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Abstract. This paper deals with the investigation of the direct scattering problem for the
Sturm-Liouville operator containing both the discontinuous coefficient and discontinuity
conditions at some point on the positive half-line. The integral representation of the Jost
solution is obtained and the properties of its kernel function are given. A total collection
of the scattering data is constructed and the behavior of the scattering function at infinity
is examined.
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1. Introduction

In this paper, we consider the Sturm-Liouville equation with the discontinuous co-
efficient

−y′′ + q(x)y = λ2ρ(x)y, x ∈ (0, a) ∪ (a,+∞), (1)

and discontinuity conditions at the point a ∈ (0,+∞)

y(a− 0) = αy(a+ 0), y′(a− 0) = α−1y′(a+ 0), (2)

and the boundary condition
y(0) = 0, (3)

where α > 0, λ is a complex parameter, ρ(x) is a piecewise-constant function

ρ(x) =

{
β2, 0 < x < a,
1, a < x <∞

with 0 < β ̸= 1, and the function q(x) is real and satisfies the condition∫ ∞

0

x|q(x)|dx <∞. (4)

It is well known in quantum mechanics that the scattering of particles by a
potential field is completely determined by the asymptotic form of the wave functions
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at infinity. Therefore, the following question arises: is it possible to reconstruct the
potential from a knowledge of the asymptotic form of the wave functions at infinity?
Then, if possible, indicate a method for constructing the potential. This question is
discussed in detail in the work of V. A. Marchenko [19]; namely, when ρ(x) ≡ 1 and
α = 1 in the boundary value problem (1)-(3) with assumption (4), this boundary
value problem has bounded solutions u(x, λ) for λ2 > 0 and λ = iλk (k = 1, 2, . . . , n);
moreover, as x→ ∞,

u(x, λ) = e−iλx − S(λ)eiλx + o(1) (0 < λ2 <∞),

u(x, iλk) = mke
−λkx(1 + o(1)), (k = 1, 2, . . . , n),

respectively. Thus, the collection {S(λ)(−∞ < λ <∞);λk;mk(k = 1, 2, . . . , n)} pro-
vides a complete description of the behavior at infinity of all wave functions u(x, λ)
and is referred to as the scattering data of this problem (note that for this sub-
ject work [1] can be examined). In the present paper, we examine the proper-
ties of the scattering data of the boundary value problem (1)-(3). In contrast to
other studies, the boundary value problem (1)-(3) contains both discontinuous co-
efficient and discontinuity conditions on the positive half-line. The scattering the-
ory for the Sturm-Liouville operator with the discontinuous coefficient is studied in
[4, 5, 6, 8, 9, 15, 16, 17, 20], and the Sturm-Liouville operator with discontinuity
conditions on the positive half-line is discussed in [2, 10, 11, 12, 18].

In this paper, firstly we construct the integral representation of the Jost solution
of the Sturm-Liouville equation (1) with discontinuity conditions (2). In the classic
case (ρ(x) ≡ 1 and α = 1), the transformation operator (or the Jost solution rep-
resentation) which preserves the asymptotics of the solutions at infinity is obtained
in [14] (see also [19]). The existence of the discontinuous coefficient ρ(x) and dis-
continuity conditions (2) strongly influences the structure of the representation of
the Jost solution because the triangular property of the Jost solution representation
is lost and the kernel function has a discontinuity along the line t = β(a − x) + a
for x ∈ (0, a). We state that the Jost solution representation of the Sturm-Liouville
equation with discontinuous coefficient ρ(x) is given in [9] and the Sturm-Liouville
equation with discontinuity conditions (2) is obtained in [10].

Note that in physical and mathematical literature, there are numerous studies on
scattering theory because of its applications in the quantum mechanics (see [3, 7, 13]
and the references therein); therefore, we give the works close to the subject of this
paper in the references.

2. Jost solution of the discontinuous Sturm-Liouville equation

We denote by e(x, λ) the solution of the equation (1) with discontinuity conditions
(2) and the condition at infinity lim

x→∞
e(x, λ)e−iλx = 1. In the case of q(x) ≡ 0 in

the equation (1), the Jost solution of the equation (1) with discontinuity conditions
(2) is as follows:

e0(x, λ) =

{
eiλx, x > a,
θ+eiλ(β(x−a)+a) + θ−eiλ(−β(x−a)+a), 0 < x < a,

(5)
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where θ± = 1
2

(
α± 1

αβ

)
. Assume that θ+ + |θ−| > 1.

Theorem 1. Let condition (4) holds. Then, for all λ from the closed upper half-
plane, the equation (1) with discontinuity conditions (2) has the Jost solution e(x, λ)
that can be represented in the form

e(x, λ) = e0(x, λ) +

∫ ∞

σ(x)

K(x, t)eiλtdt, (6)

where σ(x) =

{
x, x > a,
β(x− a) + a, 0 < x < a,

the kernel K(x, .) belongs to the space

L1(σ(x),∞) for each fixed x ∈ (0, a) ∪ (a,+∞) and satisfies the inequality∫ ∞

σ(x)

|K(x, t)|dt ≤ ecp(x) − 1, (7)

with p(x) =
∫∞
x
s|q(s)|ds and c = θ+ + |θ−|.

Proof. Consider the integral equation obtained by using the method of variation of
constants for e(x, λ):

e(x, λ) = e0(x, λ) +

∫ ∞

x

s(x, t, λ)q(t)e(t, λ)dt, (8)

where

s(x, t, λ) =


sinλ(t−x)

λ , a < x < t,
sinλβ(t−x)

λβ , x < t < a,
θ+ sinλ(t−(β(x−a)+a))

λ + θ− sinλ(t−(−β(x−a)+a))
λ , x < a < t.

(9)

It is known from [19] that when x > a, the Jost solution e(x, λ) can be expressed in
the form

e(x, λ) = eiλx +

∫ ∞

x

K(x, t)eiλtdt, (10)

where

K(x, t) = K0(x, t) +
1

2

∫ ∞

x

q(s)ds

∫ t+(s−x)

t−(s−x)

K(s, u)duds, (11)

with

K0(x, t) =
1

2

∫ ∞

x+t
2

q(s)ds. (12)

Now, when 0 < x < a, let us seek the Jost solution e(x, λ). Substituting expression
(6) for e(x, λ) in (8), we get∫ ∞

β(x−a)+a

K(x, t)eiλtdt =

∫ ∞

x

s(x, t, λ)q(t)e0(t, λ)dt+

+

∫ ∞

x

s(x, t, λ)q(t)

∫ ∞

β(t−a)+a

K(t, s)eiλsdsdt. (13)
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Take into account the first term on the right-hand side of the equality (13). Using
(5) and (9), then changing the order of integration respectively, we find

∫ ∞

x

s(x, t, λ)q(t)e0(t, λ)dt =
θ+

2β

∫ β(a−x)+a

β(x−a)+a

eiλt

{∫ a

t+β(x+a)−a
2β

q(u)du

}
dt

+
θ−

2β

∫ β(a−x)+a

β(x−a)+a

eiλt

{∫ a

β(x+a)+a−t
2β

q(u)du

}
dt

+
θ+

2

∫ β(a−x)+a

β(x−a)+a

eiλt
{∫ ∞

a

q(u)du

}
dt

+
θ+

2

∫ ∞

β(a−x)+a

eiλt

{∫ ∞

t+β(x−a)+a
2

q(u)du

}
dt

−θ
−

2

∫ β(a−x)+a

β(x−a)+a

eiλt

{∫ t+β(a−x)+a
2

a

q(u)du

}
dt

+
θ−

2

∫ ∞

β(a−x)+a

eiλt

{∫ ∞

t+β(a−x)+a
2

q(u)du

}
dt. (14)

Consider the second term on the right-hand side of the equality (13). Using (9) once
more, we obtain∫ ∞

x

s(x, t, λ)q(t)

∫ ∞

β(t−a)+a

K(t, s)eiλsdsdt

=
1

2β

∫ a

x

q(t)

∫ ∞

β(t−a)+a

K(t, s)

{∫ s+β(t−x)

s−β(t−x)

eiλξdξ

}
dsdt

+
θ+

2

∫ ∞

a

q(t)

∫ ∞

β(t−a)+a

K(t, s)

{∫ s+t+β(a−x)−a

s−t+β(x−a)+a

eiλξdξ

}
dsdt

−θ
−

2

∫ β(a−x)+a

a

q(t)

∫ ∞

β(t−a)+a

K(t, s)

{∫ s+β(a−x)+a−t

s+β(x−a)−a+t

eiλξdξ

}
dsdt

+
θ−

2

∫ ∞

β(a−x)+a

q(t)

∫ ∞

β(t−a)+a

K(t, s)

{∫ s+t+β(x−a)−a

s−t+β(a−x)+a

eiλξdξ

}
dsdt.

Now, extending the function K(t, s) by zero for s < t for any t ≥ β(x − a) + a, we
have ∫ ∞

x

s(x, t, λ)q(t)

∫ ∞

β(t−a)+a

K(t, s)eiλsdsdt

=
1

2β

∫ ∞

−∞
eiλt

{∫ a

x

q(ξ)

∫ t+β(ξ−x)

t−β(ξ−x)

K(ξ, s)dsdξ

}
dt
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+
θ+

2

∫ ∞

−∞
eiλt

{∫ ∞

a

q(ξ)

∫ t+ξ+β(a−x)−a

t−ξ+β(x−a)+a

K(ξ, s)dsdξ

}
dt

−θ
−

2

∫ ∞

−∞
eiλt

{∫ β(a−x)+a

a

q(ξ)

∫ t+β(a−x)+a−ξ

t+β(x−a)−a+ξ

K(ξ, s)dsdξ

}
dt

+
θ−

2

∫ ∞

−∞
eiλt

{∫ ∞

β(a−x)+a

q(ξ)

∫ t+ξ+β(x−a)−a

t−ξ+β(a−x)+a

K(ξ, s)dsdξ

}
dt. (15)

Thus, substituting equalities (14) and (15) into the equality (13), we find

K(x, t) = K0(x, t) +
1

2β

∫ x

a

q(ξ)

∫ t+β(ξ−x)

t−β(ξ−x)

K(ξ, s)dsdξ

+
θ+

2

∫ ∞

a

q(ξ)

∫ t+ξ+β(a−x)−a

t−ξ+β(x−a)+a

K(ξ, s)dsdξ

−θ
−

2

∫ β(a−x)+a

a

q(ξ)

∫ t−ξ+β(a−x)+a

t+ξ+β(x−a)−a

K(ξ, s)dsdξ

+
θ−

2

∫ ∞

β(a−x)+a

q(ξ)

∫ t+ξ+β(x−a)−a

t−ξ+β(a−x)+a

K(ξ, s)dsdξ, (16)

where for β(x− a) + a < t < β(a− x) + a :

K0(x, t) =
θ+

2β

∫ a

t+β(x+a)−a
2β

q(u)du+
θ−

2β

∫ a

β(x+a)+a−t
2β

q(u)du

+
θ+

2

∫ ∞

a

q(u)du− θ−

2

∫ t+β(a−x)+a
2

a

q(u)du, (17)

for β(a− x) + a < t <∞ :

K0(x, t) =
θ+

2

∫ ∞

t+β(x−a)+a
2

q(u)du+
θ−

2

∫ ∞

t+β(a−x)+a
2

q(u)du. (18)

In order to complete the proof of the theorem, it suffices to verify that for each fixed
x ∈ (0, a) ∪ (a,∞), the system of equations (11), (16) has the solution K(x, .) ∈
L1(σ(x),∞) which satisfies the inequality (7). Let us use the successive approxima-
tion method. Set

(i) for x ∈ (a,∞):

Kn(x, t) =
1

2

∫ ∞

x

q(ξ)

∫ t+(ξ−x)

t−(ξ−x)

Kn−1(ξ, s)dsdξ, n = 1, 2, . . . (19)
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(ii) for x ∈ (0, a) :

Kn(x, t) =
1

2β

∫ x

a

q(ξ)

∫ t+β(ξ−x)

t−β(ξ−x)

Kn−1(ξ, s)dsdξ

+
θ+

2

∫ ∞

a

q(ξ)

∫ t+ξ+β(a−x)−a

t−ξ+β(x−a)+a

Kn−1(ξ, s)dsdξ

−θ
−

2

∫ β(a−x)+a

a

q(ξ)

∫ t−ξ+β(a−x)+a

t+ξ+β(x−a)−a

Kn−1(ξ, s)dsdξ

+
θ−

2

∫ ∞

β(a−x)+a

q(ξ)

∫ t+ξ+β(x−a)−a

t−ξ+β(a−x)+a

Kn−1(ξ, s)dsdξ, n = 1, 2, . . .(20)

and in the case of n = 0, K0(x, t) is determined by formulas (12) for x ∈ (a,∞) and
(17), (18) for x ∈ (0, a). Consider the case of x ∈ (a,∞). It follows from (12) and
(19) that ∫ ∞

x

|K0(x, t)|dt ≤
∫ ∞

x

s|q(s)|ds := p(x),∫ ∞

x

|Kn(x, t)|dt ≤
(p(x))n+1

(n+ 1)!
.

This implies that for x ∈ (a,∞) the series K(x, t) =
∑∞

n=0Kn(x, t) converges to
L1(x,∞) and its sum K(x, t) satisfies the inequality∫ ∞

x

|K(x, t)|dt ≤ ep(x) − 1.

Now, take into account the case of x ∈ (0, a). It is obtained from (17), (18) and (20)
that ∫ ∞

β(x−a)+a

|K0(x, t)|dt ≤ (θ+ + |θ−|)
∫ ∞

x

s|q(s)|ds = cp(x),∫ ∞

β(x−a)+a

|Kn(x, t)|dt ≤
cn+1(p(x))n+1

(n+ 1)!
.

This implies that for x ∈ (0, a) the series K(x, t) =
∑∞

n=0Kn(x, t) converges to
L1(β(x− a) + a,∞) and its sum K(x, t) satisfies the inequality∫ ∞

β(x−a)+a

|K(x, t)|dt ≤ ecp(x) − 1.

As a result, it is shown that the system of equations (11), (16) has the solution
K(x, .) ∈ L1(σ(x),∞) which satisfies the inequality (7).

Remark 1. The kernel function K(x, t) has the following properties which are ob-
tained from (11), (12) and (16)-(18):

K(x, σ(x)) =


1
2

∫∞
x
q(t)dt, x > a,

θ+

2

∫∞
x

1√
ρ(t)

q(t)dt, 0 < x < a.
(21)
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K(x, β(a− x) + a+ 0)−K(x, β(a− x) + a− 0)

=
θ−

2

{∫ ∞

a

q(u)du− 1

β

∫ a

x

q(u)du

}
, 0 < x < a. (22)

Moreover, if q(x) is differentiable, then K(x, t) satisfies the equation

∂2K(x, t)

∂x2
− ρ(x)

∂2K(x, t)

∂t2
= q(x)K(x, t), x ∈ (0, a) ∪ (a,∞), t > σ(x), (23)

and the conditions

d

dx
K(x, σ(x)) =


− 1

2q(x), x > a,

− θ+

2β q(x), 0 < x < a,
(24)

d

dx
{K(x, β(a− x) + a+ 0)−K(x, β(a− x) + a− 0)} =

θ−

2β
q(x), (25)

K(a− 0, t) = αK(a+ 0, t), K
′

x(a− 0, t) = α−1K
′

x(a+ 0, t), (26)

lim
x+t→∞

∂K(x, t)

∂x
= lim

x+t→∞

∂K(x, t)

∂t
= 0, (27)

which define it uniquely.

Thus, in order for K(x, t) to be the kernel of representation (6), it is necessary
and sufficient that it satisfies relations (21)-(27).

3. Scattering data

In this section, we give the scattering data of the problem (1)-(4) and investigate
some properties of this scattering data.

The solution e(x, λ) is an analytic function of λ in the upper half-plane Imλ > 0
and continuous for Imλ ≥ 0. For real λ ̸= 0, the function e(x, λ) and e(x,−λ) form
a fundamental system of solutions of equation (1) with discontinuity conditions (2)
and their Wronskian is as follows:

W {e(x, λ), e(x,−λ)} = e′(x, λ)e(x,−λ)− e(x, λ)e′(x,−λ) = 2iλ.

Lemma 1. For all values of λ, the equation (1) with discontinuity conditions (2)
has a solution w(x, λ) satisfying the conditions

w(x, λ) = x(1 + o(1)), w′
x(x, λ) = 1 + o(1), x→ 0, (28)

and the solution w(x, λ) is an analytic function of λ.

Proof. It is obtained from (1), (2) and (28) that the function w(x, λ) satisfies the
integral equation

w(x, λ) = w0(x, λ) +

∫ x

0

w0(t, x, λ)q(t)w(t, λ)dt, (29)
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where

w0(x, λ) =

{
sinλβx

λβ , 0 < x < a,
θ+ sinλ(x−a+βa)

λ + θ− sinλ(x−a−βa)
λ , a < x <∞,

(30)

w0(t, x, λ) =


sinλβ(x−t)

λβ , t < x < a,
sinλ(x−t)

λ , a < t < x,
θ+ sinλ(x−a+β(a−t))

λ + θ− sinλ(x−a+β(t−a))
λ , t < a < x.

(31)

We seek the solution of integral equation (29) for Imλ ≥ 0 in the form w(x, λ) =
xe−iλxz(x, λ). Then we can write z(x, λ) as follows:

z(x, λ) =
w0(x, λ)e

iλx

x
+

∫ x

0

w0(t, x, λ)e
iλ(x−t)

x
tq(t)z(t, λ)dt.

This equation can be solved by applying the successive approximation method. Set

z(x, λ) =

∞∑
k=0

zk(x, λ), (32)

where

z0(x, λ) =
w0(x, λ)e

iλx

x
, zk(x, λ) =

∫ x

0

w0(t, x, λ)e
iλ(x−t)

x
tq(t)zk−1(t, λ)dt.

Using relations (30) and (31), for Imλ ≥ 0 and 0 ≤ t < x we have∣∣∣∣w0(x, λ)e
iλx

x

∣∣∣∣ ≤ s,

∣∣∣∣w0(t, x, λ)e
iλ(x−t)

x

∣∣∣∣ ≤ s,

where s = (θ+ + |θ−|) + β(θ+ − |θ−|). Then,

|z0(x, λ)| ≤ s, |zk(x, λ)| ≤ s

∫ x

0

t|q(t)||zk−1(t, λ)|dt ≤
s

k!

(
s

∫ x

0

t|q(t)|dt
)k

.

It follows that series (32) converges uniformly in the domain x ∈ [0, b], Imλ ≥ 0 for
any b > 0 and its sum z(x, λ) satisfies the inequality

|z(x, λ)| ≤ s exp

{
s

∫ x

0

t|q(t)|dt
}
;

in addition, z(x, λ) is an analytic function of λ for Imλ > 0 and continuous in the
half-plane Imλ ≥ 0. Therefore, w(x, λ) satisfies both equations (1) and (29) and the
inequality ∣∣w(x, λ)eiλx∣∣ ≤ xs exp

{
s

∫ x

0

t|q(t)|dt
}
; (33)

moreover, w(x, λ) is an analytic function of λ for Imλ > 0 and continuous in the
closed half-plane Imλ ≥ 0. Similarly, it is proved that the equation (29) has a
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solution for Imλ ≤ 0 and its solution w(x, λ) is analytic in λ in the half-plane
Imλ < 0 and continuous for Imλ ≤ 0. Consequently, w(x, λ) satisfies equation (1),
vanishes at x = 0 and is an entire function of λ. It follows from the equation (29)
and the inequality (33) that

|w(x, λ)− w0(x, λ)| ≤ xs2
∫ x

0

t|q(t)|dt exp
{
|Imλx|+ s

∫ x

0

t|q(t)|dt
}
,

|w′(x, λ)− w′
0(x, λ)| ≤ s2

∫ x

0

t|q(t)|dt exp
{
|Imλx|+ s

∫ x

0

t|q(t)|dt
}
,

and these inequalities imply that the solution w(x, λ) satisfies conditions (28).

Lemma 2. The following identity holds for all real λ ̸= 0

−2iλw(x, λ)

e(0, λ)
= e(x,−λ)− S(λ)e(x, λ),

where

S(λ) =
e(0,−λ)
e(0, λ)

= S(−λ) = [S(−λ)]−1

and the function S(λ) is the scattering function of the problem (1)-(3).

Lemma 3. The function e(0, λ) may have only a finite number of zeros in the
half-plane Imλ > 0 and these zeros lie on the imaginary axis.

Remark 2. The proofs of Lemma 2 and Lemma 3 are obtained similarly in the work
of V. A. Marchenko (Lemma 3.1.5 and Lemma 3.1.6 in [19]).

Let iλk, (0 < λ1 < λ2 < · · · < λn) be the zeros of the function e(0, λ) and denote

m−2
k =

∫ ∞

0

|e(x, iλk)|2ρ(x)dx =
−e′(0, iλk)ė(0, iλk)

2iλk
, k = 1, 2, . . . , n,

where ė(x, λ) = d
dλe(x, λ). The numbersmk is the normalized numbers of the bound-

ary value problem (1)-(3).
The functions

u(x, λ) = e(x,−λ)− S(λ)e(x, λ), (−∞ < λ <∞),

u(x, iλk) = mke(x, iλk), (k = 1, 2, . . . , n)

are bounded solutions of the boundary value problem (1)-(3); moreover, as x→ ∞,
the asymptotic relations hold:

u(x, λ) = e−iλx − S(λ)eiλx + o(1), (−∞ < λ <∞)

u(x, iλk) = mke
−λkx(1 + o(1)), (k = 1, 2, . . . , n).

Definition 1. A collection of quantities

{S(λ)(−∞ < λ <∞);λk,mk (k = 1, 2, . . . , n)}

that specify the behavior of the normalized eigenfunctions at infinity is called the
scattering data of the boundary value problem (1)-(3) satisfying condition (4).
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Now, we give a property relating to the scattering function S(λ):

Lemma 4. The function S0(λ)−S(λ) is the Fourier transform of a function FS(x)
of the form

FS(x) = F
(1)
S (x) + F

(2)
S (x),

where

S0(λ) =
e0(0,−λ)
e0(0, λ)

=
θ+e−iλa(1−β) + θ−e−iλa(1+β)

θ+eiλa(1−β) + θ−eiλa(1+β)
,

F
(1)
S (x) ∈ L1(−∞,∞), F

(2)
S (x) ∈ L2(−∞,∞) and sup

−∞<x<∞
|F (2)

S (x)| <∞.

Proof. Denoting K(0, t) = K(t) for the simplicity, we can write

e(0, λ) = e0(0, λ) +

∫ ∞

0

K(0, t)eiλtdt = θ+eiλa(1−β) + θ−eiλa(1+β) + K̃(−λ)

and

S0(λ)− S(λ) =
e0(0,−λ)K̃(−λ)

e0(0, λ)
[
e0(0, λ) + K̃(−λ)

] − K̃(λ)

e0(0, λ) + K̃(−λ)
. (34)

Now, we examine that K̃(−λ)
e0(0,λ)

is a Fourier transformation of some summable function.

For this purpose, it is obtained that the series

∞∑
n=0

(−1)n
(
θ−

θ+

)n

K+(t− βa(2n+ 1) + a)

with K+(t) = K(t) for t > 0 and K+(t) = 0 for t < 0 converges some function
ψ(.) ∈ L1(−∞,∞) since∣∣∣∣∣

∫ ∞

−∞

∞∑
n=0

(−1)n
(
θ−

θ+

)n

K+(t− βa(2n+ 1) + a)dt

∣∣∣∣∣
≤

∞∑
n=0

∣∣∣∣θ−θ+
∣∣∣∣n ∫ ∞

−∞
|K+(t− βa(2n+ 1) + a)|dt =

∞∑
n=0

∣∣∣∣θ−θ+
∣∣∣∣n ∫ ∞

−∞
|K(t)|dt.

Then, we have

K̃(−λ)
e0(0, λ)

=
1

θ+

∞∑
n=0

(−1)n
(
θ−

θ+

)n ∫ ∞

βa(2n+1)−a

K(t− βa(2n+ 1) + a)eiλtdt

=
1

θ+

∫ ∞

−∞
ψ(t)eiλtdt =

1

θ+
ψ̃(−λ) := φ̃(−λ), (35)

and also

K̃(λ)

e0(0, λ)
=

1

θ+
ψ̃(λ) = φ̃(λ),

K̃(−λ)
e0(0,−λ)

=
1

θ+
ψ̃(−λ) = φ̃(−λ). (36)
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Then, using relations (35) and (36), two terms on the right-hand side of the equality
(34) can be written as follows:

e0(0,−λ)K̃(−λ)

e0(0, λ)
[
e0(0, λ) + K̃(−λ)

] =
φ̃(−λ)

1 + φ̃(−λ)
,

K̃(λ)

e0(0, λ) + K̃(−λ)
=

φ̃(λ)

1 + φ̃(−λ)
.

Consequently, the equality (34) is in the form:

S0(λ)− S(λ) =
φ̃(−λ)− φ̃(λ)

1 + φ̃(−λ)
. (37)

Now, to complete the proof of this lemma, we proceed as in the works of V. A.
Marchenko ([19], Lemma 3.1.7); namely, we note that

h̃(λ) =

 1, |λ| < 1,
2− |λ|, 1 ≤ |λ| ≤ 2
0, 2 < |λ|

is the Fourier transform of a function h(x) ∈ L1(−∞,∞); also, h̃(λN−1) is the
Fourier transform of the function hN (x) = Nh(xN) and lim

N→∞
∥f − hN ∗ f∥L1

= 0

for all f(x) ∈ L1(−∞,∞). Since the Fourier transform of f(x)−hN ∗f(x) is equal to{
1− h̃(λN−1)

}
f̃(λ), forN large enough, the function

[
1 +

{
1− h̃(λN−1)

}
f̃(λ)

]−1

−1 is the Fourier transform of a function from L1(−∞,∞). Then, we can write the
equality (37) as follows:

S0(λ)− S(λ) = [φ̃(−λ)− φ̃(λ)]

+ [φ̃(−λ)− φ̃(λ)]

{[
1 +

(
1− h̃(λN−1)

)
φ̃(−λ)

]−1

− 1

}

− [φ̃(−λ)−φ̃(λ)]

 1

1+
(
1−h̃(λN−1)

)
φ̃(−λ)

− 1

1+φ̃(−λ)

 .(38)

Since for sufficiently large N the function
[
1 +

{
1− h̃(λN−1)

}
f̃(λ)

]−1

− 1 is the

Fourier transform of a summable function, the sum of the first two terms on the
right-hand side of the equality (38) is the Fourier transform of a summable function

F
(1)
S (x) ∈ L1(−∞,∞) and since h̃(λN−1) =0 for |λ| > 2N, the third term on the

right-hand side of the equality (38) equals zero for |λ| > 2N and is bounded, so it is

the Fourier transform of a bounded function F
(2)
S (x) ∈ L2(−∞,∞).
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