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Abstract – The Internet of Things (IoT) aims to create a digital world where any information system can expose, discover, understand 
and consume data and services for analysis, diagnosis, decision support and task automation in various domains such as healthcare, 
transportation, energy, industry, agriculture, etc. Faced with this diversity of applications and rapid evolution, infrastructures must be 
able to achieve high levels of security and confidentiality while being open, sustainable, and agile to adapt to the multiple requirements 
of applications.
To meet these needs, new paradigms are emerging. These include the Software Defined Networks (SDN) paradigm, which offers the 
ability to dynamically program different applications and devices to provide end-to-end service chains. In parallel, the Blockchain 
paradigm is increasingly used in the Internet of Things, making distributed transactions between connected objects such as financial 
transactions or "smart contracts" possible.
Although the combination of these two paradigms (Blockchain/SDN) is a major issue for the success of the Internet of Things, paving the 
way for new business models and management/control of communication networks, there is not yet a specified/formalized architecture 
allowing the use of the "Blockchain" in SDN. In this research, a new architecture for a system combining blockchain and SDN for IoT 
security is proposed.
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1. INTRODUCTION

In 2030, it is announced that there will be more than 
500 billion devices connected to the Internet with a 
variety of uses leading to security problems and an in-
crease in traffic on the networks that will be estimated 
in Zeta (1021) bytes [1].

However, currently, the security architectures de-
ployed in networks are mainly based on experience and 
work on wired networks. These architectures are mainly 
based on centralized equipment, whose main role is to 
control the information that is exchanged between the 
company's network and the outside world. It is there-
fore not possible to control the information exchanged 
between a terminal equipment that a user will connect 
to his computer.  On a corporate network, users can 
connect their phone to their computer, via Bluetooth 
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for example, and thus the computer becomes a new 
entry point to the network. With the Internet of Things 
(IoT), we have sensors, thermostats, webcams, watches 
connected to our phones, themselves eventually con-
nected to the Internet or to our computers [1]. So how 
can we control the information coming from this large 
mass of heterogeneous devices?

With the increase in the number of these heteroge-
neous devices, the complexity in their administration is 
growing. This requires a verification of the coherence of 
the configurations of all the network devices of a com-
pany, for example the security rules and the user rights [2].

With the support of a great combination of modern 
technologies such as IoT, SDN, and Blockchain, as the 
number of connected things to the internet grows 
these days, managing and controlling IoT has become 
a very difficult task. SDN steps in to provide the IoT 
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network's adaptability and programmability without 
requiring existing implementations to change their 
design. It may also assess how the network affects the 
overall performance and efficiency of the network sys-
tem, which is very useful when dealing with real-time 
transactions [4]. SDN is utilized in IoT applications to 
reduce response time and security concerns. In SDN, 
many controllers have recently been used instead of a 
centralized controller. The fundamental purpose of us-
ing multiple controllers is to balance the load between 
devices and controllers while minimizing packet loss. 
When the user of the SDN-IoT network need resources, 
they will be available immediately. In addition, utiliz-
ing an SDN controller, a network can be configured dy-
namically. One of the most common protocols used by 
SDN is OpenFlow [4].

Some other advanced technology is blockchain, a 
decentralized, emergent technology that can be com-
bined with SDN-based IoT applications. The hash value 
is used to link various blocks together, and each block 
of the transaction is saved forever [5]. Combining this 
Blockchain technology will boost security and privacy. 
Several academics have proposed numerous clarifica-
tions to increase the network's performance, but they 
are unable to entirely cure the problem.

Although IoT, SDN, Blockchain technologies are 
combined to provide a better solution for any smart 
technology such as intelligent building, smart homes, 
smart cities, and smart grids [5]. These technologies 
can also provide reliable data transmission as well as 
communication in the networks [3].

However, the potential use of this disruptive technol-
ogy spawn to each and every application that need to 
evolve from a centralized authorization entity acting 
as a trusted intermediary or sometimes a third-party 
verifiable trust anchor, towards a purely distributed au-
thentication model. 

Our goal in this paper is to give the reader particu-
larly interested in IoT security, a proposal for a new 
security architecture combining SDN and Blockchain 
technologies, with the aim of improving, and simplify-
ing the deployment of IoT security.

The remainder of the paper is laid out as follows: In 
section 2, we go over some background information 
before introducing IoT, SDN, and Blockchain, as well 
as their designs. Then, in section 3, we describe our 
proposed BCSDN-IoT architecture, its operation, and 
analysis and alert generation. In section 4, we conduct 
an implementation of the BCSDN-IoT solution in virtual 
through the open source solution OpenDayLight, start-
ing with its installation, the realization of the BCSDN-
IoT architecture and the simulation of some attacks. 
And finally in section 5 we conclude our article with 
some perspectives.

2. BACKGROUND & RELATED WORKS

2.1 INTErNET of THINgS

The Internet of Things (IoT), as well as the Internet of 
Everythings (IoE) in a larger sense, is a relatively new 
concept. It is considered a major technological and 
economic innovation in the industry of new informa-
tion technologies and communication.

The IoT does not have a unique definition but gener-
ally speaking, It is characterized as a broadening of the 
current Internet to include all objects that can commu-
nicate directly or indirectly with electronic equipment 
that is also linked to the Internet.

The International Telecommunication Union [7] de-
fines the Internet of Things as: "A global infrastructure 
for the information society, which enables advanced 
services by interconnecting objects (physical or virtual) 
through existing or evolving interoperable information 
and communication technologies".

IoT devices are typically sensor nodes, RFID (Radio Fre-
quency IDentification) tags and wireless communication 
devices connected to the Internet in a smart environ-
ment [2]. These devices are very diverse (phone, watch, 
refrigerator...) and are now widely used in everyday life.

With the exponential development of these con-
nected objects with heterogeneous characteristics, the 
networks of the future must evolve towards new archi-
tectures to adapt to the increase in traffic and ensure 
their security. Security is one of the issues of today's 
Internet, as there are more and more intelligent secu-
rity attacks to deal with. In addition, security attacks 
for IoT are more difficult to handle due to the minimal 
energy storage, data and processing capacity that are 
not suitable for existing network security mechanisms 
based on firewall and IDS/IPS [21]. The concept of IoT is 
relatively simple but there are many problems because 
these connected devices do not have enough capacity 
to handle the communications and processing associ-
ated with the applications.

Architecture: The most commonly used IoT archi-
tecture for SDN solutions, and as shown in Figure 1, is 
made up of three layers: the perception layer, the net-
work layer and the application layer [8].

fig. 1. The architecture of IoT
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Perception layer: it is at this level that the collection 
of information takes place. Various devices and devices 
help it in this, such as smart cards, readers and sensors, 
RFID tags, etc.

It is personalized by a function that allows it to detect 
the whole object in order to acquire information about 
it at any time and place, through the RFID system. (EPC) 
Electronic Product Code is a unique identifier that dis-
tinguishes each object in the IoT infrastructure, it gen-
erates a sequence of numbers giving an idea about the 
producer of the object, its production date and the ex-
piry date.... [8].

Network layer: This layer allows the sending of the 
required information from the previous layer to the 
internet through machines, wired or wireless network 
equipment. As a transport layer, digital data is trans-
ported reliably [8].

Application layer: or also known as the process lay-
er analyzes the information received and makes control 
decisions to perform its intelligent processing function 
by connecting, identifying and controlling objects and 
devices. Intelligence assets use intelligent computing 
technologies such as cloud computing and process 
information for intelligent control, as well as the tasks 
that must be completed and when they must be com-
pleted [8].

2.2 SofTwArE-DEfINED NETworkINg

SDN (software-defined networking) is a new net-
work architecture paradigm that describes a control 
plane that is completely separate from the data plane. 
According to the ONF (Open Network Foundation) [9] 
SDN is an architecture that separates the control plane 
from the data plane, and centralizes all network intel-
ligence [27] in a programmable entity called "Control-
ler", in order to manage several elements of the data 
plane (e.g. switches or routers, etc.) via APIs (Applica-
tion Programming Interface).

More concretely, we can say that a network architec-
ture follows the SDN paradigm if, and only if, it verifies 
the following points:

•	 The control plane is completely decoupled from 
the data plane; this separation is materialized 
through the definition of a programming inter-
face (Southbound API)

•	 All network intelligence is externalized in a logi-
cally centralized point called the SDN controller, 
which offers a global view on the entire physical 
infrastructure.

•	 The SDN controller is a programmable compo-
nent that exposes an API (NorthboundAPI) to 
specify control applications.

Architecture: A traditional network is generally com-
posed of interconnection equipment such as switches 
and routers. This equipment incorporates both the 

transmission and control parts of the network. In this 
architecture model, it is difficult to develop new servic-
es because of the strong coupling between the control 
plane and the transmission plane.

In order to open the network equipment to innova-
tions, the SDN architecture was born. It allows decou-
pling the control part from the transmission part of the 
interconnection equipment [29]. As depicted in Figure 
2, the SDN is made up of three layers and communica-
tion interfaces.

fig. 2. The architecture of SDN

We describe in the following these layers, as well as 
the communication interfaces:

•	 The transmission layer: also called "data plane", 
it is composed of routing equipment such as 
switches or routers, its main role is to transmit 
data and collect statistics.

•	 The control layer: also called "control plane", it 
is mainly composed of one or more SDN control-
lers, its role is to control and manage the infra-
structure equipment through an interface called 
'south-bound API'.

•	 The application layer: represents the applica-
tions that enable the deployment of new net-
work functionalities, such as traffic engineering, 
QoS, security, etc. These applications are built 
through a programming interface called 'north-
bound API’.

Communications Interfaces

There are three main types of interfaces, which allow 
controllers to communicate with their environment: 
South, North and East/West interfaces

Southbound APIs: are the interfaces that allow the 
SDN controller to communicate with infrastructure 
layer devices like switches and routers.

The most widely used protocol, and the most de-
ployed as a Southbound interface is the OpenFlow 
protocol, which has been standardized by the ONF, its 
latest version is 1.5 [10], more details on this protocol 
will be given in the next section. There are now other 
southern interface alternatives, such as ForCes [11], or 
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Open vSwitch Database (OVSDB) [12], but the Open-
Flow protocol is currently the de facto standard, which 
is widely accepted and spread in SDN networks.

Nord interfaces: are used to program transmission 
devices, exploiting the network abstraction provided 
by the control plane. It is noted that unlike the South-
bound API which has been standardized, the North in-
terface still remains an open question.

While the need for such a standardized interface is 
a considerable debate within the industry, the advan-
tage of an open Northbound API is also important, as 
an open Northbound API allows for more innovation 
and experimentation. Several implementations of this 
interface exist, each of which offers very different func-
tionality. The RESTful [13] is considered the most wide-
spread North API in SDN.

East/west interfaces: are communication interfaces 
that allow communication between controllers in a 
multi-controller architecture to synchronize the net-
work state. These architectures are very new and no 
inter-controller communication standard is currently 
available.

2.3. BloCkCHAIN

Blockchain technology emerged in early 2009 with 
the crypto-currency Bitcoin (BTC). Bitcoin users use 
a variable public key (PK) [14] to generate transac-
tion information and broadcast it to the network for 
transferring funds. Transaction information is stored 
by all users in its own block. Once the block is full, a 
network mining process is performed; the hash value 
of the block is calculated, and the encrypted informa-
tion and blocks are added to the blockchain [15]. To 
mine the cryptographic hash value of a block, certain 
nodes in the network, known as miners, compete to 
solve a proof of work called the cryptographic re-
source consumption puzzle (POW) [28]. The node that 
solves the puzzle first and gets everyone's approval is 
considered to have mined the block. This is because 
blockchain technology maintains all transaction data 
counts among all members, and all members update 
the counts simultaneously to maintain completeness 
when new transactions occur [16] [23]. The Internet 
and encryption technologies are the underlying tech-
nologies that allow all members to verify the reliability 
of each transaction to resolve a single point of failure 
caused by a traditional third-party authorized transac-
tion. Because the blockchain is a peer-to-peer (P2P) 
network [17], the transaction is free of unauthorized 
third-party charges. As everyone keeps their transac-
tion information up to date, the hacking effect of single 
point records is very limited, and it frequently fails. In 
addition, users of a blockchain system can openly ac-
cess transaction records and reduce the costs of moni-
toring transactions. Since the hash value stored in each 
block peer is affected by the block peer is affected by 
the value of the previous block, forgery and modifica-

tion of data requires modification of the entire chain 
[18] and the amount of computation at one point is far 
behind the computation of the entire network. As a re-
sult, forgery is almost impossible.

fig. 3. The architecture of IoT with Blockchain

2.4 rElATED workS

Several researchers have recently addressed emerg-
ing leading technology such as IoT, SDN, Blockchain, and 
other smart technologies in today's world [19, 20, 21, 
and 22]. In this section, some literature reviews of recent 
works have been mentioned which are given below:

research work
Used Summary 

contributions and 
featuresIoT SDN Block 

chain

M. J. Islam, M. 
Mahin, S. Roy, B. 
C. Debnath, and 
A. Khatun.[19]

✓ ✓ *

Presented a distributed 
black net with SDN-IoT 
architecture for smart 

cities and addressed the 
cluster head selection 

scenario

M. A. Ferrag, 
M. Derdour, 

M. Mukherjee, 
A. Derhab, L. 

Maglaras, and H. 
Janicke [20]

✓ * ✓

Provided several 
overviews of the 

Blockchains application 
domain in IoT, e.g: 

Vehicle Internet, Energy 
Internet, Cloud Internet

P. K. Sharma, S. 
Singh, Y.-S. Jeong, 
and J. H. Park, [21]

✓ ✓ ✓

Proposed a literature  
combination between 

Blockchain and SDN 
for IoT networks and 
presented flow rule 

table for validation of 
blocks as well

C. Qiu, F. R. Yu, F. 
Xu, H. Yao, and C. 

Zhao [22]
✓ ✓ ✓

Proposed an imminent 
permitted blockchain-

based consensus in 
distributed SDIoT and 
also efficiently used 

a novel dueling deep 
Q-learning approach.

Table 1. State of the art.
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3. BCSDN- IoT PROPOSED ARCHITECTURE 
COMBINING SDN AND BLOCKCHAIN FOR IoT 
SECURITY

Based on the analysis in the previous section for the 
rapidly growing IoT networks created by new com-
munication paradigms, we observed that the current 
distributed network architecture, protocols, and tech-
niques are not designed to meet the design principles 
required for future challenges and satisfy new service 
requirements. Today, organizations need a unique dis-
tributed security architecture that includes powerful 
network security devices that provide real-time proac-
tive protection and high performance to address the 
design principles analyzed. In this section, we provide 
the distributed secure SDN architecture,BCDSN-IoT ar-
chitecture, its workflow, and a mechanism for updating 
high-performance availability flow rule tables play an 
important role in a distributed blockchain network.

3.1. BCSDN-IoT APProACH

BCSDN-IoT adopts distributed secure network con-
trol in the IoT network using the concept of blockchain 
technology to improve security, scalability, and flex-
ibility without the need for a central controller. Figure 
5 shows the overall view of the proposed architecture. 
In the proposed architecture, all controllers in the IoT 
network are interconnected in a distributed blockchain 
network fashion so that each IoT transmitting device 
in the network can communicate easily and efficiently. 
Each local network view includes an IDS/IPS (Intrusion 
Detection System/Intrusion Prevention System) ser-
vice. By putting an IDS module on each controller, the 
BCSDN-IoT architecture not only enables operational 
flexibility, but also proactive and reactive incident pre-
vention based on the repeating threat environment, 
which is fast evolving, dynamic and high performing. 
It provides an agile, modular and secure network infra-
structure. Protections must dynamically adapt to the 
threat landscape without requiring security adminis-
trators to manually process large numbers of notifica-
tions and approvals. These assurances must be well-
coordinated across the broader IoT environment, and 
the architecture must adopt a protection posture that 
uses both internal and external sources constructively.

Our solution is inspired by the security grid concept 
and our intelligent firewall approach to improve secu-
rity in a conventional network and extend it to the IoT.

 In this approach, we propose a collaborative secu-
rity solution with a distributed controller architecture 
coupled with IDS. We have opted for a distributed SDN 
architecture distributed SDN architecture because a 
centralized architecture with a single controller in-
creases the danger of network in the event of a denial 
of service (DoS) attack, there will be a service outage.
For example, if the threat is only on one machine, it is 
not critical and isolating the machine can be a solution, 
but if the single controller is compromised, the whole 

network is at risk. The use of multiple controllers there-
fore creates redundancy, ensures high availability and 
reduces network latency.

fig. 4. Distributed Routing Cluster for SDN

fig. 5. The BCSDN-IoT architecture proposed

As shown in Figure 4, our solution consists of one or 
more clusters. Each cluster is composed of one or more 
network devices that are responsible for the intercon-
nection of devices including connected objects. Within 
each cluster, an SDN controller manages the OpenFlow 
network. Each SDN controller is coupled to an IDS. The 
IDS is responsible for detecting intrusions into the net-
work perimeter of each cluster. In other words, a clus-
ter is an SDN domain in which we use an OpenFlow 
network with an SDN controller and an IDS to manage 
the security domain, which we call the zone of trust. To 
form a trust zone, all the equipment and devices in this 
zone must be fully secured. This security work is done 
by the controller and IDS pair. The SDN controller acts 
as an intelligent firewall for the trust zone and has se-
curity rules specific to the security needs of the cluster. 
These rules are programmed by an administrator. They 
can be distributed to other trust zones if the security 
need is the same through the East-West API.

Our approach allows not only to manage security in 
a totally decentralized way through a local manage-
ment of security by the SDN/IDS controller couple, but 
also that the controllers exchange information on the 
threats detected in their respective clusters.
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The SDN controller is the central element for security 
management in each trust zone. It has a global view 
of the network, manages traffic and distributes security 
policies to the network devices in its own cluster.

Before the SDN controller can isolate the threat in 
each cluster, it must be detected. That is why we use an 
IDS to solve this problem. In practice, this can be done 
by setting up an IDS like snort or other.

3.2 ANAlYSIS, DETECTIoN AND AlErT 
 gENErATIoN

To achieve this, we used an IDS to listen to all net-
work traffic, analyze and detect malicious flows.

The IDS analyzes the network data and detects anom-
alies or attack patterns predefined by the blockchain 
network administrators. This detection is mainly based 
on the analysis of the network and transport layer pack-
et headers but also on the packet content. To detect a 
malicious flow, the IDS mainly uses two analysis meth-
ods, namely the signature-based detection method 
which allows to detect known patterns in the analyzed 
data, or the behavioral detection method which detects 
deviations of a behavior from a normal profile. In both 
cases, the IDS compares the analyzed data to a reference 
described either by a signature or by a normal profile. 
Once the data is analyzed, the IDS can generate an alert 
in the form of a log file in case of malicious flows.

4. IMPlEMENTATIoN of THE BCSDN-IoT 
SolUTIoN

Our implementation model is entirely realized in a 
virtual environment with open source tools.

4.1 INSTAllINg oPENDAYlIgHT

The OpenDaylight controller is an open source net-
work operating system software developed in Java 
and managed by the Linux Foundation. It is based on 
a modular architecture and exchanges with SDN appli-
cations using the Northbound API. OpenDaylight com-
municates with network devices using its Southbound 
API. The most commonly used Southbound API in SDN 
is OpenFlow.

To experiment with our solution, we created a virtual 
machine with 2 CPUs and 16GB of RAM with an Ubuntu 
16.04 operating system on the VMware platform. Then 
we installed on this machine an OpenDaylight SDN 
controller Beryllium- SR4 version.

Once OpenDaylight was installed, we added features 
such as odl-l2switch-switch, odl-dlux-all and odl-rest-
conf to support Layer 2/3 switches, web interface and 
communicate with applications via the REST API. It is 
also important to enable OpenFlow version 1.3 by add-
ing the -of13 option on the launch script file, as Open-
Flow version 1.0 is implemented on the OpenDaylight 
controller by default. OpenDaylight provides several 
types of features to use as needed.

fig. 6. Installing OpenDaylight

Once OpenDaylight was installed, we added features 
such as odl-l2switch-switch, odl-dlux-all and odl-rest-
conf to support Layer 2/3 switches, web interface and 
communicate with applications via the REST API. It is 
also important to enable OpenFlow version 1.3 by add-
ing the -of13 option on the launch script file, as Open-
Flow version 1.0 is implemented on the OpenDaylight 
controller by default. OpenDaylight provides several 
types of features to use as needed.

To make a Layer 2/3 OSI routing decision, the Open-
Daylight controller knows the network topology, as well 
as the devices that are connected with their identifiers 
(IP addresses and MAC addresses). Using OpenFlow 1.3, 
the OpenDaylight controller configures an OVS switch 
and manages and updates the OpenFlow network.

4.2 rEAlIzATIoN of THE ArCHITECTUrE

Most of the works in the literature use the mininet 
network simulator to experiment the SDN network. We 
have chosen to use virtual machines in a production en-
vironment on VMvare platform, to be in a real use case.

To realize our virtual network architecture, we cre-
ated a second virtual machine with an Ubuntu 16.04 
operating system, 2 virtual CPU and 16GB of RAM on 
a VMvare platform. On this machine, we installed an 
OpenFlow 1.3 compatible virtual switch (OVS version 
2.6.0) and Qemu (Quick Emulator), an open source vir-
tual machine emulator on x86 architecture.

The OVS is an open source software implementation 
of an Ethernet switch with the particularity of being 
multilayer and distributed. It is designed to work as an 
OSI level 2/3 switch in virtual machine environments 
supporting different protocols and standards, including 
the OpenFlow protocol. In our work, it has allowed us to 
make client virtual machines communicate with each 
other. Qemu is used to emulate our client machines with 
an Alpine Linux operating system, an ultra light distri-
bution of Linux with 48MB of RAM. We used the basic 
qemu-img tool to create and manage disk images. The 
qcow2 format is used in this work because it integrates 
more features like compression and encryption.

Then, we wrote a bash script to launch several qemu 
client virtual machines with the possibility to manage 
them remotely. The same script allows to launch the 
OVS to interconnect the Alpine Linux virtual machines 
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and to create the link between the OpenFlow switch 
and the OpenDaylight controller, to allow the latter to 
control the network via the OpenFlow 1 protocol.

A dynamic allocation of IPv4 addresses in DHCP of 
the virtual machines clients of the network is made by 
the same code. This is how we set up our OpenFlow 
network with the possibility of scaling up just by vary-
ing the number of virtual machines and number of vir-
tual machines and OVS desired.

4.3 SECUrINg THE lINk BETwEEN 
 THE oPENDAYlIgHT CoNTrollEr 
 AND THE oVS

As discussed earlier, the communication channel be-
tween the OVS and the OpenDaylight controller is not 
encrypted by default, which means that encryption of 
OpenFlow exchange messages between these two ele-
ments of the SDN network does not run automatically. In 
addition, some controllers do not even support TLS for 
encrypting communications between the SDN switch 
and the controller. A hacker can exploit this lack of se-
curity on the OpenFlow channel to attack the network 
and conduct malicious actions. This is extremely dan-
gerous if the hacker gains access to the controller that 
would give him control over the entire network. With a 
grip on the controller, the hacker can remove OpenFlow 
switches, modify OpenFlow rules in the switch, capture 
sensitive traffic and monitor how the controller handles 
OpenFlow packets. For this reason, SSL/TLS encryption 
of OpenFlow message exchanges on the channel be-
tween the OVS and OpenDaylight is required.

The encryption of OpenFlow messages between the 
OVS and OpenDaylight is done using an SSL/TLS connec-
tion, based on the Public Key Infrastructure (PKI) model.

fig. 7. Node Inventory on the OpenDaylight 
Beryllium-SR4

Using the OpenSSL encryption toolkit, we generated 
a keyStore, a file containing the controller's private and 
public keys. Then, the key file is imported into a JKS for-
mat key file, adapted to be configured on the Open-
Flow configuration file of the OpenDaylight controller.

4. 4 SoME ExAMPlES of SIMUlATED 
 ATTACkS

To simulate an attack and see if the IDS detects it or not, 
we installed the Nmap tool on one of the client virtual ma-
chines. Then, we successively launched a denial of service 
attack, a port scan and an IP address spoofing with the 
specific Nmap command on a case by case basis.

•	 Denial of service
The objective here is to detect and block attempts to 

saturate a target machine with DoS attacks using the 
ICMP protocol. We proceeded to send ICMP requests 
to the second machine of our network, in order to see 
if the Snort IDS reacted by detecting the unwanted 
flows. With this example, we found that after this ICMP 
request, our Snort IDS detected and saved a log file on 
the specific directory of the Snort server. This type of 
attack attempt can make the controller or a machine 
unavailable to its users. It interrupts or suspends net-
work services temporarily or indefinitely.

With the proposed solution, it is possible to block the 
communication of malicious nodes in an automated way.

•	 Port scan
In this case, the goal is to detect port scan attempts 

on TCP and UDP protocols and to block these requests 
from the same source with the Nmap tool. Nmap is an 
open source port scanning software designed to de-
tect open ports and, more generally, to obtain informa-
tion about the operating system of a remote computer. 
To find out which ports are open on a machine, Nmap 
sends a packet to all ports on the target machine and 
analyzes the responses.

To simulate port scanning, we installed the Nmap 
tool on one of the Linux host alpine machines on our 
network. Then, we launched a port scan on one of the 
machines of the network with the specific command 
(nmap -p "*" Ip address target machine) and in the 
same way, Snort detected this attack attempt and re-
corded the corresponding log.

•	 IP or MAC address spoofing
MAC address spoofing is when a malicious attacker 

attempts to spoof a legitimate MAC or IP address in 
order to send packets to the network, using a trusted 
address. MAC/IP address replication forces systems to 
believe that the source is trustworthy.

In the same way as port scanning, we experimented 
with Nmap, and through the specific command (nmap 
spoof-mac target machine MAC address or target ma-
chine IP address), IP and MAC address spoofing and 
found that Snort detected the threat and logged the 
associated log.

We noticed that Snort detected all the attacks and 
saved the corresponding files in the log directory. This 
procedure can be extended to other types of more 
complex and intelligent threats.

5. CoNClUSIoN

In this paper, based on an analysis of the challenges 
faced by large-scale IoT networks due to new com-
munication paradigms, BCSDN-IoT, a novel distributed 
secure IoT network architecture composed of an SDN 
backbone using blockchain technology, has been pro-
posed to address current and future challenges and 
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satisfy new service requirements. BCSDN-IoT improves 
the performance and capacity of a system. The primary 
role of the BCSDN-IoT model is to generate and deploy 
protections, including threat prevention, data protec-
tion, and access control, and mitigate network attacks 
such as cache poisoning/ARP spoofing, DDoS/DoS at-
tacks, and detect security threats. The BCSDN-IoT ap-
proach also focuses on minimizing attack window 
time by allowing IoT forwarding devices to check and 
download the most recent flow rule table if necessary. 
The performance evaluation is based on the scalability, 
defense effects, accuracy rates and performance over-
head of the proposed model.
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