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In blast furnace smelting, the silicon content in hot metal can indirectly reflect the blast furnace temperature and 
measure the quality of hot metal. For more accurate prediction, according to the reduction reaction, the input pa-
rameters affecting the silicon content are selected to form a data set. The Weighted Random Forest (WRF) prediction 
model and the Scaling Coefficient Particle Swarm Optimization (SCPSO) algorithm are proposed. The prediction 
method based on SCPSO-WRF has higher prediction hit rate and lower mean error than those traditional methods. 
The results show that the prediction hit rate and mean error of SCPSO-WRF are 89,1 % and 0,0291 respectively. The 
prediction method has theoretical research and practical application value.
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INTRODUCTION

Blast furnace smelting is an extremely complex pro-
cess. There is nonlinearity between the parameters. Sili-
con content can indirectly reflect the blast furnace tem-
perature [1]. If the silicon content can be predicted, it 
will have reference significance for operators to control 
the furnace condition. In order to make the prediction 
results more accurate, researchers have established var-
ious prediction models, including Random Forest (RF) 
[2], Support Vector Machine (SVM) [3], neural network 
[4], extreme learning machine [5], etc. In [2], the input 
parameters are selected based on experience, which 
lacks metallurgical and statistical analysis. The predic-
tion model is RF, and the grid search is used to optimize 
the model parameters. In [3], the process of blast fur-
nace smelting is analyzed, and the input parameters are 
selected according to the grey correlation degree. The 
prediction model is SVM, and the Particle Swarm Opti-
mization (PSO) algorithm is improved to optimize the 
model parameters. In [4], the input parameters are se-
lected according to experience and correlation coeffi-
cient. The prediction model is the recurrent neural net-
work with a long short-term memory structure, and the 
grid search is used to optimize the model parameters. In 
[5], the input parameters are selected according to the 
correlation coefficient. The prediction model is a multi-
ple kernel extreme learning machine, and the improved 
grey wolf optimizer is used to optimize the model pa-
rameters. There are still some problems, such as high 
prediction error. There are not only the reasons for the 
selection of input parameters, but also the factors for the 
prediction model. To fundamentally improve the pre-
diction hit rate, according to the influence of blast fur-
nace gas on reduction reaction, the input parameters are 

selected and a high-quality data set is formed. Then a 
prediction method based on SCPSO-WRF is proposed. 
The effect is verified by simulation experiments.

PARAMETER SELECTION
In the task of silicon content prediction, the quality 

of data set determines the hit rate of the model and has 
a great impact on the prediction results. Selecting ap-
propriate input parameters as input parameters is the 
basis of high hit rate, and the selection of input param-
eters is a very important part. Generally, the correlation 
coefficient between input parameters and silicon con-
tent is calculated, and the parameters with large correla-
tion are selected, hoping to infer the value of silicon 
content according to these parameters. When the input 
parameters tend to statistical analysis, the generaliza-
tion performance of the model will be reduced due to 
the lack of smelting theoretical support.

In this paper, the input parameters are selected ac-
cording to metallurgy and statistics. The selected input 
parameters are supported by both theory and data. The 
reduction of iron oxide by CO and H2 in low and medi-
um temperature zone is called indirect reduction, and 
the reduction of iron oxide by carbon in high tempera-
ture zone is called direct reduction. Because the reduc-
tion of silicon consumes a lot of heat, silicon is directly 
reduced by carbon only in the high temperature zone 
[1]. Among the many factors affecting silicon content, 
the direct reduction of iron is an important factor. When 
the smelting conditions of blast furnace are stable, the 
indirect reduction degree of CO can be calculated ac-
cording to the content of CO2 in gas composition. Once 
the indirect reduction degree is determined, the direct 
reduction degree is also determined. Therefore, the 
change of CO2 content in blast furnace gas also reflects 
the change of direct reduction degree of iron, and fi-
nally affects the degree of silicon reduction [6]. The re-
duction of iron ore is affected by gas flow conditions. 
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Gas flow conditions include temperature, flow rate, 
pressure and composition [1]. In a certain range, the in-
crease of gas temperature can accelerate the reduction 
reaction, the increase of gas flow rate is conducive to 
diffusion and can promote reduction, and the increase 
of gas pressure can accelerate reduction [1]. Gas com-
position includes CO, CO2, H2 and N2. In theory, the 
increase of indirect reduction can reduce carbon con-
sumption and fuel ratio, so as to reduce the reduction of 
silicon. According to the above analysis, the selected 
input parameters are: fuel ratio, gas pressure, gas utili-
zation rate, gas flow rate, gas temperature and gas com-
position. The correlation coefficient of each input pa-
rameter is shown in Table 1.

  (3)
i is the i-th particle; d is the d-th dimension; t is the t-th 
iteration; c1 and c2 are local and global learning factors; 
r1 and r2 are random numbers in the range [0, 1]; ω is the 
inertia weight.

SCALING COEFFICIENT PARTICLE SWARM 
OPTIMIZATION

In SCPSO, the movement of particles is guided by 
the elite solutions g1 and g2, which are the top two glob-
al optimal solutions found. Particles search near g1 and 
g2, which increases the possibility of finding a better 
solution.

Add two random coefficients in the range [0, 1] to 
the current position and the optimal position respective-
ly. The mathematical expressions are r2g1-r1xi and r2g2-
r1xi, respectively. Because of r2 and r1, the value of r2g1-
r1xi can be smaller or larger than g-xi, making it easier to 
find a better solution.

A new random number balance mechanism is pro-
posed in this paper. c1 and c2 are random numbers in the 
range [- 2,2]. The direction of vi is controlled by the 
signs of c1 and c2. As shown in Figure 1, xi is the current 
position of the particle, g1 and g2 are the top two global 
optimal solutions found, and xi is the midpoint of g1g’1 
and g2g’2. In SCPSO, particles may move in multiple 
directions. The relations between the signs of c1 and c2 
and the direction of vi is shown in Table 2.

Table 1 Correlation coefficients
Parameters Correlation coe�cients
fuel ratio 0,4457
gas pressure -0,4788
gas utilization rate -0,6475
gas �ow rate -0,5843
gas temperature -0,7327
CO 0,1427
CO2  -0,6409
H2 -0,6545
N2 0,6406

WEIGHTED RANDOM FOREST
In RF, the weight values of all decision trees are the 

same. The weight values of each decision tree in WRF 
are different, and these weight values are optimized by 
SCPSO.

SCPSO is used to optimize three parameters of 
WRF, which are maximum depth, maximum features 
number and number of decision trees. The dimension of 
the solution is three, representing three parameters re-
spectively. The fitness value of the objective function is 
the prediction hit rate of RF on the test set, and the 
weight values of all decision trees are the same. After 
determining the values of the three parameters, SCPSO 
is used to optimize the weight vector of WRF. The di-
mension of the solution is the number of decision trees, 
and each decision tree has a different weight value. The 
fitness value of the objective function is the prediction 
hit rate of WRF. The final predicted value  of WRF is 
calculated as follows:

  (1)

wi is the weight of the i-th decision tree,  is the predic-
tive value of the i-th decision tree.

PARTICLE SWARM OPTIMIZATION

In PSO,  and  are 
the position and velocity of the particle.  
is the optimal individual position, and  
is the optimal global position [7]. The formulas [8] are 
shown in (2) and (3).

  (2)

Table 2  Corresponding relations between sign  
and direction

c1 c2 vi

+ + a
- + b
- - c
+ - d

Figure 1 Particle movement graph of SCPSO

According to the above improvement of PSO, the 
formulas of SCPSO are shown in (4) and (5).

 

  (4)

  (5)

i is the i-th particle; d is the d-th dimension; t is the t-th 
iteration; r1, r2 and r3 are random numbers in the range 
[0,1]; c1 and c2 are random numbers in the range [- 2,2].

The execution process of SCPSO is as follows:
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Step 1: Randomly initialize the position of particles, 
calculate the fitness values, and update g1 and g2.

Step 2: Is the maximum number of iterations 
reached? If yes, exit the program; If not, go to step 3.

Step 3: Update the velocity according to formula (4).
Step 4: Update the position according to formula (5).
Step 5: Check the out of bounds and randomly ini-

tialize the out of bounds position.
Step 6: Calculate the fitness values of the new posi-

tions. If the new fitness value is better, update g1 and g2.
Step 7: Output the position of g1 and the fitness val-

ue of g1, and go to step 2.

BENCHMARK FUNCTIONS VALIDATION

The experimental results are analyzed from three as-
pects: optimal value, average value and worst value. 
PSO, Grey Wolf Optimizer (GWO) [9] and SCPSO are 
selected for comparative experiment. In the experiment, 
the number of iterations is 1000, the population size is 10, 
the solution dimension is 10, and it runs 20 times. In 
PSO, c1 is 0,2, c2 is 0,3, ω is 1. f1-f3 are unimodal func-
tions, f4-f6 are multimodal functions, and the details of the 
benchmark function are shown in Table 3. The experi-
mental results are shown in Table 4. The convergence 
graphs of some functions is shown in Figures 2 and 3.

It can be seen from Table 4 that SCPSO finds the 
actual global optimal value on f1, f2, f3, f5 and f6. On f4, 
the optimal values found by SCPSO is closer to the ac-
tual global optimal value than PSO and GWO. It can be 
seen from Figures 2 and 3, SCPSO can locate the range 
of optimal values faster than PSO and GWO. It can be 
concluded from Figures 2 and 3 that SCPSO not only 
has higher accuracy but also faster speed than PSO and 
GWO, which basically meets the expectation.

RESULTS AND DISCUSSION

The three parameters are maximum depth, maxi-
mum features number and number of decision trees, and 
their value ranges are [1,20], [1,9] and [1,300]. The op-
timization results show that the maximum depth is 16, 
the maximum features number is 4, the number of deci-
sion trees is 10, and the weight vector is [0,08930418, 
0,10679194, 0,16228444, 0,06976635, 0,06209202, 
0,05738346, 0,1694795, 0,14866342, 0,09103784, 
0,0399059]. The model is evaluated from two aspects: 
hit rate and mean absolute error.

(1) Hit rate

  (6)

yi is the true value.  is the predictive value. I is an 
indicator function. If the input is true, output 1; other-
wise, output 0. N is the number of test samples.

(2) Mean Absolute Error

  (7)

In order to verify the performance of the models, 
five models are compared in simulation experiments. 
The size of the data set is 1039, the size of the training 

Table 4 Experimental results

Algorithm Best Mean Worst
f1 PSO 7,38448E-27 3,23768E-18 4,44644E-17

GWO 1,1957E-192 1,8028E-172 3,6054E-171
SCPSO 0 0 0

f2 PSO 8,47349E-07 0,026957592 0,452895906
GWO 2,03442E-46 1,29676E-16 2,08431E-15

SCPSO 0 0 0
f3 PSO 2,25597E-12 1,99283E-09 2,08237E-08

GWO 1,2157E-245 3,1785E-213 6,357E-212
SCPSO 0 0 0

f4 PSO -3854,250869 -3362,844277 -2786,653363
GWO -4189,621475 -2905,459369 -1567,193305

SCPSO -4189,785082 -4175,450608 -3942,954201
f5 PSO 0,032593858 0,139883743 0,491535418

GWO 0 0,032449576 0,648991522
SCPSO 0 0 0

f6 PSO 1,96831E-29 4,96644E-14 8,97943E-13
GWO -1 -0,10070719 0,001263564

SCPSO -1 -1 -1

Table 3 Benchmark functions

Functions Range fmin

[-100, 100] 0

[-100, 100] 0

[-1, 1] 0

[-500, 500] -4190

[-600, 600] 0

[-10, 10] -1

Figure 2 Convergence graph of f1

Figure 3 Convergence graph of f4
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set is 727, and the size of the test set is 312. The experi-
mental results are shown in Table 5.

In Table 5, the performance of SCPSO-SVM is bet-
ter than SVM. It can be seen that the models optimized 
by SCPSO have been improved. SCPSO has good per-
formance in solving extreme values and parameter opti-
mization. The Hrate of SCPSO-WRF is the highest 
89,1%. The MAE of SCPSO-WRF is about 0,0291. 
SCPSO-WRF is significantly better than the other four 
models. The predictive values and MAE of test samples 
1-50 are shown in Figures 4 and 5. The prediction errors 
of some samples are shown in Table 6.

optimizing the weight value of the decision tree, the 
prediction error of SCPSO-WRF is less than 0,05. SCP-
SO-WRF prediction method further improves the pre-
diction hit rate and reduces the error. The input param-
eter selection method, WRF and SCPSO proposed in 
this paper make the prediction of silicon content more 
accurate.

CONCLUSION

In this paper, SCPSO and WRF are proposed and 
verified by experiments. SCPSO is used to optimize the 
hyper-parameters of WRF. The silicon content predic-
tion model based on SCPSO-WRF is established. The 
results show that the performance of SCPSO-WRF is 
better than the other models. SCPSO-WRF can meet the 
task requirements of silicon content prediction. The es-
tablishment of prediction model has theoretical research 
and practical application value for improving hot metal 
quality and adjusting blast furnace operation.
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Figure 4 Predictive values of test samples 1-50

Figure 5 MAE of test samples 1-50

It can be seen from Table 6 that the prediction error 
of SCPSO-RF is close to 0,05, but greater than 0,05. 
According to formula (6), these samples are not hit. By 
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