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1 Introduction
The process of aerobic biodegradation (composting) is a 
very environmentally friendly process, especially when 
performed it in closed systems.1,2 This is reflected in sev-
eral aspects: minimal emission of greenhouse gases and 
unpleasant odours, reduction of landfill formation, de-
struction of pathogens and pests. Although the trend of de-
velopment and improvement of techniques for performing 
aerobic degradation processes in the world has reached 
a high level, it is still necessary to provide a simple tool 
that would reliably provide data during and at the end of 
the process. Maintaining composting systems near to the 
optimal conditions has been an essential part of most com-
posting system engineering design and study.3 Considering 
biological activities, composting is a complex process that 
involves many physical, chemical, and biological mech-
anisms.4 Therefore, it is necessary to develop and/or im-
prove existing mathematical models from the engineering 
aspect. Mathematical modelling and optimisation in any 
case facilitate the understanding of any process, even the 
process of aerobic degradation. The presence and activity 

of microorganisms in the process of aerobic biodegradation 
further complicates the development and optimisation of 
a mathematical model that would describe this process. 
In this case, the presence and activity of microorganisms 
can in some way be neglected by the engineering/macro 
aspect of the process. A large number of authors have ap-
plied this approach with very good results.5–7

To make the process more efficient, key parameters such 
as oxygen concentration, moisture content, pH value, etc., 
must be considered.8,9 In the last few decades, researchers 
have also dealt with the use and optimisation of kinetic pa-
rameters within correction functions (for temperature, free 
air space, moisture content, pH value, and oxygen con-
centration). General review of the correction functions was 
given by Mason.10 Only 46 % of the reviewed models by 
Walling et al.11 used one or more correction functions, and 
the number of models that implemented no type of cor-
rection was high. The most significant and most modelled 
corrective function is related to temperature, followed by 
moisture content, etc.

The increase in parameters can lead to a rise in predic-
tive uncertainty.12 Some researchers believe that correction 
functions within the model are not necessary, but their ne-
glect can lead to unreliable results, especially in the case 
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of extreme temperature during thermophilic stage. It is 
also important to mention dynamic models in which nth 
order kinetics were used (Briški et al.,13 Barneto et al.,14  
Papraćanin and Petric8). Most authors have applied first-or-
der kinetics,7,15,16 which greatly simplifies modelling, and 
the results of agreement with experimental data are very 
poor, especially when it comes to highly heterogeneous 
systems. In the case of the nth reaction order, mathematical 
models and their optimisation significantly complicate the 
solution of such systems, but the agreement of the results in 
relation to the first-order kinetics is much better.8,13,14,17–19

The aim of the present study was to modify a dynamic 
mathematical model of composting process in terms of 
optimising the kinetic parameters and correction functions 
that are built into the dynamic model. Presented model 
was fitted with experimental data for the most important 
process variables (the mass of organic matter, O2 consump-
tion, CO2 production, and temperature). In addition, to 
confirm the plausibility of describing the actual process, 
it was necessary to evaluate the model. Model evaluation 
(maximum and mean difference, R-square, root mean 
square error) was performed using experimental data ob-
tained from the experiments in identical pilot reactors with 
different composting mixtures. In order to obtain a clearer 
view of the process, all measurements of process variables 
were performed several times and at several heights of the 
pilot reactor. Sensitivity analysis, as the last phase of this 
research, was performed for eleven kinetic parameters 
(variation of ± 2 %) to obtain insights for future research, 
and determine which kinetic parameters had the greatest 
impact on presented mathematical model, and how to 
manipulate sensitive parameters.

Review of available literature revealed that very few re-
searchers had dealt with the optimisation of kinetic param-
eters in a dynamic model of the nth order, which describes 
the processes of mass and heat transfer in a three-phase sys-
tem, gas-liquid-solid. Moreover, it was necessary to check 
the stability and reliability of the mathematical model with 
appropriate statistical indicators (e.g., standard deviation, 
95 % confidence interval of parameters), independently of 
the model evaluation with experimental data, which are 
also one of the objectives and novelties of this study.

2 Materials and methods
2.1 Experimental setup

Before performing the experiment, a calculation was made 
for the preparation of a mixture of synthesized solid waste 
based on the known composition of the components (Ta-
ble  1). Experiment was performed in three identical re-
actors at the same time with mixtures of different initial 
composition.

Specially designed and prepared 57-l (operating volume is 
about 90 %) pilot reactors were used in the experiments. 
The pilot reactors were made of high density polyethyl-
ene and had the following dimensions: height 686 mm, 
outer diameter 330 mm, wall thickness 4.8 mm. The reac-

tors were thermally insulated with a layer of polyethylene 
foam (10 mm thick) on the outside of the rim and bottom 
of the reactor, as well as on the inside of the lid. The re-
actors were equipped with two air inlets via fixed taps, 
one air inlet 20  mm below and one 20  mm above the 
false bottom, to achieve the best possible aeration of the 
composting mixture. At a height of 270 mm from the false 
bottom of the reactor, was an opening 30 mm in diameter, 
which was closed with a plug, and used for taking samples 
and measuring the concentrations of carbon dioxide and 
oxygen. At the same height was an opening 30 mm in di-
ameter for thermocouples. A more detailed description of 
the reactor system can be found in the paper of Papraćanin 
and Petric.8

In all three reactors, the organic fraction of municipal solid 
waste (OFMSW), and additives: poultry manure, sawdust, 
waste yeast, and waste kieselguhr from the brewing indus-
try, were used. The role and advantages of used additives 
are generally known, except the kieselguhr. One of the 
goals of research was to examine the influence of kiesel-
guhr as an additive in the composting process.

All used waste was collected in Tuzla, Bosnia and Herze-
govina. Food waste is collected from restaurants in the Stu-
dent Center of the University of Tuzla and the main city 
market in Tuzla. Garden waste which is used in the exper-
iments collected from the city’s parks and home gardens 
in Tuzla. The paper that was used in the experiment, con-
sisting mainly used office paper collected at the Faculty of 
Technology in Tuzla. Cardboard that was used in the ex-
periment, collected from several shopping centres in Tuzla. 
Waste yeast and kieselguhr collected from Tuzla brewery. 
The role of poultry manure is to adjust the ratio of C/N, 
and to act as inoculum. Poultry manure was collected from 
a chicken farm. Sawdust is added to increase aeration of 
mixture in reactors, while waste yeast was added to adjust 
the moisture content and C/N ratio.

Basic physical and chemical characteristics of the materials 
used in the three reactors are shown in Table 1.

Standard methods were used to determine moisture con-
tent, organic matter, and pH (Austrian Standard20). Rep-
resentative samples of mixtures for determining the mass 
of organic matter, moisture content, and pH value were 
taken every 24 h with 3 replications. Nitrogen content was 
performed by the Kjeldahl method (at the beginning and 
end of process), and the concentrations of carbon dioxide 
and oxygen were measured every 24 h with Infrared Gas 
Analyser MGA5, VarioPlus Industrial (MRU GmbH, Ger-
many). The concentrations of carbon dioxide and oxygen 
were measured four times (daily) at different heights: out-
let, top, middle, and bottom of reactors. After daily mixing, 
samples were taken from different heights (490 mm-top, 
270 mm-middle, and 50 mm-bottom of the reactors, three 
samples from each height) in order to obtain a represent-
ative sample. Moisture content was analysed by dry oven 
method at 105 °C for 24 h (APHA21). The organic matter 
(OM) content (volatile solids) was determined after burn-
ing in an oven at 550 °C for 6 h.21 Conversion of organic 
matter (%) was calculated from the initial and final organic 
matter mass, according to the literature.9,22
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Table 1 – Basic physical and chemical characteristics of 
OFMSW and additives (three replicates, mean value 
± standard deviation)

Tablica 1 – Osnovne fizikalne i kemijske značajke OFMSW-a i 
dodataka (tri ponavljanja, srednja vrijednost ± stan-
dardna devijacija)

  MC ⁄ % w.b. OM ⁄ %
d.b. pH C/N

OFMSW 72.44 ± 0.41 88.17 ± 0.21 6.70 ± 0.07 52.73 ± 0.45
poultry 
manure 77.03 ± 0.86 75.13 ± 0.56 7.53 ± 0.04 5.83 ± 0.37

sawdust 10.03 ± 0.34 99.90 ± 0.25 5.31 ± 0.05 77.19 ± 0.67
waste 
yeast 95.61 ± 0.12 91.55 ± 0.20 6.46 ± 0.02 21.19 ± 0.35

kieselguhr 69.06 ± 0.48 10.47 ± 0.41 5.39 ± 0.11 11.36 ± 0.23
MC – moisture content; OM – organic matter content; w.b. – wet base, 
d.b. – dry base

The basic material used in the experiment was an organic 
fraction of municipal solid waste (OFMSW) that was syn-
thesized by mixing foodwaste, paper, cardboard, and gar-
den waste. After calculating the composition of the mix-
tures, individual components such as paper, cardboard, 
twigs, and other garden waste were crushed and mixed. 
Composition of synthesized OFMSW used in all three re-
actors was 25.5 % paper and cardboard, 10.8 % garden 
waste, and 63.7 % food waste. Synthesized waste was used 
to prepare three composting mixtures. Mixture 1 (M1) was 
prepared from 66.65 % OFMSW and 33.35 % additives 
(8.9 % poultry manure, 6.66 % sawdust, and 17.79 % kie-
selghur). The total amount of synthesized mixture in the 
reactor was 24  kg. Mixture 2 (M2) was prepared in the 
ratio 68/32, using additives poultry manure (9.2 %), saw-
dust (4.4 %), waste yeast (9.2 %), and kieselghur (9.2 %). 
The amount of mixture M2 was 25.24 kg. The percent-
age composition of mixture 3 (M3) was 73 % MSW and 
27 % additives (7.3 % sawdust, 4.9 % poultry manure, and 
14.8 % kieselghur), with the total amount of mixture being 
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Fig. 1 – Schematic diagram of reactor system for aerobic composting (1 – air compressor, 2 – airflow meter, 3 – reactor, 4 – gas analys-
er, 5 – thermocouple, 6 – laptop, 7– gas-washing bottles with solution of boric acid, 8 – gas-washing bottle with solution of 
sodium hydroxide, 9 – holes for sampling, and 10 – acquisition module.

Slika 1 – Shematski dijagram reaktorskog sustava za aerobno kompostiranje (1 – kompresor zraka, 2 – mjerač protoka zraka, 3 – re-
aktor, 4 – analizator plina, 5 – termoelement, 6 – prijenosno računalo, 7 –boca za pranje plina s otopinom borne kiseline, 
8 – boca za pranje plina s otopinom natrijeva hidroksida, 9 – rupe za uzorkovanje, 10 – modul za prikupljanje).
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20.5 kg. Mixtures that were synthesized in different pro-
portions were prepared in order to obtain large number 
of data experimentally, which would later be used for ver-
ification and evaluation of the mathematical model pre-
sented in 2.1. Table 2 shows basic physical and chemical 
characteristics of the mixtures in the three reactors. Fig. 1 
shows a schematic view of the reactor with auxiliary equip-
ment for the process of aerobic degradation.

Table 2 – Basic physical and chemical characteristics of the 
mixtures in the three reactors

Tablica 2 – Osnovne fizikalne i kemijske značajke smjesa u trima 
reaktorima

Reactor mixture MC ⁄ % w.b. OM ⁄ % d.b. pH C/N
M1 67.13 83.09 7.10 43.70
M2 59.53 79.30 7.36 40.40
M3 62.35 82.35 7.32 34.50

MC – moisture content; OM – organic matter content; w.b. – wet base, 
d.b. – dry base

The airflow (0.4 l min−1 kgOM
−1) was calculated by weight 

of organic matter in accordance with the reference recom-
mendations.9,23 Measurement of airflow before entering 
the reactors was performed with rotameters (Cole-Parm-
er, USA). The temperature in the reactors was measured 
automatically (h  =  0.5  min) for the entire duration of 
the experiment using thermocouples (type T, Digi-Sense, 
Cole-Parmer, USA), which were connected to a portable 
computer via the acquisition module (Nomadics, USA). 
The temperature was also measured at three different 
heights: 490 mm-top, 270 mm-middle, and 50 mm-bot-
tom of the reactor. The ambient air temperature in the 
laboratory during the experiment was 22.5 ± 2.5 °C. The 
experiment lasted 15 days.

2.2 Development of mathematical model 
and assumptions 

The mathematical model of the composting process pre-
sents the basic principles of process kinetics, the processes of 
mass and heat exchange in a system of three phases: liquid 
phase, solid phase, and gaseous phase. In the liquid phase, 
the processes of gas diffusion take place continuously, which 
occur during the process of organic matter decomposition, 
as well as the diffusion of oxygen that is supplied with air. 
The most important state variables for the composting pro-
cess are solid-liquid phase temperature, moisture content, 
and oxygen concentration. The percentage of organic mat-
ter decomposition and thus the concentration of carbon 
dioxide and other gases depend on the mentioned state 
variables. The airflow in this process has a multiple role; in 
addition to providing the oxygen necessary for decomposi-
tion, the air also dissipates the excess heat generated by the 
decomposition reaction. In one part, the air has the function 
of removing moisture, i.e., drying the substrate, because 
the water vapour continuously condenses and creates ex-

cess moisture in the substrate, which can significantly slow 
down the process, and ultimately stop because anaerobic 
conditions are created. The differences between the inlet 
and outlet oxygen concentrations in the air are minimal and 
assume that the oxygen concentration inside the reactor is 
spatially equal. In that case, the reactor model can be ap-
proximated by a plug flow reactor model in unsteady-state 
operation. The model analyses the following heat transfers: 
heat transfer due to bioreaction, heat transfer from the re-
actor to the environment, convective heat transfer between 
phases, and heat transfer during water evaporation. The as-
sumption regarding uniform temperature comes from the 
fact that there is small or no resistance to heat transfer from 
the compost matrix to the air in the reactor.24,25

The following assumptions were taken into account while 
developing the model:8

1. Volume of gas phase in reactor is constant;
2. Pressure in system (reactor) is constant;
3. Gas phase is saturated with water vapour and  

airflow is constant;
4. Liquid-solid phase and gas phase have same 

temperatures;
5. Substrate is a homogeneous mixture of uniform 

composition at beginning of process.

The rate of composting is expressed as the rate of organic 
matter decomposition and can be described using the fol-
lowing expression:

OM
OM

d
d

nm k m
t

= − ⋅ (1)

where mOM is mass of organic matter (kg), t is time (h), n 
represents the reaction order, and k is reaction rate con-
stant (kg1−n h−1). The rate constant is a function of tempera-
ture, oxygen, pH, moisture, and free space for air:26

2 2T O pH H O FASk k k k k k= ⋅ ⋅ ⋅ ⋅ (2)

Parameters in these functions (Eq. (2)) present the focus of 
this work. The expressions of the mentioned functions are 
described below.

For the temperature correction function, a modified Arrhe-
nius expression was used:8,26,27

(3)

where α = A and β = E/R are kinetic constants that need 
to be determined, together with the reaction order n in 
the Eq. (1), A is frequency factor (units depending on the 
order of reaction), T is thermodynamic temperature of the 
substrate (K), E is activation energy (J kmol−1) and R the 
universal gas constant (J kmol−1 K−1).

The following term was used for oxygen correction:7

2

2 2

2
O

O (0) O 2

O
( O )

k
k K

=
⋅ + (4)

where O2 is oxygen concentration (%, v/v), kO2(0) presents 
the correction for oxygen concentration of the oxygen in 
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the atmospheric air (20.95 %, v/v), and KO2
 is half rate con-

stant for oxygen (%, v/v). This function is one of the most 
commonly used functions for oxygen correction.11

For moisture correction function, the following equation 
was used:22

2 mH O 17.684 (1 ) 7.0622
1

e 1Sk − ⋅ − +=
+

(5)

Eq. (5) was modified as:

(6)

where Sm is fractional dry matter content of the composting 
material, and γ and ∆ are constants.

The Eq. (7) relates to free air space correction function.22

FAS 23.675 FAS 3.4945
1

e 1
k − ⋅ +=

+
(7)

The proposed form of this function is:

(8)

where χ and ω are constants.

For the known initial elementary composition of the sub-
strate, organic matter degradation in the substrate can be 
calculated using the following equation:22,24

2 2 2 3
4 2 3 3C H O N O CO H O NH

4 2a b c d
a b c d b da d+ − − − + → + + 

 
(9)

This expression is also used to calculate theoretical stoichi-
ometric coefficients for water vapour, oxygen, and ammo-
nia. Only stoichiometric coefficient for CO2 (yCO2

)was not 
calculated using this formula. The reason for this was the 
significant deviations in the verification of the model by ex-
perimental data and the heterogeneity of the composting 
mixtures used in experiments. Stoichiometric coefficient 

for CO2 exists in the relation of mass balance of CO2 dis-
solved in water:

(10)

wherein kLaCO2
 – mass transfer coefficient for CO2 

(kg h−1
 Pa−1), HeCO2

 – Henry's constant for CO2 (Pa), fCO2
 – 

gas dissociation factor of CO2 in aqueous solution (–), XCO2
 

– molar fraction of CO2 dissolved in water (–), pCO2
 – partial 

pressure of CO2 in the gas phase (Pa). 

The literature review showed that one of the problems af-
fecting the simulation of the composting process was the 
value of the amount of heat dissipated into the environ-
ment through the walls of the reactor. Since this was a re-
actor system in which an exothermic reaction would take 
place on the one hand, while on the other hand, the reac-
tor was located in a space where variations in temperature 
would occur (depending on atmospheric conditions), it 
was necessary to correct/obtain the conductive-convective 
amount of heat lost in the environment. The relation de-
scribing temperature of the solid–liquid phase, in this case, 
was described by the following relation :

(11)

where T
cQ  is heat transferred by convection, cpw, cpOM and 

cpNT are specific heat capacities of water, organic and in-
organic matter, respectively; ( )ih T  and  are molar 
enthalpies of gas at temperature of solid–liquid and gas 
phase, respectively. Qcv is the heat transfer through the re-
actor walls and QG is the biochemical heat generation.

Table  3 shows the differential equations built into the 
presented mathematical model and used to calculate the 
amount of dissolved gases in the composting material, the 
amount of gases in the gas phase, the temperature of the 
gas phase, etc. All other details of the mathematical model 

Table 3 – Differential equations
Tablica 3 – Diferencijalne jednadžbe

Description Equations

Equation for calculating dissolved gases (CO2, O2, and NH3) in 
water of a composting material (three differential equations).

Equation for calculating the mass of water  
in a composting material.

Equation for calculating the amount of gases in gas phase (five 
differential equations).

Equation for calculating gas phase temperature.
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(description; assumptions and simplifications; other sup-
porting algebraic equations, explanations) can be found in 
the literature.8,18

2.3 Numerical methods for optimisation and simulations

The proposed mathematical model describes twelve dy-
namic state variables (nonlinear differential equations). 
Other equations of the mathematical model, some of 
which are described in Section 2.1, are algebraic linear 
and nonlinear. These equations describe the kinetic rela-
tions, the functional dependences of individual parameters 
on the temperature, and composition of the substrate, fol-
lowed by the molar flows of the gas phase, flows during the 
transfer of mass from liquid to gas phase, etc.

Given that the proposed mathematical model was impos-
sible to solve analytically, the proposed model was imple-
mented in a numerical software package Matlab. Optimisa-
tion of kinetic parameters was performed by the Marquardt 
method,28 which applies the Gauss-Newton technique, to-
gether with multivariate nonlinear regression analysis, i.e., 
interpolates between the Gauss-Newton algorithm (GNA) 
and the decreasing gradient method.29 The parameters 
were simultaneously calibrated by minimising the error of 
the model concerning the experimental data based on the 
objective function (Eq. 12), using the Levenberg–Marquardt 
algorithm to solve the nonlinear least-square problem with 
a parameter tolerance of 1e–6 in MATLAB. 

This algorithm is one of the most commonly used algo-
rithms for optimisation of nonlinear systems. As a criterion 
for matching the values obtained by numerical optimisa-
tion and experimental data, the following objective func-
tion was taken:

2

,model ,exp
1 1

m n

j ij ij
j i

F W Y Y
= =

= −∑∑ (12)

where Wj is weight coefficient, Yij,model is value of dynamic 
state variables obtained by the model, and Yij,exp represents 
value of dynamic state variables obtained experimentally.

The relative importance of the variables was expressed by 
applying the appropriate weighting coefficients:

2

,exp exp

2

,exp exp1 1

1

1 1
ij j

j

v n

i ij j
i i

Y Y
W

n Y Y
= =

−
=

⋅

−∑ ∑

(13)

expjY  is mean value of the state variable obtained experi-
mentally, ni is number of experimental data for each varia-
ble, and v is number of variables to be adjusted.

Using experimental data (mass of organic matter, oxygen 
consumption, carbon dioxide production, and tempera-
ture, at different heights in the pilot reactor), 11 kinetic and 
other parameters were estimated, and shown in Table 4.

Table 4 – Parameters in model for optimisation
Tablica 4 – Parametri u modelu za optimizaciju

No Parameter Equation 
1 α (3)
2 β (3)
3 n (1)
4 YCO2 (10)
5 Qc (11)
6 kO1(0) (4)
7 KO2

(4)
8 γ (6)
9 ∆ (6)

10 χ (8)
11 ω (8)

In the MATLAB, a main file and three sub-routines, as well 
as one file with experimental values of the dynamic state 
variables were created. The main program was used to call: 
experimental data required for optimisation, vector of ini-
tial conditions for independent and dependent variables, a 
vector of initial assumptions of parameters that need to be 
optimised. The main program also performed a statistical 
analysis by calling one of the routines for Statistics (stand-
ard deviation and 95 % confidence interval), and gave the 
output of the optimisation results numerically and graph-
ically. Calculation of the correlation coefficients between 
the parameters was performed within the statistical anal-
ysis in MATLAB. For model evaluation, R-square (R2) and 
root mean square error (RMSE) were also calculated.28,29 
For numerical solution of system of differential equations 
(numerical simulations), ODE23s solver, modified Rosen-
brock method,30 and STIFF method were used.31 Sensitiv-
ity analysis was performed by parameter variations (± 2 %) 
around their optimal values, and by monitoring their in-
fluence on selected objective functions (maximum organic 
matter conversion, minimum O2 concentration, maximum 
CO2 concentration, and maximum substrate temperature). 
Simulations were performed in MATLAB. 

3 Results and discussion
3.1 Parameter estimation

The most complex mathematical models incorporate the 
solid phase in the water film covering the particles, and its 
solubilisation.32 Additional model complexities have been 
found in the case of integrated dynamic models describing 
mass and heat exchange, including kinetics in a solid-liq-
uid-gas system. Simple models based on kinetics and mass 
change process offer only a partial insight into the mech-
anisms that take place during the biodegradation process. 
Composting models with certain correction factors (tem-
perature, humidity, oxygen, and free air space) offer a tool 
for dynamically understanding the mechanism of heating 
up and thermal equilibrium as a process.22 Mathemati-
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cal composting process models help predict how control 
measures impact various process conditions such as pol-
lution, length of the composting regime, temperature, and 
compost characteristics themselves during the process.33 
On the other hand, solving such complex mathematical 
problems requires certain knowledge and tools. The selec-
tion of software and appropriate numerical methods facil-
itate researchers’ efforts in obtaining relevant information.

To solve the model, it was necessary to enter the vector 
of the initial values of the measured variables, as well as 
the values of these variables during the process. Experi-
mental values were required to calculate the value of the 
objective function (Eq. 12) for optimising the parameters. 
Experimental data from reactor 1 (M1) were used as ini-
tial values of the dynamic variables in the model, and to 
estimate the kinetic parameters. Data selection for the 
kinetic parameters estimation was performed by random 
selection because the model needs to be verified with the 
remaining data, so it does not matter which data were used 
for the estimation. Vector of initial data for experimen-
tally measured variables: mass of organic matter 6.3  kg, 
mass of water in reactor 11.35 kg, amount of O2 and CO2 
5.84 ⋅ 10−5, 5 ⋅ 10−6 kmol, respectively, and mixture tem-
perature 295 K. Estimated values and statistical analysis of 
parameters are given in Table 5. The values shown in Ta-
ble 5 were obtained in Matlab. Table 5 shows the values 
for the 95 % confidence interval for each estimated pa-
rameter (lower and upper values). The estimated parame-
ters with a lower value of the standard deviation generated 
narrower confidence intervals. The narrower the interval, 
the more precise is the estimate. Most of the eleven esti-
mated parameters have very narrow confidence intervals, 
only parameters γ, ∆, and χ have slightly wider confidence 
intervals.

As seen from Table 4, the optimised reaction order value 
is ≈ 1.9. This value is consistent with the results obtained 
in paper of Briški et al.13 and Papraćanin and Petric.8 The 

nth order model was proposed based on the fact that the 
organic waste used for the composting process consisted 
of a large number of organic compounds that decompose 
at different rates (kinetics with a different reaction order). 
Since the composition of organic waste included carbohy-
drates, lipids, lignin, cellulose and hemicellulose, it may-
be concluded that these were compounds with different 
properties and thus different degrees of decomposition 
during the process. The obtained value of activation ener-
gy (Eq. (3)) was 37.78 K J mol−1. In the paper by Xi et al.34, 
household waste and microbiological kinetics were used, 
and the obtained activation energy value was 29 K J mol−1. 
Most authors have mainly dealt with the optimisation of 
parameters in the model, mainly in models with first-or-
der kinetics. Hamelers35 concluded that modelling of the 
process by nth order kinetics should be considered because 
significant changes in the activation energy occur during 
the process. Obtained value of the stoichiometric coeffi-
cient for CO2 was higher relative to the theoretically calcu-
lated value from relation 9 (calculated value 1.86). When 
it comes to heat exchanged by conduction, the value ob-
tained in this paper is also consistent with the results of 
other researchers.36 Among other parameters, which exist 
in the corrective functions in relation (4), obtained values 
were significantly different from the values obtained by 
Baptista et al.7 Value obtained for the correction of oxygen 
concentration in atmospheric air was 0.96 (Table 4). As the 
authors noted, this value was obtained by varying the tem-
perature and moisture content, and represents the mean 
value obtained in previous studies. That is, the KO2 value 
was obtained independently of the integrated model and 
experimental data. As previously described, several correc-
tive functions were included in this study, where the opti-
misation was performed based on the experimental data in 
the integrated model. Other parameters have approximate 
values given in the original research. 

In addition, as a measure of model performance, root 
mean square error (RMSE) was calculated.37 RMSE for the 

Table 5 – Estimated values of parameters in model and statistical analysis
Tablica 5 – Procijenjene vrijednosti parametara u modelu i statistička analiza

No. Parameter Value Unit Standard 
deviation

95 % confidence interval
Lower value Upper value

1 α 1.2688 ⋅ 10−5 kg−0.5 ⋅ h0.5 7.66 ⋅ 10−7 1.1228 ⋅ 10−5 1.4244 ⋅ 10−5

2 β 4544.1 K−1 70.5 4401.4 4678.6
3 n ≈1.9 – 0.0262 1.6469 2.1039
4 YCO2 3.1716 kgCO2

 kgOT
−1 0.1022 2.9621 3.3644

5 Qc 1753.3 J kgOM
−1 23.3 1704.2 1795.8

6 kO2(0) 0.1554 – 0.0134 0.1291 0.1816
7 KO2

0.8683 %, v/v 0.2703 0.3718 1.3648
8 γ 17.795 – 3.677 11.539 24.050
9 ∆ 6.8565 – 1.4066 4.0890 9.6240

10 χ 23.671 – 2.793 18.156 29.147
11 ω 3.5040 – 0.1765 3.1568 3.8512

SD = 0.3378
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mass of organic matter was 0.23 kg, O2 consumption and 
CO2 production was 1.96 ⋅ 10−6 and 4.17 ⋅ 10−7 kmol, re-
spectively, and RMSE for temperature was 0.32. The root 
mean square error was calculated for the experimental data 
used to estimate the parameters and output of the model. 
The range of measured values were as follows: mass of 
organic matter from 6.3 to 4.4 kg, amount of O2 and CO2 
5.84 ⋅ 10−5 − 3.53 ⋅ 10−5, 5 ⋅ 10−6 − 2.2 ⋅ 10−5 kmol, re-
spectively, and mixture temperature from 295 to 331.7 K. 
Based on these values, it may be concluded that RMSE 
indicates a good accuracy of estimation. The number of 
models that did not implement any type of correction was 
high.11 The reason being that the aim was a model with a 
minimal amount of parameters, and operation at non-opti-
mal conditions. The focus of this paper were the corrective 
functions that mitigate the extreme phenomena occurring 
in the process and during the simulation of the composting 
process.

3.2 Model evaluation

Simulation models are approximate imitations of real sys-
tems, which can never exactly imitate the real system. 
Therefore, the model should be checked and validated to 

a certain extent, depending on the purpose and applica-
tion of the model.38

As Roache39 stated: “Verification deals with mathematics”. 
Validation addresses the accuracy of the conceptual model 
as compared to the “real world”, i.e., experimental meas-
urements.40 In order to evaluate the proposed model, nu-
merical simulations were performed in which data for M2 
and M3 were used as initial values in the model. Figs. 2 
and 3 show the results of numerical simulations and ex-
perimental data during 360 h. Since the equality between 
the temperature of the liquid and gas phases was used as a 
constraint in the model (due to the rapid heat exchange), 
the evaluation was performed for the bulk temperature. 
Figs. 2 and 3 show the experimental data as the mean val-
ues at three different heights in the reactor (three repli-
cations each) along with the standard deviation (SD). The 
exception is the bulk temperature, since a large number of 
measurements were performed so that the data for each 
height are displayed.

Figs. 2a) and 3a) show the verification of the model for ox-
ygen consumption. The agreement of the model is better 
in the case of data simulation for M2, where the highest 
oxygen consumption was experimentally achieved after 

Kom,exp

Kom,sim

Fig. 2 – Model verification for M2: a) O2 (vol.%); b) CO2 (vol.%); c) bulk temperature (K); d) conversion of organic matter (%). Marks 
sim and exp indicate data obtained by simulation or experimentally. Indexes: bottom, middle, and top, indicate position in 
the reactor at which the temperature was measured.

Slika 2 – Verifikacija modela za M2: a) O2 (vol. %); b) CO2 (vol. %); c) temperatura smjese (K); d) pretvorba organske tvari (%). Ozna-
ke sim i exp ukazuju da li su podatci dobiveni simulacijama ili eksperimentalno. Indeksi bottom, middle i top, označavaju 
da li je temperature izmjerena na dnu, sredini ili vrhu reaktora. temperatura.
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120  h (12.43  % O2) compared to the model where the 
highest oxygen consumption (13.82 % O2) was observed 
after 84 h. Based on these values, it maybe concluded that 
after 84 h, the maximum degradation of easily degrada-
ble organic substances began, but this can be determined 
with certainty by taking into account other characteristics 
of process variables. For the case of M3 mixture, both the 
model and the experiment showed the highest oxygen 
consumption over 96 h, although the maximum difference 
in this case was 2.27 %. Also noticeable is that the model 
showed a higher degradation after reaching the maximum 
difference compared to the experimental data, which in-
dicated that the composting process was very close to the 
end (the value of oxygen concentration approached the 
value of 21 vol.%). The mean difference value for M2 was 
1.19 %, while that for M3 was 1.34 %. It is important to 
note that the presented experimental data were measured 
at three different heights in the reactors and the reactor 
outlets (for both O2 and CO2), and that the highest values 
for SD were in the period of maximum degradation and 
activity of microorganisms. After reviewing the literature, 
most researchers verified the model with data measured at 
the reactor outlet or near the top of the reactor, with better 
agreement in some cases.17,41,42 Since O2 and CO2 concen-
trations were measured not only at the top of the reactors, 

but also at the bottom of the reactors, where there was 
very little space for airflow and gas retention, very low con-
centrations were obtained, which significantly increased 
the standard deviation from the output of the model. As 
carbon dioxide production is directly related to oxygen 
consumption, the deviations related to the amount of 
produced carbon dioxide are related to the deviations ob-
served for oxygen consumption. The maximum difference 
for M2 was 1.25 %, while for M3 it was 1.9 % (Figs. 2b) 
and 3b)). One of the reasons for the better data agreement 
may be the composition of mixture M2, in which waste 
yeast was added (see section 2.2) unlike the M3 mixture. 
Waste yeast is rich in nitrogen and has high water content, 
so it can contribute to improving the characteristics of the 
composting mixture and significantly speed up the process. 
Heterogeneous systems such as substrate used in this study, 
are difficult to describe with constant values of stoichio-
metric coefficients for the whole process. In the proposed 
model, the value of the stoichiometric coefficient for CO2 
was adjusted, which still indicated insufficient agreement 
with the experimental data. Since gas accumulation occurs 
at the top of the reactor (free air space, FAS), the actual 
concentration of O2 consumption and CO2 production is 
lower, as the model shows. The continuous formation and 
dissolution of gases in water take place within the mix-

Kom,sim

Kom,exp

Fig. 3 – Model verification for M3: a) O2 (vol. %); b) CO2 (vol. %); c) bulk temperature, K; d) conversion of organic matter, %. Indexes 
sim and exp indicate data obtained by simulation or experimentally. Indexes: bottom, middle and top, indicate position in 
the reactor at which the temperature was measured.

Slika 3 – Verifikacija modela za M3: a) O2 (vol. %); b) CO2 (vol. %); c) temperatura smjese, K; d) pretvorba organske tvari, %. Indeksi 
sim i exp ukazuju na to da su podatci dobiveni simulacijama ili eksperimentalno. Indeksi dno, sredina i vrh, označavaju mje-
sto u reaktoru na kojoj je izmjerena temperatura.
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ture, so the amount of gases in the mixture should be tak-
en into account. In addition, it should be emphasised that 
the trend of O2consumption or CO2 production shown by 
the model was almost identical to the experimental data. 
Experimental data for temperature (Figs. 2c) and 3c)) show 
a logical trend in reactor heights. Similar results have been 
reported in the literature.43 Also, in the mentioned paper, 
the equality of gas-phase temperatures and bulk temper-
atures was observed, as is the case in this research. Since 
fresh ambient air was continuously introduced to the 
bottom of the reactor, the lowest temperature value was 
expected to be at the bottom of the reactor, because the 
cooling of the system, in this case, was more intense com-
pared to the other parts of the reactor. The temperature 
profiles were higher towards the top of the reactor. The 
model showed no “sharp” peak in temperature, but the 
appearance of milder curve, without the classical peak, 
which was characteristic of models that use the Arrheni-
us correction function. The temperature profile obtained 
by numerical simulations showed the trend of the aero-
bic decomposition process as reported in the literature.44 
The model predicted slightly slower cooling than did the 
experimental data. A similar observation has been report-
ed,32,45 but the deviations in their work were much higher. 
In both cases, the experimental temperature data showed 
two “peaks”, with the appearance of the M3 curves being 
somewhat milder and visually more similar to the mod-
el, except for the temperatures measured at the bottom 
of the reactor. In addition, when it comes to the data for 
M3 measured at the top and in the middle of the reac-
tor, the obtained values were in accordance with the data 
obtained by the simulation. The difference in maximum 
temperatures was 0.185 K (compared to the mean value 
of the temperatures measured at the top and in the middle 
of the reactor), while the maximum difference at the end 
of the process (360 h) was 11.9 K. For M2, the deviations 
were slightly greater, and the difference in maximum tem-
peratures was about 9  K, which was also the maximum 
difference. Such deviations between M2 and M3 can be 
explained by the amount of substrate in the reactors. The 
mass of mixture M2 was significantly higher compared to 
M3 in a reactor of the same dimensions, indicating that the 
mass in the second reactor was much denser, i.e., that the 
aeration was weaker compared to the third reactor (M3). 
In this case, the cooling of the mass was much slower and 
higher temperatures had occurred. It is also important to 
point out once again that the optimised parameters in the 
proposed model were obtained based on the mean values 
measured at different heights in the reactors, which cer-
tainly leaves room for better insight into the processes tak-
ing place in the reactors. Larger deviations were expected 
in the case of temperatures, precisely because the simulat-
ed data were verified by data from three heights, individu-
ally and not as a mean. Regardless of these discrepancies, 
these results are consistent with previous research that had 
significantly more limitations in the proposed models and 
experimental data.12,46 Table  6 shows the values of the 
maximum and mean differences between the model and 
the mean values of the measured temperatures.

Achieving maximum temperatures is the basis for the ef-
ficiency of the composting process, and significantly con-
tributes to high decomposition rates during the compost-

ing process. On the other hand, during the thermophilic 
decomposition period, the destruction of most pathogens 
occurs.47 In order to evaluate the model, RMSE was calcu-
lated and the values are shown in Table 7.

Table 7 – Calculated RMSE values for model evaluation with 
independent data

Tablica 7 – RMSE vrijednosti evaluacije modela neovisnim po-
datcima

Variable 
RMSE

M2 M3
mass of organic matter ⁄ kg 0.20 0.21
O2 consumption ⁄ vol% 1.17 3.29
CO2 production ⁄ vol% 1.05 1.18
temperature ⁄ K 2.89 2.21

The square error between the data for M2 and the out-
put of the model was R2 = 0.91, while the square error 
for the case of mixture M3 was R2 = 0.72. As mentioned 
previously in this section, the better data agreement of M2 
mixture was probably due to the initial composition of the 
composting mixture. The M2 mixture was prepared in a 
smaller ratio of OFMSW and additives, and additives were 
used in a ratio of 1 : 1 : 1 (see section 2.2).

Comparisons of the experimental data and numerical 
simulation results (Figs. 2d) and (3d) for the conversion of 
organic matter, given the fact that the mixtures used for 
composting were very heterogeneous, show excellent 
agreement. In both cases, the model follows the degrada-
tion trend in accordance with the experiment, with the 
model showing a higher decomposition of organic matter. 
Modelling with nth order kinetics offered significantly better 
results regarding the decomposition of organic matter from 
the point of view of biochemical processes that take place. 
This has been confirmed by Zhang et al.48 and Kulcu.49

Modelling of food waste composting processes is essential 
for supporting the prediction of system performance under 
various operating conditions, and thus quantifying relation-
ships between control actions and process efficiencies.50

The fact that the model well described experimental data 
confirmed that the model was valid for use indifferent ex-
perimental conditions, which is one of the goals of math-
ematical modelling. With small modifications, referring to 
the initial conditions, this model can successfully simulate 

Table 6 – Maximum and mean temperature difference (K)
Tablica 6 – Maksimalna i srednja temperaturna razlika (K)

Bulk temperature difference ⁄ K
max mean

M2 3.86 1.93
M3 4.02 2.74
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the process of degradation of organic solid waste with dif-
ferent additions. The results showed that the used volume 
of pilot-scale reactor with provided thermal insulation al-
lowed self-heating of the substrate, and thus the simulation 
of full-scale composting.

3.3 Sensitivity analysis

The sensitivity analysis was performed by variation of ob-
tained parameters (see Table 5) of ± 2 % of their optimal 
value. Since the statistical analysis of parameter estima-
tion (Table 5) showed reliable values for most parameters, 
no greater deviations of the parameters (e.g. ± 5 %) were 
necessary in order to determine their impact on objective 
functions. In case of parameter variations of ±  1  % not 
yielding a noticeable influence on the selected objective 
functions, the value of 2 % was chosen.

As objective functions, maximum conversion (Kom), max-
imum consumption of O2, maximum production of CO2, 
and maximum temperature were selected. Table 8 shows 
the results of the sensitivity analysis.

As maybe seen, the most sensitive parameter was reaction 
order n, followed by activation energy E, and coefficient 
A. Parameters E and A exist in the expression for temper-
ature correction, and together with the reaction order, 
most affect the speed of the decomposition process. Ta-
ble  8 also reveals that the variation of these parameters 
had the greatest effect on the conversion of organic matter 
and temperature, and less on the concentrations of oxygen 
and carbon dioxide. It is also noticeable that some param-
eters had no or very little effect on the selected objective 
functions, and these parameters could be omitted in some 
future research in terms of optimising their values. One of 
the parameters that had no effect on the model was the 

Table 8 – Sensitivity analysis of the model
Tablica 8 – Analiza osjetljivosti modela

Parameter Change ⁄ %
Variation

Kom ⁄ % O2 ⁄ vol.% CO2 ⁄ vol.% T ⁄ K
A ±2 −0.69/0.70 0.20/−0.20 −0.19/0.18 −0.79/0.78

E/R ±2 −0.77/0.72 0.27/−0.23 −0.24/−0.23 −1.00/0.90
n ±2 −2.26/2.16 0.77/−0.62 −0.69/−0.62 −2.83/2.47

Yco2 ±2 0.01/−0.01 0.01/−0.01 0.01/−0.01 0.03/−0.03
Qc ±2 0.20/−0.21 0 0 0.40/−0.41

kO2(0) ±2 0.67/−0.72 0 0 0.74/−0.82
KO2

±2 0.07/−0.10 0 0 0.09/−0.12

α ±2 −0.10/0.09 0.03/−0.03 −0.03/0.02 −0.12/0.12

β ±2 0.05/−0.06 0 0 0.06/0.00
γ ±2 −0.01/−0.00 0 0 0.01/0.00
∆ ±2 −0.01/−0.01 0 0 −0.01/−0.01

Table 9 – Matrix of correlation coefficients for model parameters
Tablica 9 – Matrica koeficijenata korelacije za parametre modela

Parameter 
α 1
β 0.38* 1
n −0.38* −0.34* 1

Yco2 −0.06 0.00 0.26 1
Qc 0.31* 0.40* −0.82*** −0.32* 1

kO2(0) 0.00 −0.29 0.78*** 0.11 −0.71** 1
KO2

0.51** 0.90*** −0.22 −0.02 0.30 −0.15 1
γ −0.82*** −0.31* 0.11 −0.19 −0.07 0.03 −0.42* 1
∆ 0.01 −0.78*** 0.21 0.04 −0.28 0.21 −0.77*** −0.16 1
χ −0.48* −0.62** 0.09 0.06 −0.22 −0.11 −0.73** 0.19 0.46* 1
ω 0.42* 0.18 −0.50* −0.08 0.45* −0.56** 0.14 −0.52** 0.13 −0.02 1

* poor correlation (positive or negative); ** moderate correlation (positive or negative); *** very good to excellent correlation (positive or negative)
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stoichiometric coefficient for CO2. A potential parameter 
that causes sensitivity of the model is a constant half-veloc-
ity for oxygen, which should be considered in the future. 
The results of the sensitivity analysis are consistent with the 
research (Zhang et al.,51 Petric et al.,19 Papraćanin52).Table 9 
shows the values of the correlation coefficients of the opti-
mised parameters. These values are shown in order to ob-
tain information of the interaction among parameters for 
p > 0.05, since a local sensitivity analysis was conducted 
in the study. There is a strong correlation between several 
parameters (n and Qc, Ko2 and Qc) apropos, simultaneous 
parameter variations need to be performed. For example, 
a strongly negative correlation between the reaction order 
n and the heat transferred by convection Qc indicates that 
it is necessary to increase the reaction order and decrease 
the heat transferred by convection, and vice versa. In the 
future, influence of simultaneous variations of parameters 
with a strong correlation coefficient on selected objective 
functions, e.g., maximum conversion of organic matter, 
need to be investigated.

This indicates the need to perform a global sensitivity anal-
ysis in future research.

4 Conclusions 
A novelty in this paper is the optimisation of a large num-
ber of kinetic and other parameters in an integrated dy-
namic model, including the reaction order, stoichiometric 
coefficient, etc., where a large amount of experimental 
data were used to verify the model. Simplifications and 
limitations in the proposed model were minimised, and 
the parameters fitted with experimental data for several 
dynamic state variables. The experiments were performed 
in detail and with a large number of measurements (in 
time and space). Detailed statistical analysis showed good 
parameter estimation based on 95 % confidence interval 
values. Verification and validation of the model showed 
good agreement with independent experimental data. The 
advantage of this model is reflected in the fact that, with 
small changes, which refer to the initial conditions, it can 
successfully simulate the process of decomposition of or-
ganic solid waste with various additives. Sensitivity analysis 
of parameters showed that reaction order n, E, and A, were 
the most sensitive parameters based on the maximum con-
version, maximum consumption of O2, maximum produc-
tion of CO2, and maximum temperature. The model is very 
effective in simulating the composting process, instantly 
predicting the output parameters, and simple in obtaining 
initial input parameters for a researcher to use the model.

In future research, it is necessary to optimise the key pro-
cess parameters for aerobic biodegradation, and this model 
could be used for simulation to obtain relevant data during 
and at the end of the process, which would save time and 
money. In addition, before process parameters optimisa-
tion, it is necessary to perform a global sensitivity analysis.

List of abbreviations and symbols 
Popis kratica i simbola

A – frequency factor  
(units depending on the order of reaction)

cpw – specific heat capacity of water
cpOM – specific heat capacity of organic matter
cpNT – specific heat capacity of inorganic matter
cpi – specific heat capacity of gas i, J kmol−1 K−1

d.b. – dry base
E – activation energy, J kmol−1

fCO2 – gas dissociation factor of CO2 in aqueous solution
fi – gas dissociation factor i in aqueous solution, –
Fi,0 – molar flow at inlet for component i, kmol h−1

FT,0 – total molar gas flow at outlet, kmol h−1

Hei – Henry’s gas constant i, Pa
HeCO2 – Henry’s constant for CO2, Pa

( )ih T – molar enthalpy of gas at temperature  
of solid–liquid

( )ih TΨ( )ih T – molar enthalpy of gas at temperature of gas phase

k – reaction rate constant, kg1−n h−1

kFAS – correction factor for free air space (FAS)
kH2O – correction factor for moisture content
kLaw – mass transfer coefficient for water, kg h−1 Pa−1

kLaCO2 – mass transfer coefficient for CO2, kg h−1 Pa−1

kLai – mass transfer coefficient for gas i, kg h−1 Pa−1

kO2 – correction factor for oxygen
kO2(0) – correction for oxygen concentration in 

atmospheric air (20.95 %, v/v)
kpH – pH correction
kT – effect of temperature on reaction rate constant
KO2 – half rate constant for oxygen,%, v/v
KOM – organic matter conversion

0max{0, }T
iV R – expression used to determine  

the direction of mass transfer
mOM – mass of organic matter, kg
MSW – municipal solid waste
n – reaction order, –
ni – number of experimental data for each variable
O2 – oxygen concentration, %, v/v
OFMSW – organic fraction of municipal solid waste 
OM – organic matter content
pCO2 – partial pressure of CO2 in the gas phase, Pa
pi – partial pressure of gas and in the gas phase, Pa
Qc

T – heat transferred by convection
Qcw – heat transfer through the reactor walls
QG – biochemical heat generation
R – universal gas constant, J kmol−1 K−1

R2 – square error 
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RMSE – root mean square error 
SD – standard deviation
Sm – fractional dry matter content of composting 

material, –
t – time, h
T – thermodynamic temperature of substrate, K
v – number of variables to be adjusted

0
T
iV R – molar flow of component i at outlet of liquid 

phase, kmol h−1

Vg – volume of gas phase, m3

w.b.  – wet base 
Wj – weight coefficient
XCO2 – molar fraction of CO2 dissolved in water, –
Xi – molar fraction of gas dissolved in water, –
YCO2 – stoichiometric coefficient for CO2

Yi – stoichiometric coefficient
Yij,exp – value of dynamic state variables  

obtained experimentally
Yij,model – value of dynamic state variables  

obtained by the model 

expjY  – mean value of state variable obtained 
experimentally

ψ – gas phase temperature, K
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SAŽETAK
Procjena kinetičkih parametara i evaluacija modela procesa 

kompostiranja organske frakcije miješanog komunalnog otpada
Edisa Papraćanin

Postupak aerobne biorazgradnje zanimljiv je za numerička istraživanja da bi se postigla bolja učin-
kovitost postupka, što se odražava u većoj brzini razgradnje organske tvari. Cilj ovog istraživanja 
bio je procijeniti kinetičke parametre u dinamičkom modelu koji opisuje proces aerobne bioraz-
gradnje organske frakcije komunalnog krutog otpada s različitim dodatcima s inženjerskog aspek-
ta. Predstavljeni matematički model zasnovan na pojavama prijenosa topline i mase dinamički je 
model sustava plin–tekućina–krutina. U svrhu optimizacije i simulacije postupka izveden je jedan 
pokus u tri reaktorska sustava sa smjesama različitog početnog sastava. Eksperimentalni podatci 
dobiveni iz jednog reaktora upotrijebljeni su za procjenu kinetičkih parametara modela, a podatci 
iz preostala dva reaktora upotrijebljeni su za provjeru i procjenu dinamičkog modela koji izvodi si-
mulaciju. Detaljna statistička analiza pokazala je uske vrijednosti 95 %-tnog intervala pouzdanosti, 
što ukazuje na odgovarajuću točnost procjene parametara. Bolje slaganje podataka postignuto je u 
reaktoru s manjim udjelom dodataka, a najpreciznije predviđena varijabla je konverzija organske 
tvari. Analiza osjetljivosti parametara pokazala je da su najosjetljiviji red reakcije n i energija akti-
vacije E. Sveukupno, primjena ovog modela s procijenjenim kinetičkim parametrima u aerobnom 
procesu biorazgradnje pruža alat za predviđanje najvažnijih procesnih varijabli (SD = 0,3378).

Ključne riječi 
Matematičko modeliranje, kinetički parametri, procjena modela, analiza osjetljivosti, aerobna 
biorazgradnja, OFMSW, otpadni kvasac, kiselgur

Izvorni znanstveni rad
Prispjelo 6. srpnja 2021.

Prihvaćeno 15. listopada 2021.

Katedra za kemijsko inženjerstvo, Tehnološki 
fakultet, Univerzitet u Tuzli,  
Urfeta Vejzagića 8, Bosna i Hercegovina


