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Abstract. This paper deals with the investigation of the direct scattering problem for the
Sturm-Liouville operator containing both the discontinuous coefficient and discontinuity
conditions at some point on the positive half-line. The integral representation of the Jost
solution is obtained and the properties of its kernel function are given. A total collection
of the scattering data is constructed and the behavior of the scattering function at infinity

is examined.
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1. Introduction

In this paper, we consider the Sturm-Liouville equation with the discontinuous co-
efficient
—y" +a(x)y = Np(a)y, € (0,a)U(a,+00), (1)

and discontinuity conditions at the point a € (0, +00)
yla—0)=ay(a+0), y'(a—0)=a""y(a+0), (2)

and the boundary condition
y(0) =0, 3)

where a > 0, A is a complex parameter, p(z) is a piecewise-constant function

_ B2, 0<z<a,
p(m)—{L a << oo

with 0 < 8 # 1, and the function g(x) is real and satisfies the condition

/Ooo:\q(xﬂdx < 0. (4)
0

It is well known in quantum mechanics that the scattering of particles by a
potential field is completely determined by the asymptotic form of the wave functions
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at infinity. Therefore, the following question arises: is it possible to reconstruct the
potential from a knowledge of the asymptotic form of the wave functions at infinity?
Then, if possible, indicate a method for constructing the potential. This question is
discussed in detail in the work of V. A. Marchenko [19]; namely, when p(z) = 1 and
a =1 in the boundary value problem (1)-(3) with assumption (4), this boundary
value problem has bounded solutions u(x, \) for A2 > 0 and A = i\, (k= 1,2,...,n);
moreover, as r — 09,

u(z, \) = e — §(N)e +0o(1) (0 < M\ < 0),
u(z,i\g) = mpe (14 0(1)), (k=1,2,...,n),

respectively. Thus, the collection {S(A)(—oo < A < 00); Ag;myi(k=1,2,...,n)} pro-
vides a complete description of the behavior at infinity of all wave functions u(x, \)
and is referred to as the scattering data of this problem (note that for this sub-
ject work [1] can be examined). In the present paper, we examine the proper-
ties of the scattering data of the boundary value problem (1)-(3). In contrast to
other studies, the boundary value problem (1)-(3) contains both discontinuous co-
efficient and discontinuity conditions on the positive half-line. The scattering the-
ory for the Sturm-Liouville operator with the discontinuous coefficient is studied in
[4, 5, 6, 8,9, 15, 16, 17, 20], and the Sturm-Liouville operator with discontinuity
conditions on the positive half-line is discussed in [2, 10, 11, 12, 18].

In this paper, firstly we construct the integral representation of the Jost solution
of the Sturm-Liouville equation (1) with discontinuity conditions (2). In the classic
case (p(z) =1 and a = 1), the transformation operator (or the Jost solution rep-
resentation) which preserves the asymptotics of the solutions at infinity is obtained
in [14] (see also [19]). The existence of the discontinuous coefficient p(z) and dis-
continuity conditions (2) strongly influences the structure of the representation of
the Jost solution because the triangular property of the Jost solution representation
is lost and the kernel function has a discontinuity along the line t = S(a — z) + a
for x € (0, a). We state that the Jost solution representation of the Sturm-Liouville
equation with discontinuous coefficient p(x) is given in [9] and the Sturm-Liouville
equation with discontinuity conditions (2) is obtained in [10].

Note that in physical and mathematical literature, there are numerous studies on
scattering theory because of its applications in the quantum mechanics (see [3, 7, 13]
and the references therein); therefore, we give the works close to the subject of this
paper in the references.

2. Jost solution of the discontinuous Sturm-Liouville equation

We denote by e(x, \) the solution of the equation (1) with discontinuity conditions
(2) and the condition at infinity lim e(z,A\)e”* = 1. In the case of g(x) = 0 in
the equation (1), the Jost solution of the equation (1) with discontinuity conditions
(2) is as follows:

e T > a,

eo(fE, )‘) = {9—&-6;)\(6(1—(1)4-(1) + G—ei)\(—ﬁ(r—a)—&-a)7 0<z<a, (5)
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where 6% = 1 (a + 04173> Assume that 07 + |6~ > 1.

Theorem 1. Let condition (4) holds. Then, for all X from the closed upper half-
plane, the equation (1) with discontinuity conditions (2) has the Jost solution e(x, \)
that can be represented in the form

e(z, ) = ep(z, A) + K(z,t)e™dt, (6)
o(x)

x, x> a,
Blx—a)+a,0<z<a,
Li(o(x),00) for each fized x € (0,a) U (a,+00) and satisfies the inequality

where o(x) = the kernel K(x,.) belongs to the space

/( NEEXIE eer() _ 1, (M)

with p(x) = [ slq(s)|ds and c = 6T +167|.

Proof. Consider the integral equation obtained by using the method of variation of
constants for e(x, \):

e(z,\) = eg(z, A) +/ s(z,t, N)g(t)e(t, \)dt, (8)
where
sin)\gi&—z)7 a<az<t,
s(z,t,\) = %, z<t<a, (9)
0t sin A(t—(}\,@(w—a)-{-a)) + 0~ sin /\(t—(;,@(I—a)-ﬁ—a))7 r<a<t

It is known from [19] that when = > a, the Jost solution e(z, \) can be expressed in
the form

e(z,\) = e +/ K (z,t)e™dt, (10)
x
where
1 0o t+(s—z)
K () = Kol 1) + / o(s)ds / K (s, u)duds, (11)
T t—(s—x)
with

Ko(e.t) =5 [ as (12)

Now, when 0 < z < a, let us seek the Jost solution e(z, ). Substituting expression
(6) for e(x,\) in (8), we get

o0 o0
/ K(z,t)edt = / s(x,t, N)q(t)eo(t, N)dt +
B(z—a)+a x

*° o iAs
+/I s(x,t,)\)q(t)/B K(t,s)e'dsdt. (13)

(t—a)+a
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Take into account the first term on the right-hand side of the equality (13). Using
(5) and (9), then changing the order of integration respectively, we find

[ st Nateote v = 0 [ { .
s(z, t, \)g(t)eg(t, \)dt = — o / Judu bt
’ 26 Jg(a—a)+a tb(zta)—a

9— Bla—z)+a " a . .
’ t
2ﬁ B(z—a)+a ‘ /W q(u) v

g+ [Bla—z)+a 00
+— et {/ q(u)du}dt

2 B(xz—a)+a

9+ Oo At >
+7 © t+8(z—a)+a q(u)du o dt
(a—z)+a pblz_aite
(a— z)+a _ M
77/ / q(u)du p dt
B(x—a)+a a

W i { / q(u)du} dt. (14)
2 Bla—z)+a M

Consider the second term on the right-hand side of the equality (13). Using (9) once
more, we obtain

/ s(, )\)(I(t)/ K(t,s)e*dsdt
z B(t—a)+a

1 a 0o s+B(t—z)
= 2—/ q(t)/ K(t,s) / e de b dsdt
5 T B(t—a)+a s—pB(t—x)
0+ 0o 0o s+t+pB(a—z)—a )
_|_7/ q(t)/ K(t,s) / eAede b dsdt
2 Ja B(t—a)+a s—t+B(z—a)+a
60— Bla—z)+a 00 stB(a—z)+a—t
——/ q(t)/ K(t,s) / ePede b dsdt
2 a B(t—a)+a s+B(z—a)—a+t

0~ oo oo s+t+B(z—a)—a )
+— / q(t) / K(t,s) / e de b dsdt.
2 Bla—z)+a B(t—a)+a s—t+B(a—x)+a

Now, extending the function K (t,s) by zero for s < ¢ for any t > B(x — a) + a, we
have

/OO (x,t, N)q(t )/OO K(t,s)e™*dsdt

B(t—a)+a

/¢ {/ © /tt;f: K. s)dsdg} it
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t+&+B(a—z)—a
_4_7 / / K (&, s)dsdg p dt
t—&+B(x—a)+a
0 0o - Bla—z)+a t+B(a—x)+a—¢
- / [ a(€) K (&, 5)dsde b dt
—o0 a t+B(z—a)—a+§
t+&{+B(z—a)—a
+7/ / q(f)/ K (&, s)dsd¢ » dt. (15)
(a—z)+a t—&+pB(a—z)+a

Thus, substituting equalities (14) and (15) into the equality (13), we find

t+B(E~ x)
K(z,t) = Ko(z,t) +—/ / ,8)dsd€
t

B(&—z)
o+ t+&+B(a—z)—a
v / a© [ K (&, 5)dsde
t—{+B(z—a)ta
0~ Bla—z)+a t—&+B(a—z)+a
> / 4() K (&, s)dsde
a t+&+B(x—a)—a
0 00 t+&+B(x—a)—a
Sl e K (&, s)dsdg, (16)
Bla—z)+a t—&+pB(a—z)+a

where for f(zr —a)+a<t<fBla—z)+a:

9+ a 0- a
KO(x’t) B % t+ﬁ<a;-ga)— ( )du + % ﬁ(w+a)+a—t Q(u)du
o oo t+Plaz)ta z>+a
—1—7/ q(u)du — —/ u)du, (17)

for fla—z)+a<t<oo:

9+ [ele] 9— o0
Ko(z,t) = > [«},g(wfa)#»a q(u)du + — q(u)du. (18)

2 Jit+Ba—z)ta
2

In order to complete the proof of the theorem, it suffices to verify that for each fixed

€ (0,a) U (a,00), the system of equations (11), (16) has the solution K(z,.) €
Li(o(x),00) which satisfies the inequality (7). Let us use the successive approxima-
tion method. Set

(i) for = € (a,00):

1 [ +(§—=)
Kalwt) =3 [ a(© /tw Ko 1(65)dsde, n=1,2,...  (19)
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(ii) for x € (0,a) :

1 [® t+5(E—=)
Kaat) = 55 / 4(6) /t_m_x) Ko 1(6, 5)dsde

g+ [ t+E+B(a—z)—a
w5 [ao | K16, 5)dsde

—&+B(z—a)+a

g- Bla—a)ta t—€+B(a—2)+a
S e Ko (6 )dsde
a t+&+B(x—a)—a

o- tHE+B(z—a)—a
& a© [ Ko 1(€,5)dsd€, n=1,2,...(20)
2 Bla—z)+a t—&+B(a—x)+a

and in the case of n = 0, Ko(z,t) is determined by formulas (12) for = € (a, 00) and
(17), (18) for x € (0,a). Consider the case of = € (a,00). It follows from (12) and
(19) that

/oo Koz, 8)]dt < /Oos|q(s)\ds = pla),

> (p(z))"+!
/ Kot < BOE

This implies that for € (a,00) the series K(z,t) = > °° ( K,(z,t) converges to
Li(x,00) and its sum K (z,t) satisfies the inequality

/ |K (x,t)|dt < eP®) —1.

Now, take into account the case of x € (0,a). It is obtained from (17), (18) and (20)
that

[ee]

[ ol < @ +107) [ slats)lds = enlo),
B

(x—a)+a T
/Oo |Kn(x,t)|dt < w
B(x—a)+a (n + 1)

This implies that for z € (0,a) the series K(z,t) = Y -, K,(z,t) converges to
Li(B(x — a) + a,00) and its sum K(z,t) satisfies the inequality

/ |K (,t)|dt < eP(®) —1.
B(z—a)+a

As a result, it is shown that the system of equations (11), (16) has the solution
K(x,.) € Li(o(x),00) which satisfies the inequality (7). O
Remark 1. The kernel function K(xz,t) has the following properties which are ob-
tained from (11), (12) and (16)-(18):
%f;o q(t)dt, x> a,
K(z,0(z)) = (21)

0F oo 1
o p(t)q(t)dt, 0<z<a.
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K(z,8(a—z)+a+0)— Bla—z)+a—0)

:92_{/(1 du——/ }, 0<z<a. (22)

Moreover, if q(x) is differentiable, then K(x,t) satisfies the equation

0?K (z,t) 0*K (z,t)
or2 pz) ot?

and the conditions

=q(z)K(z,t), x€(0,a)U(a,0), t>oc(zx), (23)

n
fg—ﬁq(x), 0<z<a,

J _
7 K@ Bla—2)+a+0) =K fla—z)+a-0}=57q(),  (25)
K(a—0,t)=aK(a+0,t), K,(a—0,t)=a 'K,(a+0,t), (26)
. OK(z,t) .. O0K(x,t)
L e . L (27)

which define it uniquely.

Thus, in order for K(x,t) to be the kernel of representation (6), it is necessary
and sufficient that it satisfies relations (21)-(27).

3. Scattering data

In this section, we give the scattering data of the problem (1)-(4) and investigate
some properties of this scattering data.

The solution e(z, A) is an analytic function of A in the upper half-plane ImA > 0
and continuous for ImA > 0. For real A # 0, the function e(x, A) and e(z, —\) form
a fundamental system of solutions of equation (1) with discontinuity conditions (2)
and their Wronskian is as follows:

We(z,\),e(x, =)} =€ (2, Ne(z, =) — e(z, N)e/(z, =) = 2.

Lemma 1. For all values of A, the equation (1) with discontinuity conditions (2)
has a solution w(z, \) satisfying the conditions

w(z,\) =z(1+0(1)), wi(z,\)=1+0(1), z—0, (28)
and the solution w(x,\) is an analytic function of \.

Proof. It is obtained from (1), (2) and (28) that the function w(z, \) satisfies the
integral equation

w(z, \) = wo(, \) + /O "oty Ng(tw(t N, (29)
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where

sin A\ Sz O<xr<a
_) 3 ’
wo JZ,A - i — _si i %
( ) { o+ Sln)\(f a+Ba) + 6~ sin A(;:\ a ﬁa)’ a< < oo, (30)
%, t<z<a,
wo(t,x, N) = A= a<t<a, 1)
o N _ - _ _
0% sin A= )\a-t,-ﬂ(a t)) + 0~ sin \(z )\a-‘rﬂ(t (l)), t<a<ux.

We seek the solution of integral equation (29) for ImA > 0 in the form w(z, A) =
e z(x, \). Then we can write z(z, \) as follows:

) = B [l N
0

- tq(t)z(t, N)dt.

This equation can be solved by applying the successive approximation method. Set

z(z, A) = sz(x,/\), (32)

k=0
where
A)eirz T t A iA(z—t)
zo(x,x):%, zk(x,)\):/ "”O(’x’x)e tq(t)ze—1 (8, N)dt.
0

Using relations (30) and (31), for ImA > 0 and 0 < ¢ < x we have

wo(t, z, \)ere—t)

T

<s

— )

<s

’ wo(x, \)er®
- )

T

where s = (07 + |07|) + 8(60F — 07 |). Then,
k

A< latNl < [ " Ha(®) e (. V)t < ( / ”ﬂq(t”dt)

It follows that series (32) converges uniformly in the domain 2 € [0,b], ImA > 0 for
any b > 0 and its sum z(x, A) satisfies the inequality

2w N)] < sexp{s / mt|q<t>|dt};

in addition, z(x, \) is an analytic function of A for ImA > 0 and continuous in the
half-plane I'mA > 0. Therefore, w(zx, \) satisfies both equations (1) and (29) and the
inequality

e | < asexp {s [ tatoae} (33)

moreover, w(z, A) is an analytic function of A for ImA > 0 and continuous in the
closed half-plane I'mA > 0. Similarly, it is proved that the equation (29) has a
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solution for ImA < 0 and its solution w(z, A) is analytic in A in the half-plane
ImA < 0 and continuous for I'mA < 0. Consequently, w(z, \) satisfies equation (1),
vanishes at x = 0 and is an entire function of A. It follows from the equation (29)
and the inequality (33) that

lw(z, \) —wo(z, \)] < x32/ tlq(t)|dt exp {|Im/\:c| + s/ t|q(t)|dt} ,
0 0
/() ~ i )| < 5 t|q<t>dtexp{|fmm:| v [ t|q<t>|dt},
0 0

and these inequalities imply that the solution w(x, A) satisfies conditions (28). O
Lemma 2. The following identity holds for all real A # 0

—2idw(z,\)

N e(z, =) — S(Ae(z, A),
where (0,-))

SO =gy = 5N = [SC-AT

and the function S(X) is the scattering function of the problem (1)-(3).

Lemma 3. The function e(0,\) may have only a finite number of zeros in the
half-plane ImA > 0 and these zeros lie on the imaginary axis.

Remark 2. The proofs of Lemma 2 and Lemma 8 are obtained similarly in the work
of V. A. Marchenko (Lemma 3.1.5 and Lemma 3.1.6 in [19]).

Let ik, (0 < A1 < Ag < -+ < A,) be the zeros of the function e(0, \) and denote

—e'(0,3Ag)€(0,iAk)
20\ ’

k=1,2,...,n,

mi = [ letw AP p(eds =
0

where é(z, \) = d)\ e(x, A). The numbers my, is the normalized numbers of the bound-
ary value problem (1)-(3).
The functions

u(z, A) = e(z, =) — S(A)e(x,N), (—o0 <A < 00),
u(z,irg) = mee(x,irg), (k=1,2,...,n)

are bounded solutions of the boundary value problem (1)-(3); moreover, as © — oo,
the asymptotic relations hold:

u(w, \) = e — S(N)e 4+ 0(1), (—00 <\ < 0)
u(z,idg) = mpe (1 +0(1)), (k=1,2,...,n).

Definition 1. A collection of quantities
{S(A) (=00 < A < 00); A,y (B=1,2,...,n)}

that specify the behavior of the normalized eigenfunctions at infinity is called the
scattering data of the boundary value problem (1)-(3) satisfying condition (4).
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Now, we give a property relating to the scattering function S(\):

Lemma 4. The function So(\) —S(N) is the Fourier transform of a function Fg(x)
of the form
Fs(a) = F$ (2) + F§ (@),
where
60(0, —)\) 9+e*i)\a(176) + gfefi)\a(lJrlB)
eo(0,\)  fFera(l-P) 4 g—¢ira(1+8)

So(A) =
(1) _ (2) _ (2)
Fg’(z) € Li(—00,00), Fg’(x) € Lay(—00,00) and  sup |Fg”’'(x)| < oo.
—oo<r <00

Proof. Denoting K(0,t) = K(t) for the simplicity, we can write
e(0, ) = eg(0,\) + / K(0,t)eMdt = o e?e(1=0) 4 g=ra(148) 4 |F(—))

and
e0(0, =\ K (—\) B K()\)

So(A) — S(A) = .
o) =5 eo(0,\) [60(0,)\)+I~((7A) eo(0,A) + K(=A)

Now, we examine that EO i; is a Fourier transformation of some summable function.

For this purpose, it is obtalned that the series

> o(=1r <‘Z+> K, (t—Ba(2n+1)+a)

n=0

with K (t) = K(t) for ¢ > 0 and K4 (¢t) = 0 for t < 0 converges some function
Y(.) € Li(—o00, 00) since
‘/ <z+) K, (t—pa2n+1)+ a)dt
19 ) 0 n oo
< Z 7 / K4 (t = Ba(2n+1) +a)ldt = | oo / K (t)]dt.
> n=0 —0oo
Then, we have
K(-)\) _ 1 - W (0N [ it
00N 977;)(—1) <9+) /ﬁa(2n+1)a K(t — Ba(2n + 1) + a)e™dt
1 & ) 1 ~ _
= ox | w0 = TN = ), (33)
and also
K(\) 1~ _ K(—)) 1~ _



DISCONTINUOUS STURM-LIOUVILLE OPERATOR OF SCATTERING THEORY 43

Then, using relations (35) and (36), two terms on the right-hand side of the equality
(34) can be written as follows:

eo(0, —A) K(=A) _ 9= K _ e
eo(0, \) eo(o,A)+f<(—A)] L+3(=A)" g0, ) + K(=\)  1+6(=A)

Consequently, the equality (34) is in the form:

So(A) — S(\) = ‘w. (37)

Now, to complete the proof of this lemma, we proceed as in the works of V. A.
Marchenko ([19], Lemma 3.1.7); namely, we note that

_ 1, Al < 1,
A=< 2— |\, 1< <2
0, 2 < |Al

is the Fourier transform of a function h(z) € Li(—00,00); also, h(AN~1) is the
Fourier transform of the function hy(z) = Nh(xN) and Nlim If=hn*flp, =0
— 00

for all f(z) € Ly1(—o00,00). Since the Fourier transform of f(xz)—hy* f(z) is equal to
2 - ~ ~ -1
{1 - h()\Nfl)} f(A), for N large enough, the function [1 + {1 — h(/\N’l)} f()\)}

—1 is the Fourier transform of a function from L;(—o0, 00). Then, we can write the
equality (37) as follows:

(38)

14+ (1-RON-1)) F(-x) 1FEN
~ JU—]

Since for sufficiently large N the function [1 + {1 — h()\N_l)} f(/\)} — 1 is the

Fourier transform of a summable function, the sum of the first two terms on the

right-hand side of the equality (38) is the Fourier transform of a summable function

Fél)(m) € Ly(—00,00) and since h(AN~') =0 for [A| > 2N, the third term on the

right-hand side of the equality (38) equals zero for |A| > 2N and is bounded, so it is

the Fourier transform of a bounded function Fs(*2) () € La(—00,00). O
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