular and biological engineering, weather forecasting or market scheduling, the quantum-inspired
systems are welcomed also by the industry as powerful tools for optimization analyses (Fujitsu, 2020).

4. Quantum-safe cryptography

By performing tasks that classical computers cannot do in any feasible amount of time, quantum computers
could completely change and revolutionize our science and world in general. There is, however, a trade-off:
violation of data privacy and a security of the global information infrastructure. The presumed supremacy of
quantum computers over the classical ones, opens up the possibility of an unauthorized access to the data
stored on various devices. Personal data and documents or credit cards and business information, can all
become the subject of quantum attacks. Confidential state information or patient health-care records, meant
to remain secret for years, are particularly sensitive. Even if protected by the current encryption protocols,
they could be collected and stored until the operable, sufficiently strong quantum computers become a reality.
While believed to be resilient even to the most powerful classical supercomputers, the so called “hard”
mathematical problems may become vulnerable to quantum attacks. This is especially true for the widely
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used public key (asymmetric) cryptography, which is based on the integer factoring (RSA) or discrete
logarithm problems (EEC), shown already to be easily broken by means of Shor’s algorithm. Various
symmetric encryption codes, based on lattice theory, coding theory or the study of multivariate quadratic
polynomials are, on contrary, believed to be quantum - safe (Stebila, 2015). For example, the Grover’s
square-root speedup of the AES (Advanced Encryption Standard) symmetric-key decryption can be annulled
simply by doubling the size of a key. However, the shared secret key is still to be exchanged through the
untrusted public-key channels and is therefore prone to deciphering and eye-dropping. It is hard to predict the
development of quantum-safe cryptography (also called post-quantum cryptography). The present
computational protocols may become unreliable in future due to the unprecedented advances in mathematical
techniques. Meanwhile, however, a new and qualitatively different approach has been evolving – quantum
cryptography. The quantum cryptography is to be distinguished from the math-based quantum-safe
cryptography. The quantum-key-distribution (QKD) protocol exploits the fundamental principles of quantum
mechanics (beyond the scope of this article), namely quantum entanglement (Horodecki, 2009) and the no-
cloning theorem (Wootters, 1982). Being based on quantum mechanics itself, QKD prevents eavesdropping
during the cryptographic key exchange and accomplishes an in principle unconditional security even in the
future, independently of the advances in computational resources. The implementation of quantum-safe and
quantum cryptography into the present security protocols and regulatory requirements is a slow process. The
aim of the Open Quantum Safe (OQS) project is developing and prototyping quantum-resistant cryptography
and integrating it in an open-source library appointed to all computational scientists and security practitioners
(OQS, 2016). The efforts of European Union Agency for Network and Information Security (ENISA) are
focused on protocols which can interoperate with existing communication networks and are secure against
both quantum and classical attacks (Di Franco, 2018; ENISA, 2021). The Quantum-safe cryptography
project by European Telecommunications Standards Institute (ETSI) is directed to the security of government
and military communications, financial and banking transactions, the storage of personal and confidential
corporate data in the cloud. It evaluates the proposed quantum-resistant public key algorithms, and considers
their security properties, standardization and implementation for specific practical applications (ETSI, 2020).
In the recent years, particular attention is paid to the modular systems, whose data is connected and
exchanged through the Internet. The digital ledger systems (block-chains), in which the information is shared
over a whole network of computers, are considered at present almost impossible to hack. However, the
linking of the blocks of the chain, or the communication between the block-chains themselves, is based on
hash functions and classical public key protocols which are potentially prone to quantum attacks. To ensure
the authenticity, confidentiality and integrity of the transmitted messages, many encryption architectures and
hybrid quantum-classical modifications of the public key cryptography have been suggested (Petrarche,
2020; Djordjevic, 2021). There are special concerns about the unauthorised access to the data transmitted and
stored within the network Internet of Things (IoT), for which the low-energy and resources-requirements are
hardly met with the expensive and complex quantum cryptographic systems (Fernández-Caramés, 2020). To
build a blockchain framework for secure data transmission among IoT devices, the new lightweight
quantum-inspired authentication and encryption protocols based on quantum random walks, have recently
been proposed (El-Latif, 2021).

5. Conclusion

Quantum computers operate with quantum units of information (qubits), whose functioning is based on the
fundamental quantum-mechanical principles of superposition of states and quantum coherence. Although not
expected to be universal machines, quantum computers could potentially solve “hard” mathematical
problems, not solvable by classical computers, which are the basis of actual cybersecurity protocols.
Quantum computers are still an emerging technology and there are many experimental and theoretical
obstacles and challenges to their scaling to real-world devices and their implementation into the present
computational systems. Nevertheless, it is becoming obvious that it is essential for companies relying on
information security and the ICT practitioners in general to keep up with their development. Numerous
projects are launched worldwide, aiming to raise awareness of the potential impacts of quantum computing
on information security. The main concern is directed to the sensitive data that needs to stay secure even far
into the future. Governments all over the world are investing in quantum-safe cryptography and its adoption
in the actual security schemes and standards. Once the technology of quantum computers matures, an
unpredictable “quantum” jump into a quantum era of cybersecurity may happen all of a sudden, and only the
collective international preparedness will ensure the stability in the cyberspace.
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