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Abstract: In this paper, vertex-edge degrees (or simply, ve-degrees) of vertices in a graph are considered. The ve-degree of a vertex v in a graph 
equals to the number of different edges which are incident to a vertex from the closed neighborhood of v. The author introduces the ve-degree 
total irregularity index here and calculates this index for paths and double star graphs. Finally, the maximal trees are characterized with respect 
to the ve-degree total irregularity index. 
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INTRODUCTION 
HE examination of molecular structures expressed 
through graphs is one of the important pillars of graph 

applications. In an undirected graph, the degree sequence 
is a uniform sequence of the degrees of its vertices that 
does not increase. Invariants belonging to graphs are most 
commonly referred to as topological indices and they are 
often stated using the degrees of vertices, distances 
between vertices, eigenvalues, symmetries, and many 
other properties of the graphs. The term topological index 
first appeared in a study by Wiener.[1] Topological indices 
lead us to foretell particular physico-chemical properties 
such as boiling point, melting point, enthalpy of evapor-
ation, stability etc. There are more than 150 topological 
indices currently known and used. Among these indices, 
degree-based topological indices are more remarkable and 
they are quite handy tools for chemists. For more 
information on degree-based topological indices, I refer to 
the paper,[2] which is a detailed review article on this. 
Graphs are one of the basic tools used in the studies 
conducted in many mathematical sciences.[3–5] 

 An organic compound and its molecular structure 
are usually indicated by a molecular graph. Here, atoms 
imply vertices, and bonds between atoms imply edges. 
Thus, an idea about the physical properties of these 
chemical compounds is obtained. Today, chemical graph 
theory studies are a discipline that has an important place 

in the fields of chemistry, biology, electrical networks and 
drug designs. Investigation of compounds with the same 
chemical formula, even if their chemical structures are 
different, is the field of study of this discipline. There are 
many important and remarkable conclusions regarding 
chemical indices for the studies of computational 
complexity and chemical graph theory.[6] 

 Albertson index is one of the most important 
topological indices and it was introduced in 1997.[7] 
Consider a simple and finite graph. Let G be this graph with 
the set of vertices V(G) and the set of edges E(G). The 
degree of a vertex u of the graph G is the number of 
adjacent vertices with u in G and it is indicated by deg( ).u   
A graph G is called regular if all its vertices have the 
 same degree. A graph that is not regular is called  
irregular. Albertson stated the graph invariant as 

( )
( ) deg( ) deg( )

uv E G
irr G u v

∈
= −∑  and named it as irreg-

ularity of the graph G. In other words, the Albertson index 
and irregularity mean the same thing. He obtained some 
upper bounds for trees, bipartite graphs and triangle-free 
graphs in his study.[7] Graphs with the maximal irregularity 
were characterized by Abdo et al. They took a different 
approach than Albertson and found a sharp upper bound 
for graphs with n vertices and some lower bounds on the 
maximal irregularity of graphs.[8] Also, the total version of 
the Albertson index was recently defined by Abdo et al. 
They determined all graphs with maximal total irregul-
arity.[9] A comparison between the irregularity and total 
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irregularity was made in[10] and some inequalities were 
obtained for connected graphs and trees. Moreover, some 
well-known irregularity measures were compared[11] and it 
was shown that any two of these irregularity indices are 
mutually inconsistent. This means that it is difficult to 
decide definitively which is more and which is less irregular. 
Gutman demonstrated the calculations of the irregularity 
measures on molecular graphs and made comparisons 
between these results.[12] The trees which were the most 
and least irregular were characterized according to the 
Albertson index.[13] The irregularity measure based on eigen-
values of graphs described by Collatz and Sinogowitz[14]  
has been the oldest known numerical irregularity measure. 
Bell introduced a second such measure based on the 
variance of the vertex degrees of a graph, another irreg-
ularity measure.[15] He determined the most irregular 
graphs with respect to these two measures. More details 
about the irregularity of the graphs can be found in the 
book.[16] 
 Domination is one of the most important graph 
invariants. A subset ( )D V G⊆  is a dominating set, if every 
vertex in G either is an element of D or is adjacent to at least 
one member of D. The domination number is the number 
of vertices in a smallest dominating set for G.[17] 
Domination has been shown to be a very sensitive graph 
theoretical invariant to even the slightest changes in a 
graph.[18] Domination was studied for chemical materials in 
the past. For example, the domination number of 
benzenoid chains and hexagonal grid was obtained by 
Vukičević and Klobučar.[18] 
 Vertex-edge domination (ve-domination) and edge-
vertex domination (ev-domination) are two mixed type 
domination invariants. An edge e dominates a vertex v, if e 
is incident to v or e is incident to a vertex which is adjacent 
to v. A subset ( )D E G⊆  is an edge-vertex dominating set of 
a graph G, if every vertex of G is ev-dominated by at least 
one edge of D. The minimum cardinality of an ev-
dominating set is called the ev-domination number. A 
vertex v ve-dominates an edge e which is incident to v  
and any edge which is adjacent to e. A set ( )D V G⊆  is a  
ve-dominating set if every edge of a graph G is ve-dominated 
by at least one vertex of D. The minimum cardinality of a 
ve-dominating set is called the ve-domination number. The 
ve-domination and ev-domination concepts were introd-
uced by Peters.[19] The lower and upper bounds on the  
ve-domination and ev-domination numbers in different 
graphs were studied.[20] Also, total edge-vertex domination 
was introduced recently.[17] 
 Chellali et al. introduced two degree concepts:  
ve-degree and ev-degree of the graphs based on  
ve-domination and ev-domination.[21] The ve-degree of a 
vertex ( )v V G∈  equals the number of edges ve-dominated 
by v. The ev-degree of an edge e uv=  equals the number 

of vertices ev-dominated by e. The regularity and irregul-
arity of graphs about ve-degree and ev-degree were 
studied by Horoldagva et al.[22] A graph is ve-regular if all its 
vertices have the same ve-degree. A graph is ev-regular if 
all its edges have the same ev-degree. A graph G is called  
ve-irregular if no two vertices in V(G) have the same  
ve-degree. A graph G is called ev-irregular if no two edges 
in E(G) have the same ev-degree. 
 The ve-degree and ev-degree concepts of graphs 
were widely applied to Chemical Graph Theory.[23,24] Many 
papers were written about the modified versions of the 
various topological indices with respect to ve-degree and 
ev-degree. Some chemical materials were investigated with 
these modified versions of the topological indices. For 
example, the ve-degree and ev-degree based topological 
properties of single walled titanium dioxide nanotube,[25]  
h-naphtalenic nanotube,[26] silicon carbide Si2C3–II[p,g],[27] 
two carbon nanotubes,[28] polycyclic graphite carbon 
nitride[29] and crystallographic structure of cuprite Cu2O[30] 
were studied. It has been seen that ve-degree and ev-
degree topological indices can be used as possible tools in 
QSPR researches. 
 The ve-degree irregularity index was defined 
recently.[31] The definition of this concept is presented in 
the second section. Moreover, the maximal trees were 
characterized with respect to this index.[31] In this paper, I 
define the ve-degree total irregularity index and compute 
this index for paths and double star graphs. Finally, I obtain 
the maximal trees with respect to the ve-degree total 
irregularity index. 
 

PRELIMINARIES 
Let G be a simple graph with the vertex set V(G) and the 
edge set E(G) such that ( )V G n=  and ( ) .E G m=  For a 
vertex ( ),u V G∈  the open neighborhood of u is defined as 

{ }( ) | ( )GN u v uv E G= ∈  and the closed neighborhood of u 
is defined as [ ] = { } ( ).G GN u u N u  
 The degree of a vertex u is the cardinality of ( )GN u  
and it is denoted by deg( ).u  A vertex which has degree one 
is called a leaf. The ve-degree of a vertex v equals to the 
number of different edges which are incident to a vertex 
from the closed neighborhood of v and it is denoted by 
deg ( ).ve v  Moreover, the ev-degree of an edge e = ab equals 
to the number of vertices of the union of the closed 
neighborhoods of a and b, it is denoted by deg ( ).ev v  
 A graph G is ve-regular if all its vertices have the 
same ve-degree. The paths, cycles, complete graphs and 
stars of order n are denoted by 1, –1,  ,  , ,and n n n nP C K S  
respectively. The double star graphs ,p qDS  are consisted of 
the stars 1,pS  and 1,qS  such that 2.n p q= + +  The sub-
divided star kS∗  is obtained from a star 1,kS  by adding a 
vertex to every leaf of the star. 
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 It is known that 1, 1nS −  is ve-regular tree such that  
all its vertices have same ve-degree 1.n − [21] The cycle 

( 4)nC n ≥  is the unique unicyclic graph which is ve-regular.[21] 
 For simplicity, a ve-regular graph, each of whose 
vertices has ve-degree r, is called rve-regular.[22] For example, 
the cycle graph is 4ve-regular for 4n ≥ . Furthermore, the 
complete graph Kn is mve-regular such that the size 

– 1 / 2.( )m n n=  
 
Definition 2.1. For a connected graph G, 

 2
1 ( )
( ) deg ( ).

u V G
M G u

∈
= ∑ [32] 

Definition 2.2. For a connected graph G, 

 1( ) ( )
deg ( ) deg ( ) ( ) 3ve ev Gv V G e E G

v e M G η
∈ ∈

= = −∑ ∑  

such that Gη is the total number of triangles contained in G.[21] 
It implies that for a triangle-free graph G, 

 1( ) ( )
deg ( ) deg ( ) ( ).ve evv V G e E G

v e M G
∈ ∈

= =∑ ∑  

Definition 2.3. Let G be a triangle-free graph. Then, for a 
vertex ( )u V G∈  

 
( )

deg ( ) deg( ).
G

ve u N v
v u

∈
= ∑ [24] 

Definition 2.4. Let G be a triangle-free graph. Then, for an 
edge ( )e ab E G= ∈  

 deg ( ) deg( ) deg( ).ev e a b= + [24] 

Definition 2.5. Let G be a graph of order n. Then, the 
Albertson index of G is computed by 

 
( )

( ) deg( ) deg( ) .
uv E G

irr G u v
∈

= −∑ [7] 

Definition 2.6. Let G be a graph of order n. Then, the total 
irregularity index of G is computed by 

 1
2 , ( )

( ) deg( ) deg( ) .t u v V G
irr G u v

∈
= −∑ [9] 

 If the degrees of vertices are ordered as 1deg( )v ≥

2deg( ) deg( ),nv v≥ ≥  the total irregularity index can be 
calculated by 

 ( ) (deg( ) deg( )).t i ji j
irr G v v

>
= −∑  

Lemma 2.7. If T is a tree of order n, then 

 ) ( ) ( 1)( 2)i irr T n n≤ − −  

such that the equality holds if and only if T is a star.[13] 

 ) ( ) ( 1)( 2)tii irr T n n≤ − −  

such that the equality holds if and only if T is a star.[9] 
 The ve-degree version of the Albertson index was 
expressed as in the following definition. 

Definition 2.8. Let G be a graph of order n. Then, the  
ve-degree irregularity of G vis computed by 

 ( )
( ) deg ( ) deg ( ) .ve ve veuv E G

irr G u v
∈

= −∑
 

 It is clear that ( ) 0veirr G =  for ve-regular graphs. The 
total ve-degree irregularity index can be defined as follows. 
 
Definition 2.9. Let G be a graph of order n. Then, the ve-
degree total irregularity index of G is computed by 

 
1
2 , ( )

( ) deg ( ) deg ( ) .t
ve ve veu v V G

irr G u v
∈

= −∑
 

 If the ve-degrees of vertices are ordered as 

1deg ( )ve v ≥ 2deg ( ) deg ( ),ve ve nv v≥ ≥  the ve-degree total 
irregularity index can be calculated by 

 
( ) (deg ( ) deg ( )).t

ve ve i ve ji j
irr G v v

>
= −∑  

 It is denoted the ve-degree sequence by the notation 

ve 1 ve 2 ve 1 2[deg ( ),deg ( ), ,deg ( )] for deg ( ) deg ( )n ve vev v v v v≥ ≥  
deg ( ).ve nv≥ The repeated degrees can be shown by 

exponential numbers. 
 

MAIN RESULTS 

Theorem 3.1. For paths,  

 
0, 2,3

( ) .
6( 4) 4 4

t
ve n

n
irr P

n n
=

=  − + ≥
 

Proof. If a path has two or three vertices, their ve-degrees 
are equal. Then, the total ve-degree irregularity index equals 
to zero. Consider a path graph 1 2:n nP v v v with 4.n ≥  
it is obtained that ve 1 ve ve 2deg ( ) = deg ( ) = 2,  deg ( ) =nv v v

ve 1 vedeg ( ) = 3 and deg ( ) = 4 for 3 2. Therefore,n iv v i n− ≤ ≤ −  
I have the ve-degree sequence of paths as 4 2 2[4 ,3 ,2 ].n−  The 
ve-degree total irregularity index can be obtained by 

 ( ) 2( 4)(4 3) 2( 4)(4 2) 4(3 2)
6( 4) 4.

t
ve nirr P n n

n
= − − + − − + −
= − +

 

Theorem 3.2. Let ,p qDS  be a double star graph of order n = 
p + q + 2. Then, 

 ,) ( ) 2ve p qi irr DS pq=  

 ,) ( ) ( 4).t
ve p qii irr DS pq p q= − +

 

Proof. It is known that a double star graph ,p qDS  consists of 
two stars 1,pS  and 1, .qS  Assume that .p q≥  It means that 
there are p q+  vertices having degree one and two central 
vertices of stars having degree 1p +  and 1,q +  respectively. 
Now the ve-degrees of the vertices in ,p qDS  are deter-
mined. The central vertices of stars ve-dominate all edges. 
Then, the ve-degrees of central vertices are 1.p q+ +   
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The ve-degree of the leaves of 1,pS  is 1p +  and the ve-
degree of the leaves of 1,qS  is 1.q +  Then, I obtain the ve-
degree sequence of ,p qDS  as 2[( 1) ,( 1) ,( 1) ].p qp q p q+ + + +  

 ,) ( ) [ 1 ( 1)]

[ 1 ( 1)] 2 .
ve p qi irr DS p p q p

q p q q pq

= + + − +

+ + + − + =
 

 

,) ( ) 2 [ 1 ( 1)]

2 [ 1 ( 1)]
[ 1 ( 1)]

2 2 ( )
( 4).

t
ve p qii irr DS p p q p

q p q q
pq p q

pq pq pq p q
pq p q

= + + − +

+ + + − +
+ + − +
= + + −
= − +

 

Theorem 3.3. Let T be a simple tree with order n, then 

 
3 2 17 15) ( ) ,

8
t

ve
n n ni irr T + − +

≤  

if 2 1n k= +  and the equality holds if and only if .kT S∗≅  

 
3 25 17 11) ( ) ,

8
t

ve
n n nii irr T + − +

≤  

if 2 2n k= +  and the equality holds if and only if 6 ,T T≅  
which is indicated in Figure 1.  
Proof. In order to prove the equalities, I apply some operat-
ions to 1, 1nS −  graphs. It is clear that the star graphs are  
ve-regular graphs. Then, the ve-degree irregularity index 
and ve-degree total irregularity index of stars equal to 0.  
i) Assume that 2 1.n k= +  If I remove a leaf from a star 

1, 1nS −  and attach it to another leaf, I obtain double star 
graph 1 3,1 ,nT D S −=  which is indicated in Figure 1. Then, 1T  
is a double star graph which consists of a star graph 1, 3nS −  
with the central vertex u and a path P2 xy such that u is 

joined to x. Thus, deg ( ) 2,  deg ( ) deg ( ) 1ve ve vey x u n= = = −  
and the remaining ( 3)n −  vertices have ve-degree ( 2).n −  
Then, its ve-degree sequence is 2 3[( 1) ,( 2) ,2].nn n −− −  So, 

1( )t
veirr T = 22( 3) 2( 3) ( 3)( 4) 3 .n n n n n n− + − + − − = −  

 If I remove a leaf and attach it (say that z) to the 
vertex y on 1 ,T  I obtain the tree 2 ,T  which is indicated in 
Figure 1. It is obtained that deg ( ) 2,  deg ( ) 3,ve vez y= =  
deg ( ) 1, deg ( ) 2ve vex n u n= − = −  and the remaining 
( 4)n −  vertices have ve-degree ( 3)n −  for 2T . Then, the  
ve-degree sequence of 2T  is ( 4)[ 1, 2,( 3) ,3,2].nn n n −− − −  So, 

 2( ) 1 2( 4) 4 3 4 5
4 ( 4)( 6) ( 4)( 5) 1

t
veirr T n n n n n

n n n n n
= + − + − + − + − + −
+ − + − − + − − +

 

 2
2( ) 2 12 18.t

veirr T n n= − +  

 Then, it can be seen that 2
2 1( ) ( )t t

ve veirr T irr T n− = −
9 18 0 for n 7.n + > ≥  If the operation which is used in the 
transformation from 1T  to 2T  is used (n – 3)-times to a star, 
I obtain a path at the end. 
 Now I remove a leaf s and attach it to a vertex (r) which 
is incident to the central vertex u on 1.T  Thus, I obtain the 
tree 3T , which is indicated in Figure 1. For the tree 3T , 
deg ( ) deg ( ) 2, deg ( ) deg ( ) 2, deg ( )ve ve ve ve vey s x r n u= = = = − =

1n −  and the remaining ( 5)n −  vertices have ve-degree 
( 3).n −  Then, the ve-degree sequence of 3T  is [ 1,n −

2 ( 5) 2( 2) ,( 3) ,2 ].nn n −− −  So, 

 
3

2

2
3

( ) 2 2( 5) 2( 3) 2( 5)

4 ( 4) 2( 5)

( ) 2 10 10

t
ve

t
ve

irr T n n n

n n

irr T n n

= + − + − + −

+ − + −

= − +

 

Consequently, 23( ) ( ) 2 8 0 for 4.t t
ve veirr T irr T n n− = − ≥ ≥  It is 

seen that the difference of the ve-degree total irregularity 

 

Figure 1. The trees 1 2 3 4 5 6,  ,  ,  ,  ,  .T T T T T T  
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index between 3T  and 1T  is greater than the difference of 
the ve-degree total irregularity index between 2T  and 1T . 
By this way, I obtain the subdivided star graph kS∗  which is 
the maximal tree with respect to the ve-degree total 
irregularity index with order 2 1.n k= +  For ,kS∗  the ve-
degree of the central vertex u is 2k, the ve-degree of the 
vertices at distance 1 from u is ( 1)k +  and the ve-degree of 
the vertices at distance 2 from u is 2. Therefore, the ve-
degree sequence of kS∗  is [2 ,( 1) ,2 ].k kk k +  So, 

 

2

3 2

( ) ( 1) (2 2) ( 1)

( ) ( 1)( 3)
1 3 5( )

2 2 2
17 15( ) .

8

t
ve k

t
ve k

t
ve k

t
ve k

irr S k k k k k k

irr S k k k
n n nirr S

n n nirr S

∗

∗

∗

∗

= − + − + −

= − +
− − +

= × ×

+ − +
=

 

ii) I investigate the second case for 2 2.n k= +  It means 
that a vertex of degree should be attached to a subdivided 
star graph .kS∗  Thus, I should investigate the trees 4 5 6, , .T T T  
 For the tree 4 , deg ( ) 2, deg ( ) 3, deg ( )ve ve veT c b a= = =

2,  deg ( ) 2 ,vek u k+ =  the ve-degree of the ( 1)k −  vertices 
at distance 1 from u is ( 1)k +  and the ve-degree of  
the ( 1)k −  vertices at distance 2 from u is 2. Thus, the  
ve-degree sequence of 4T  is 1[2 , 2,( 1) ,3,2 ].k kk k k −+ +   
I compute the ve-degree total irregularity index of 4T  as 
follows. 

 

2
4

2 2

3 2
4

3 2

4

3 2

4

( ) 2 ( 1) 2 3 (2 2) 1

1 ( 2)( 1) ( 1)

( ) 3 4

1 1( ) 3 4
2 2

3 9 37( ) .
8

t
ve

t
ve

t
ve

t
ve

irr T k k k k k k

k k k k k k k

irr T k k

n nirr T

n n nirr T

= − + − + − + − + −

+ − + + − − + − +

= + +

− −   = + +   
   

+ − +
=

 

 For the tree 5 , deg ( ) deg ( ) 3,  deg ( )ve ve veT l m k= = =  
2,  deg ( ) 2 1,vek u k+ = + the ve-degree of the ( 1)k −  

vertices at distance 1 from u is ( 1)k +  and the ve-degree of 
the ( 1)k −  vertices at distance 2 from u is 2. Then, the 
ve-degree sequence of 5T  is 1 2 1[2 1, 2,( 1) ,3 ,2 ].k kk k k − −+ + +  
I calculate the ve-degree total irregularity index of 5T  as 
follows. 

 

5

2

3

3 2
5

3 2

5

3 2

5

( ) 1 ( 1) 2(2 2) (2 1)( 1)

1 ( 1) ( 1) 2( 1)( 2)

( 1) 2( 1)

( ) 3 3

1 1 1( ) 3 3
2 2 2

3 13 15( ) .
8

t
ve

t
ve

t
ve

t
ve

irr T k k k k k k

k k k k k k

k k

irr T k k k

n n nirr T

n n nirr T

= − + − + − + − −

+ − + − + − + − −

+ − + −

= + − −

− − −   = + − −   
   

+ − −
=

 

 For the tree 6 , deg ( ) 1, deg ( ) 2 1,ve veT w k u k= + = +  
the ve-degree of the k vertices at distance 1 from u is 
( 2)k +  and the ve-degree of the k vertices at distance 2 
from u is 2. Then, the ve-degree sequence of 6T  is 
[2 1, ( 2) ,kk k+ +  1, 2 ].kk + So, 

 

3
6

3 2
6

3 2

6

3 2

6

( ) ( 1) 2(2 1) ( 1)

( ) 4

1 1 1( ) 4
2 2 2

5 17 11( ) .
8

t
ve

t
ve

t
ve

t
ve

irr T k k k k k k k k

irr T k k k

n n nirr T

n n nirr T

= − + + − + + + −

= + −

− − −   = + −   
   

+ − +
=

 

It implies that 6T  has the maximal ve-degree total 
irregularity index of even order in the trees. 
 

CONCLUSION 
After the introduction of the ve-degree irregularity 
index,[31] the ve-degree total irregularity index is defined in 
this paper. Moreover, the ve-degree total irrregularity 
index of paths and double star graphs are obtained, and the 
maximal graphs with respect to this index are attained. 
Consequently, the present paper is a contribution to find 
the ve-degree based topological indices in different 
sciences. By means of the ve-degree based topological 
indices, the number of tools which are used in the 
computation of graph irregularity is increased. 
 As the paralleling of the rapid growing of science and 
technology, the importance of analysing in networks is 
increased. Then, the ve-degree irregularity indices may be 
used in the computation of the chemical, biological and 
other properties of chemical materials. 
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