MICROMECHANICAL PROPERTIES OF CRYO-ROLLED (CR) ALUMINUM ALLOY Al0.6Mg0.35Si

Received – Primljeno: 2021-12-04
Accepted – Prihvaćeno: 2022-03-10
Original Scientific Paper – Izvorni znanstveni rad

The present study is devoted to the effect of cryorolling (–150 °C) in mill rolls implementing shear alternating severe plastic deformation (SPD) on the microstructure and mechanical properties of the alloy. Comparison of the processes of cryorolling (CR) and rolling at room temperature (RTR) is given. The study of the microstructure of the samples and the mechanical properties showed that CR ensures the production of ultra-fine grained (UFG) material with an average grain size of 350 ÷ 500 nm, as well as an increase in hardness by 162,2 % (118 ± 2 HV) and R_m by 106.34 % (293 ± 5 MPa).

Keywords: Al0.6Mg0.35Si alloy, mechanical properties, cryorolling, transmission electron microscopy (TEM), UFG

INTRODUCTION

Such characteristic properties of aluminum alloys as lightness, strength, ductility, good formability, high thermal conductivity, corrosion resistance due to the antioxidative film Al2O3, non-toxicity make it an almost ideal structural material. [1]. Recently, to obtain the optimal combination of strength, plasticity and toughness in aluminum alloys, which is very difficult to achieve [2], the processes of severe plastic deformation (SPD), based on the transfer of high levels of deformation to the material [3] and cryogenic deformation processes [4], based on active strain hardening of the material at ultralow temperatures. The processes make it possible to obtain nanocrystalline and ultrafine-grained (UFG) materials with excellent mechanical properties primarily due to intensification of deformations and activation of grain-dislocation factors. There are scientific and experimental reports on Al-Mg-Si alloys subjected to cryorolling with and without SPD implementation which have shown improved mechanical properties [5, 6]. However, in the available literature there are no reports on Al-Mg-Si alloys subjected to cryorolling with the implementation of SPD to obtain rolled sections, for example, round, square, rhombic, reinforcing sections and oriented to large-scale production in existing rolling shops. The present study is aimed at obtaining a UFG structure by cryorolling the Al–0.6Mg–0.35Si alloy. The effect of cryorolling on the microstructure and mechanical properties of the alloy is estimated. A comparison of the micromechanical properties of the Al0.6Mg0.35Si alloy during cryorolling (CR) with the results obtained during rolling at room temperature (RTR) is given.

M. Abishkenov (e-mail: maksatabiskenov@gmail.com), Z. Ashkeyev, K. Nogaev, L. Uktayeva, S. Kydyrbayeva, G. Issabekova, Karaganda Industrial University, Temirtau, Kazakhstan; A. Naizabekov, Rudny Industrial Institute, Rudny, Kazakhstan
A billet of the Al0,6Mg0,35Si alloy was manufactured by radial shear rolling [8] and had the chemical composition Al0,6Mg0,35Si /Wt. %.

RESULTS AND DISCUSSION

The optical micrograph of the original sample is shown in Figure 2 (a). The structure contains an α-Al matrix with intermetallics. The average grain size is in the range of 50–60 µm. The grains have a hexagonal morphology with triple Y-shaped grain boundaries. Grain boundaries are highlighted in white.

Figure 2 Micrographs of the Al0,6Mg0,35Si alloy: (a) optical micrograph of the initial sample, (b) TEM micrograph of the sample after RTR, (c) TEM micrograph of the sample after CR, (d) TEM micrograph of the dislocation structure after CR

Table 1. Mechanical properties of Al0,6Mg0,35Si alloy at different processing methods

<table>
<thead>
<tr>
<th>Process</th>
<th>HV (MPa)</th>
<th>Rm (MPa)</th>
<th>Rv (MPa)</th>
<th>θ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>45 ± 2</td>
<td>78 ± 5</td>
<td>142 ± 5</td>
<td>15 ± 1</td>
</tr>
<tr>
<td>RTR</td>
<td>92 ± 2</td>
<td>233 ± 5</td>
<td>251 ± 5</td>
<td>11 ± 1</td>
</tr>
<tr>
<td>CR</td>
<td>118 ± 2</td>
<td>258 ± 5</td>
<td>293 ± 5</td>
<td>9 ± 1</td>
</tr>
</tbody>
</table>

It is noticed that, compared with the hardness of the original sample (45 ± 2 HV), the hardness after RTR and CR increased by 104,4 % (92 ± 2 HV) and 162,2 % (118 ± 2 HV), respectively. The hardness of the alloy after CR increased by 28,26 % compared to RTR. The R$_m$ of the samples increased from 78 ± 5 MPa (initial sample) to 233 ± 5 MPa in the RTR sample (an increase of 198,72 %) and to 258 ± 5 MPa in the CR sample (an increase of 230,77%). R$_v$ of alloy after CR compared to RTR increased by 10,73 %. The R$_v$ of the samples increased from 142 ± 5 MPa (the original sample) to 251 ± 5 MPa in the RTR sample (an increase of 76,76 %) and to 293 ± 5 MPa in the CR sample (an increase of...
106.34%). Alloy R_m after CR increased by 16.73% compared to RTR. Based on the decrease in the elongation values at RTR and CR (by 26.67% and 40%, respectively), we can conclude about a decrease in ductility. Low temperature annealing can be performed to increase ductility with little change in mechanical properties.

Improvement of mechanical properties is mainly associated with strain hardening or Hall-Petch strengthening, intensification of shear strains in the passes of a rolling mill, grain refinement, dislocation factors, and precipitation of hardening solid dispersed secondary phases [5]. At CR, the effect of suppressing dynamic recovery is added to these factors, which contributes to an increase in the density of dislocations, thereby also the mechanical properties.

The grain size refinement is attributed to grain-boundary strengthening or Hall-Petch strengthening. The mechanism of this hardening can be explained as follows. Before plastic deformation, there are dislocations in the grains of the material in a certain amount. During plastic deformation, these dislocations and newly formed dislocations (for example, dislocations created by Frank-Read sources) will move through the crystalline lattices of the grains to the grain boundaries, where these boundaries and their disorder impede the movement of dislocations, and they accumulate along grain boundaries.

It is important to note that recent experimental studies of nanocrystalline aluminum materials [9] have shown that the Hall-Petch relationship is not always effective; upon reaching a certain critical grain size (on the order of several tens of nanometers), a further increase in the yield stress is not observed: the yield stress remains constant or decreases (the material softens) even if the grain size decreases. This paradox is called the inverse Hall-Petch effect. Despite the fact that recently a lot of experimental and research works devoted to this effect in nanocrystalline materials have been carried out, the nature and mechanisms of this phenomenon remain insufficiently studied and require further, more in-depth studies.

CONCLUSIONS

Thus, the implementation of a full cycle of cryorolling in new gauges ensures uniform and intensive processing of the metal over the entire section, refinement of the structure to the UFG state, which is reflected in obtaining higher quality products. The cryorolling process proposed by the authors has shown its effectiveness in achieving the UFG structure. For further grinding of grains to a nanocrystalline state with an average grain size of less than 100 nm, the authors are currently developing combined methods of cryorolling with extrusion or pulling [10] to obtain long billets and with deformation in a closed die to obtain spherical billets.

REFERENCES

Note: Translated by D. Rahimbekova, Temirtau, Kazakhstan