
301

POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.

PD.TVZ.HR PD.TVZ.HR

COMPUTER SIMULATION OF ROBOTIC ARM OPERATION

Petar Mamić, Vesna Alić-Kostešić, Goran Sirovatka, Vlatko Mićković

Zagreb University of Applied Sciences/Mechanical Engineering Department

ABSTRACT

The robotic arm operations can be simulated using
a computer. This work is the result of a study at
Zagreb University of Sciences, Mechatronics
Study program and shows how to simplify
complicated functions and the importance of
programming rules, in developing one’s own
robot programming language, as well as the user
interface for it. Computer environment (interface
and programming language) was developed
for a simulation of a robotic arm using Unity
Engine and C # for programming. The interface
is designed to be simple, so each one with the
basic level of knowledge about robotics can use
it for educational purposes or just for the sake
of experimentation. This paper will explain the
prerequisites and development done in reaching
the goal. Expiation of methods used, and scripts
written are given. The goal achieved is creation
of the free tools that can simulate a robotic
arm to the point of being useful, intuitive, and
educational. We will also state the improvements
that we plan to do (multiple selection, rotation and
scaling tool).

Keywords: robotic arm, 3D simulation, C#, Unity,
programming

1. INTRODUCTION

Robotics develops and produces robots that serve
to replace jobs that would otherwise be done
by humans. This work was based on P.Mamić
Bachelor thesis successfully defended in 2020.[1]

Control of the robot itself and how robot behaves
in the working environment is an important aspect
of robotics and such a human operator is needed
to make sure that the robot does exactly what it is
supposed to do.[2][3].

Challenges begin when each robot has its own
programming language and its own control
scheme that are different from other robot
equipment. Understanding these controls and
programming languages of the robot arm
makes the robot more useful and efficient. Such
knowledge [4] can and are acquired by practice,
but it is difficult to do the same in an educational
environment.
Programming a robotic arm in an educational
environment must start from entry level and
gradually rise. In education understanding to
control the robotic arm means to understand and
be able to use the knowledge from mathematics,
programming, electrical, and mechanical
engineering.

The solution for this problem we find is
developing an educational tool that can
enable students to learn about robots and their
limitations. While such programs exist for
robotic arms that are in production, they are
expecting some prior knowledge before one can
use them, which would be a very frightening first
experience.

In this work we would like to show how we can
simplify a robot arm simulation program with its
own simple programming language, and describe
how we have simplified complicated functions,
implemented the simple programming language
for the simulated robotic arm and how the
interface for students would look like.

2. DEVELOPMENT OF SIMULATION
ENVIRONMENT

2.1. GENERAL

We will describe step by step process of
development of our robotic arm simulation
program named RoboSim and will present the
whole project sharing the github link.

DOI: 10.19279/TVZ.PD.2021-9-4-19Mrežna inačica: ISSN 2459-6302
Tiskana inačica: ISSN 1849-1995

Članak se nalazi u bazama: ● http://hrcak.srce.hr ● https://scholar.google.hr

302

POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.

PD.TVZ.HR PD.TVZ.HR

We used Unity[7], C# and Blender as tools ,
and will included a 3D view of a model robotic
arms with some basic physics which is part of
RoboSim.

2.2. DEVELOPMENT PLAN

We choose the project planning software Trello to
track the progress of project. Steps in our project
were defined in following order:
• Camera control mode
• 3D model of the robotic arm and objects to be

used.
• Robotic arm movement method
• Programming language for the robotic arm
• Adding functionality to individual objects
• Ability to change the work environment.

These main steps were divided into sub-steps.

We started with Unity project with the
development our RoboSim work environment.

2.3. CAMERA CONTROL MODE

The first step is to develop control the orientation
camera in the work environment. Student
must have an intuitive way of controlling the
camera for the best possible orientation in the
environment space. The way we set up camera
controls will affect how fast a student can work
with the program. The more intuitive way of
controlling the camera the faster the student can
adapt and the sooner he can control it with ease.

For functions such as zooming, moving, and
rotating the camera we used the standard inputs
that are found throughout various programs,
mouse wheel to zoom in and out, right click to
rotate the camera and middle mouse button to pan
the camera.

In our environment camera can:
• Rotate
• Focus
• Pan
• Move
• Zoom

While this is a simple task there have been times
where camera controls are different if one will use
other or commercial programming software, but
we have chosen this model to make learning curve
steeper.

2.4. ROBOTIC ARM MOVEMENT
 METHOD

To simulate a robotic arm a model of a robotic
arm needs to be made alongside with some objects
that could fill the scene to create a more living
working environment. These objects include a
treadmill, a proximity sensor, a distance sensor,
simple cube for robot manipulation and a move
tool. These objects open possibility of different
working environments when implemented
together in a scene.

These objects have been chosen due to their
simplicity as well as their common functionalities
in the real world.

The green cube is the simplest form, but unlike
some objects, it will be able to change in size and
way it is used.

Figure 1 All variables with a public declaration are
presented in the inspector

Figure 2 Green cube

303

POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.

PD.TVZ.HR PD.TVZ.HR

The green cube can be either a physical object
which means that physics will act on it and have
additional customization options like weight
changes, or it can be a kinematic object which
means that physics does not act on it and acts like
a wall that cannot be moved.

Two sensors are added to the project: distance
sensor and a presence sensor. The sensors
communicate with the robotic arm. Distance
sensor displays the distance from the sensor
onwards as close as possible to it while the
presence sensor shows if anything is in its
presence space. This data can be used by the
user to better control the robotic arm through
programming.

Programs when manipulating objects use
some kind of visual tool showing process of
manipulation of the objects. In our environment
we have a moving tool that shows x, y and z
coordinates, so student can use it to move objects
in a simple way. In this model, a blender was used
for the tips, ie arrows, since Unity does not have
pointed models, a shader is also added so that the
moving tool can be seen through all objects.

Robotic arm works in production and especially
on treadmill so it makes sense that a treadmill
model exists in the environment so student can
come up with their own production model.

Although the model doesn’t seem to be connected,
there is a script that keeps the treadmill connected
to the legs when the program is started and allows
the legs to be in the same positions when resizing.

Robotic arm is modeled in the simplest but
most practical way, the joints marked with color
correspond to the axis along which the joint
moves (red - x axis, green - y axis). The robotic
arm will use inverse kinematics to be able to
move when the user type in commands via the
programming language console. The model
also has a copy of itself in the same position
called “SimRobotArm” which is a mathematical
representation of the robotic arm as it calculated
to reach a certain point.

2.5. ROBOTIC ARM MOVEMENT
 METHOD

Robotic arms have multiple ways of movement.
And are connected in the following way of
hierarchical models that consist of:

• Joint - dimensions are not considered and only
the possibility of joint rotation is considered.

• Segment - a rigid element that is connected to
the joints.

Combining forward and inverse kinematics in
most situations satisfy the necessary accuracy
for a given task. To simulate this, we used
geometrical inverse kinematics [5][6].

Figure 3 Distance sensor and presence sensor

Figure 4 Moving tool

Figure 5 Treadmill

Figure 5 Robotic arm

304

POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.

PD.TVZ.HR PD.TVZ.HR

We will have to control only one part of the
robotic arm, the end effector, while letting the rest
of the joints do the necessary work to achieve the
desired position. Geometrical inverse kinematics
is just a type of way to get the result of a inverse
kinematics problem. Using geometrics in Unity
alongside with C# we can force robot segments to
be always connected while following some basic
rules and principles such as limitations on joints.

The simple way we achieve this is that the end
of the segment gets separated, rotated, and
positioned to “catch” the end effector while the
rest of the segments do the same for the segment
in front of it, with the final segment connected.
We then reposition them back from the starting
segment to the end and get a position where the
robot arm is closest to its end effector repeating
the process a couple of more times gets us to the
desired position.

Student control the robot using a special moving
tool called “Hand Tool” which acts as an end
point for the robotic arm, moving the end point
also moves parts of the robotic arm to position the
gripper on the end point. The endpoint is activated
by pressing the robot arm tool.

2.6. PROGRAMMING LANGUAGE
 FOR THE ROBOTIC ARM

For the user to be able to write program code to
manipulate robot arm, a programming window is
added called a console with two buttons bellow.
The left button is used to transfer the code to the
robotic arm while the right one runs the code, and
the robotic arm executes the code.

The programming language is a combination of
C code and CNC code using “Commands” to
control the robot directly and “Statements” to
control the behavior of the robot. Such examples
of Command code are MPN which translates
to Move to Position N or G and R command
which tells the robot to Grab or Release his
hand grippers. For “Statement” code there is a
classical IF statement and a type of for loop called
REPEAT which will repeat a block of code a
certain number of times, combining the two can
result in a classical for loop.

Figure 6 All object used in RoboSim

Figure 7 Simulation model left and real model right.

Figure 8 Method for inverse kinematics

Figure 9 Programming console

305

POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.

PD.TVZ.HR PD.TVZ.HR

Command of our programming language are:

• MOVE TO POINT - sets the end point to the
robotic arm to reach, the command is invoked
from the MPN where N is the position number or
variable.

• WAIT - stops at a specified time and is called
with WNS or WNMS where N is a number
while S or MS indicates the time of a second or
millisecond.

• SPEED - determines the speed of the robot and
is invoked with SN where N is the speed of the
robot (default 30).

• GRAB AND RELEASE - with the commands G
and R opens and closes the gripper.

• REPEAT - A type for loop where everything
within a REPEAT block is repeated a certain
number of times, first set REPEAT (N) where N is
the number repeated and close with REND.

• IF - classic if block where it is checked whether
the conditions within the if block are correct or
not, it is invoked with IF (CONDITION) where
the condition can compare numbers or variables
with <,>, = i! characters or check the sensors eg if
the distance is below 5 or if the presence sensor is
active, it closes with an IEND.

• LOOP - is an unconditional while loop, repeats
everything inside the loop indefinitely until it
encounters a BREAK, invokes with LOOP and
closes with LEND.

• INT - creates a variable so that it serves as a
declaration, is invoked with INT and the name of
the variable and what value it contains is placed in
front.

• MATHEMATICAL OPERATIONS - the
language can be used with +, -, * and / to calculate
variables but only two numbers.

For more information reference the github
repository.

2.7. ADDING FUNCTIONALITY TO
INDIVIDUAL OBJECTS.

We would like to that our modeled objects have
desired effect on the environment around them.

So, they need to have certain functions making
them “real”. Each object has been given a script
for their behavior and how it will intervene with
rest of the process (program).

The green cube does not get any special script but
instead gets a component that Unity already owns
called Rigidbody.

The component enables physics on the object, i.e.,
gravity and the possibility of collisions. Rigidbody
has several functionalities that change the way an
object will react:

• Mass - adds mass to the object and the higher
the mass the heavier the object

• Drag - friction in the air that slows down the
object, the higher the friction the greater the
resistance.

• Angular Drag - friction at an angle

• Use Gravity - activates / deactivates the
gravitational force on the object

Figure 10 Display transfer of code to the robot

Figure 11 Rigidbody component

306

POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.

PD.TVZ.HR PD.TVZ.HR

• Is Kinematic - activates / deactivates the action
of Rigidbody

• Interpolate - allows the forces acting on the
object to be equalized so that there is not too
much squeaking when forces are applied to the
object.

• Collision Detection - changes the speed at which
the collision will be updated.

• Constraints - you can select ordinates and axes
along which the object cannot be rotated or
moved.

• Info - keeps the data related to the object

Proximity and distance sensors have been given
the ability to detect and measure the environment
around them as well as to be referenced in the
programing code for certain action such as TRUE
and FALSE statements while the move tool has
been configured to move other objects around the
scene in a more intuitive way. For reference see
the git hub repository.

To keep the treadmill legs in positions all four
legs are positioned at angles using the length and
width of the treadmill. We programmed a function
that uses collision objects to check if anything is
on the treadmill, and direction and speed of the
treadmill is added.

2.8. ABILITY TO CHANGE THE
 WORK ENVIRONMENT

With everything constructed it is time to let
the student can create and manipulate its own
working environment, in order to achieve that a
Spawn window and Inspector window have been
added. Spawn window lets the student spawn any
object into the screen while the Inspector window
shows the information of an object as well as
the ability to change them or edit them. The
student can now edit and change the environment
to its own liking and experiment in real world
examples.

Student can develop their workspace so it will
have a tool that allows them to create the objects
listed in the workspace, so a creation bar will
be used. The bar contains "SENSORS" which
contains a distance sensor and a presence sensor,
"ROBOT" which only creates one robotic arm
and "ITEMS" which contains a working bar and a
green cube.

3. CONCLUSION
3.1. DISCUSSION

We have shown that it is possible to create a
simulation of a robotic arm with free tools to the
point of being useful, intuitive, and educationally
beneficial. Benefits we can see are in simplicity
in design and basic programming language which

Figure 12 Resize the trade mill while keeping the legs in the
same positions.

Figure 13 Robot arm in environment, with code console and
program, inspector and description of sensors used

Figure 14 Robotic arm in action

Figure 15 Object creation bar with and without additional
windows.

307

POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.

PD.TVZ.HR PD.TVZ.HR

associate to the language used in professional
robot machines. Nevertheless, this simulator could
be very useful when one has to teach elements of
robotics in remote classroom where school robot
or industrial one are not accessible. Students can
work on this simulator in their home. Having open
source of the code give opportunity for students
exercise in improving their skills and developing
new functionalities and adding more command for
programming. This could be a way of integration
different skills students are acquiring during the
study program as a team projects what could lead
to development of more complex simulator.

3.2. NEXT STEPS

Improvements can be made and we started a team
to add some more complicated functions: multiple
selection, rotation and scaling tool and much
more. Along with most software improvements
we also intend to connect the simulation to a real
life model of a robotic arm constructed from a
3D printer which would add to the experience.
Further down the line we would add custom robot
designs to be implemented at the time of writing
this article we are trying to develop a module that
all robots can run on starting with a modulated
inverse kinematics system. While the current
project seems rather simple and unpolished
with enough effort and time it could become a
benefactor to students and educational institutes.

ACKNOWLEDGMENT

We thank DOK-ING for allowing P.Mamić
to experiment on inverse kinematics in a
professional working environment. We thank
the team of people who have and are currently
contributing to the project Filip Bozov, Emil
Jagnić, Patrik Kušević and Karlo Gašjak, and we
thank colleague Anamarija Sedlar to inspiring us
to explore Interactive Educational Tools.

5. REFERENCE
5. REFERENCES

[1.] P. Mamić:” Računalna simulacija rada
robotske ruke”, Bacherlor thesis, Zagreb
University of Applied Sciences, 2020.

[2.] J. Velagić, “Laboratory for Robotics and
Autonomous Systems”, Zagreb University
of Applied Sciences, http://moj.tvz.hr,
04/21/2020.

[3.] D. Matika, “Lessons 1-9”, Zagreb
University of Applied Sciences,10.03 -
23.05.2020

[4.] M. Spong, S. Hutchinson, M. Vidyasagar
“Robot Modeling and Control”, 2020.

[5.] The Coding Train, Coding
Challenge: “Inverse Kinematics”,
https://www.youtube.com/
watch?v=hbgDqyy8bIw&t=1914s, 2020.

[6.] UConn HKN, “Robotics Inverse
Kinematics -Example”, https://www.
youtube.com/watch?v=f9kxhj5bR6w,
2020.

[7.] “Unity User Manual (2019.4 LTS) “, Unity
Documentation, https://docs.unity3d.com/
Manual/index.html.

[8.] “RoboSim” GitHub repository https://
github.com/Dero1014/RobotSimulation

AUTORI ‧ AUTHORS

● Petar Mamić
Rođen 1998. u Zagrebu,
gdje je završio TŠRB kao
mehatroničar i nastavio dalje
s TVZom na preddiplomski
studij mehatronike i trenutačno
studira kao specijalist strojarstva

modul mehatronika na istom faksu. Tokom TVZa
vježbao je svoje znanje programiranja razvijajući
igre preko Unity Engina i C#. Za svoj završni
rad je radio na edukacijskom alatu za robotiku
te paralelno s DOK-INGom razvijao prototip
inverzne kinematike za njihovog robota. Za
vrijeme specijalističkog studija se prijavio kao
demonstrator osnovama programiranja i kasnije
počeo raditi za Ericsson kao softver developer.
Korespondencija ‧ Correspondence
petar.mamic@tvz.hr

● Vesna Alić Kostešić - nepromjenjena
biografija nalazi se u časopisu Polytechnic &
Design Vol. 4, No. 2, 2006.
Korespondencija ‧ Correspondence
vak@tvz.hr

308

POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.POLYTECHNIC & DESIGN Vol. 9, No. 4, 2021.

PD.TVZ.HR PD.TVZ.HR

● Goran Sirovatka - nepromjenjena biografija
nalazi se u časopisu Polytechnic & Design
Vol. 5, No. 1, 2017.
Korespondencija ‧ Correspondence
gsirovatka@tvz.hr

● Vlatko Mićković - nepromjenjena biografija
nalazi se u časopisu Polytechnic & Design
Vol.9, No.1. 2021
Korespondencija ‧ Correspondence
vmickovic@tvz.hr

