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Abstract. A module M is said to be modest if the injectivity domain of M is the class of
all crumbling modules. In this paper, we investigate the basic properties of modest modules.
We provide characterizations of some classes of rings using modest modules. In particular,
we show that a ring having the class of crumbling modules as the only right middle class
of injectivity domains is either a right V -ring or right Noetherian; and a commutative ring
with this property is regular. We also give criteria for a ring having the class of crumbling
modules as the only right middle class of injectivity domains.
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1. Introduction

Throughout this study, all rings are associative with an identity element and all
modules are right and unital. Let R be a ring and M an R-module. We denote the
socle and the radical of M by SocM and RadM , respectively. J(R) stands for the
Jacobson radical of R. For terminology and notations used in this paper, we refer
the reader to [6, 9, 13, 16].

Poor modules are introduced in [1] as modules that have their injectivity do-
main as minimal as possible, namely the class of all semisimple modules, where
the injectivity domain of a module M is the class In−1(M) = {N ∈ Mod-R : M
is N -injective}. This definition gives a natural opposite to injectivity of modules,
since only injective modules have the class of all modules as their injectivity domain.
Recently, many studies have been conducted concerning poor modules along with
their generalizations and restrictions (see [2, 3, 4, 7, 10]).

As a proper generalization of poor modules, the notion of working-class modules
is introduced in [8]. A moduleM is working-class if the injectivity domain In−1(M)
of M is contained in the class of all modules having zero radical. Properties along
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with examples of these modules are given and rings over which every module is either
injective or working-class are investigated in the same work.

Let R be an arbitrary ring and {Sγ : γ ∈ Γ} a complete set of representatives of
isomorphism classes of simple right R-modules and S1 =

⊕
γ∈Γ Sγ . It is shown in

[8, Example 1] that S1 is working-class. It means that every ring has a semisimple
working-class module. However, over a right SSI-ring, which is not semisimple
Artinian, any semisimple module is not poor, where a ring R is called a right SSI-

ring if every semisimple right R-module is injective. Put S2 =
⊕

γ∈Γ S
(R)
γ . It follows

from [10, Theorem 1] that In−1(S2) = {N ∈ Mod-R : N crumbles }, and so S2 is
poor if and only if every module that crumbles is semisimple. Here a module M is
said to crumble (or it is called a crumbling module) if Soc(M/N) is a direct summand
ofM/N for every submodule N ≤M . Recall that a moduleM is called a V -module
if every simple module is M -injective. By [10, Corollary 2], a module M crumbles
if and only if it is a locally Noetherian V -module. Using this fact, we give the
following result playing a key role in our work. We denote the class of all crumbling
right R-modules by CRMod-R, namely CRMod-R = {N ∈ Mod-R : N crumbles }.

Lemma 1. Let N be a module. Then N crumbles if and only if every semisimple
module is N -injective. In particular, CRMod-R ⊆ In−1(M) for every semisimple
module M .

Proof. (⇒): Let M =
⊕

i∈I Mi, where each Mi is simple. Assume that N is a
crumbling module. Therefore N is a V -module and so Mi is N -injective for all
i ∈ I. Since N is locally Noetherian, it follows from [16, 27.3] that M is N -injective.

(⇐): Let K ≤ N . By the hypothesis, Soc(N/K) is N -injective and then
Soc(N/K) is N/K-injective. This means that Soc(N/K) is a direct summand of
N/K. Hence N crumbles.

The following is a direct consequence of Lemma 1. We denote the class of all
semisimple modules by SSMod-R.

Corollary 1. Let R be a ring. Then we have∩
M∈SSMod-R

In−1(M) = CRMod-R.

Proof. It is clear that CRMod-R ⊆
∩

M∈SSMod-R In−1(M) by Lemma 1. Let A ∈∩
M∈SSMod-R In−1(M) and B ≤ A. Since Soc(A/B) is semisimple, we get that

Soc(A/B) is A/B-injective and so Soc(A/B) is a direct summand of A/B. Hence A
crumbles.

Motivated by this fact, it is natural to consider modules whose injectivity domain
is the class of all crumbling modules. With this idea in mind, we call a module M
modest if the injectivity domain In−1(M) ofM is the class of all crumbling modules.

The main purpose of this paper is to study the concept of modest modules
and their application on the rings with exactly one right middle class of injectivity
domains. In section 2, we show that every ring has a modest module. We prove
that rings over which every injective module is modest are right SSI-rings. We also
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show that a right WV -ring is a right Noetherian ring if and only if J(R) is modest.
It follows that a WV -ring R is right Artinian if and only if J(R) is poor.

In section 3, we introduce the notion of the crumbling submodule C(M) of a
module M and investigate the properties of this submodule. Using crumbling sub-
modules, we generalize semi-artinian modules to weakly semi-artinian modules. In
particular, we prove that a ring R is right weakly semi-artinian if and only if every
R-module is an essential extension of its crumbling submodule.

Theorem 1 guarantees the existence of a modest module for every ring. It is
well known that over every ring there are poor and injective modules, so there exist
three injectivity domains for every ring R: SSMod-R, CRMod-R, and Mod-R. In
section 4, we study the rings over which these three classes are different and there
are no other injectivity domains. We call them right CMC-rings. We show that a
right CMC-ring is either a right V -ring or right Noetherian, and, moreover, if it is
commutative, then it is regular. We also give criteria for being a right CMC-ring.

Injectivity domains of an arbitrary ring has been investigated in [14]. In this
work, we consider rings admitting the class CRMod-R as the only right middle class
of injectivity domains, namely right CMC-rings. As right CMC-rings have one
middle class of injectivity domains, results presented here give a partial answer to
the problem of determining rings with one right middle class of injectivity domains
in the following manner: If a ring R has one right middle class of injectivity domains,
say I, then we have three cases:

(1) If I = CRMod-R, then R is a right CMC-ring.

(2) The case when SSMod-R = CRMod-R (without the assumption that R has
one right middle class) is investigated in [10] and it is shown that this equality
is equivalent to the existence of a semisimple poor right R-module (see [10,
Theorem 1]).

(3) The equality Mod-R = CRMod-R (without the assumption that R has one right
middle class) holds if and only if R is a right SSI-ring (see Theorem 3). As in
the previous case, there are no studies on rings with one right middle class in
this case. One can consider this case over a right SSI-ring R which is not a right
QI-ring. Here, a ring A is called a right QI-ring if every self-injective right A-
module is injective. Then there exists a self-injective right R-module M , which
is not injective and so M ∈ In−1(M) and In−1(M) ̸= Mod-R. Since R is a
right SSI-ring, M is not semisimple which implies that In−1(M) ̸= SSMod-R.
Therefore, we have In−1(M) = I. Hence, I contains the class of all self-injective
modules which are not injective.

As we are dealing with rings having one right middle class of injectivity domains,
the following results will be of use. For a ring X, we use In−1

X (Y ) to denote the
injectivity domain of an X-module Y .

Lemma 2. Let R be a ring and I an ideal of R. If In−1
R/I(M) ̸= In−1

R/I(N) for

R/I-modules M and N , then In−1
R (M) ̸= In−1

R (N).

Proof. Since In−1
R/I(M) ̸= In−1

R/I(N), without loss of generality, we may assume that

there is an R/I-module L ∈ In−1
R/I(M)\In−1

R/I(N). Then there is an R/I-submodule
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U of L and an R/I-homomorphism f : U → N that cannot be extended to L.
Since R/I-submodules are R-submodules and R/I-homomorphisms of R/I-modules
are R-homomorphisms as well, we have L ̸∈ In−1

R (N). On the other hand, every R-
submodule U of L is an R/I-module since UI ⊆ LI = 0 and every R-homomorphism
f : U → M is also an R/I-homomorphism, and can therefore be extended to a
homomorphism g : L→M . Hence L ∈ In−1

R (M) and so In−1
R (M) ̸= In−1

R (N).

Corollary 2. Let R be a ring and I an ideal of R. Then the number of differ-
ent injectivity domains over R/I does not exceed the number of different injectivity
domains over R.

2. Modest modules

Definition 1. Let R be a ring and M an R-module. M is called modest if the
injectivity domain In−1(M) of M is the class of all crumbling modules.

Firstly, we give the following lemma proof of which follows from [16, 16.2 §27.2].

Lemma 3. The class of crumbling modules is closed under submodules, factor mod-
ules and direct sums.

Corollary 3. Let M be a module such that mR crumbles for every mR ∈ In−1(M).
If N ∈ In−1(M), then N crumbles.

Proof. Suppose that M is N -injective for some module N . We can write N =∑
m∈N mR. Since M is N -injective, M is mR-injective and so mR crumbles as

assumed. Let A =
⊕

m∈N mR. Then A crumbles by Lemma 3. Therefore, there
exists an epimorphism ψ : A −→ N . Applying the lemma once more, we have that
N crumbles.

Theorem 1. Every ring has a modest module.

Proof. Let R be an arbitrary ring and {Cγ : γ ∈ Γ} a complete set of represen-
tatives of isomorphism classes of non-crumbling cyclic right R-modules. If Γ = ∅,
then every cyclic right R-module crumbles and so every right R-module by the proof
of Corollary 3. Therefore, every injective right R-module is modest. Assume that
Γ ̸= ∅. Since each Cγ (γ ∈ Γ) is non-crumbling, there exists a factor module Fγ of Cγ

such that Soc(Fγ) is a proper essential submodule of Fγ . Let M =
⊕

γ∈Γ Soc(Fγ)

and mR ∈ In−1(M). Suppose that mR is a non-crumbling module. Then, for some
γ ∈ Γ, we can write mR ∼= Cγ . Since M is mR-injective, M is Fγ-injective and so
Soc(Fγ) is Fγ-injective. This is a contradiction. Thus In−1(M) ⊆ CRMod-R.

Let N be a crumbling module. By Lemma 1, M is N -injective since M is
semisimple. It means that M is modest.

Proposition 1. Let R be an arbitrary ring and {Sγ : γ ∈ Γ} a complete set of repre-

sentatives of isomorphism classes of simple right R-modules. Put S2 =
⊕

γ∈Γ S
(R)
γ .

Then S2 is modest.

Proof. By the proof of [10, Theorem 1].
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Lemma 4. Let M be a crumbling module. Then RadM = 0.

Proof. Since crumbling modules are V -modules, it follows from [16, 23.1] that
RadM = 0.

Note that a module with zero radical need not crumble, in general. For instance,
consider the Z-module M =

∏
p∈P Zp, where P is the set of all prime integers. Then

RadM = 0. Since Soc(M) =
⊕

p∈P Zp is not a direct summand of M , we obtain
that M does not crumble.

By Lemma 4, modest modules are working-class. However, a working-class mod-
ule need not be modest, in general. An example showing the existence of a working-
class module which is not modest is given in Example 1.

Lemma 5. Let R be an arbitrary ring, {Sγ : γ ∈ Γ} a complete set of representatives
of isomorphism classes of simple right R-modules and S1 =

⊕
γ∈Γ Sγ . Then we have

CRMod-R ⊆ In−1(S1) ⊆ {N ∈ Mod-R : N is a V -module}.

Proof. By Lemma 1, we get that CRMod-R ⊆ In−1(S1). Let S1 be N -injective
for some R-module N . Then Sγ is N -injective for all γ ∈ Γ. It means that N is a
V -module.

Theorem 2. Let R be an arbitrary ring, {Sγ : γ ∈ Γ} a complete set of repre-
sentatives of isomorphism classes of simple right R-modules and M =

∏
γ∈Γ Sγ .

Then

In−1(M) = {N ∈ Mod-R : N is a V -module}.

Moreover, if R is right Noetherian, then S1 =
⊕

γ∈Γ Sγ and M are modest.

Proof. By [16, 16.1 (1)], for a module N , M is N -injective if and only if every Sγ

(γ ∈ Γ) is N -injective. So In−1(M) = {N ∈ Mod-R : N is a V -module}.
Let R be a right Noetherian ring. Then every V -module is locally Noetherian

and so S1 and M are modest by Lemma 5.

Recall that a module M is semi-artinian if every nonzero factor module of M
has an essential socle and a ring R is right semi-artinian if RR is a semi-artinian
module.

Lemma 6. Let R be a right semi-artinian ring and M a crumbling R-module. Then
M is semisimple.

Proof. It is assumed that Soc(M) ̸= 0. SinceM crumbles, there exists a submodule
K of M such that M = Soc(M)⊕K. If K is a nonzero submodule of M , it follows
from the hypothesis thatK has a simple submodule, say S. Then S ⊆ Soc(M)∩K =
0, a contradiction. Hence M is semisimple.

As a consequence of this fact we have the following result.

Corollary 4. Let R be a right semi-artinian ring and M a right R-module. Then
M is modest if and only if it is poor.
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Now we shall characterize the rings over which all modules crumble. Recall that
a ring R is a right SSI-ring if every semisimple right R-module is injective. A ring
over which self-injective modules are injective is an example of right SSI-rings. It
is shown in [5, Proposition 1] that a ring R is a right SSI-ring if and only if R is a
right Noetherian V -ring.

Theorem 3. The following statements are equivalent for a ring R.

(1) RR crumbles.

(2) R is a right SSI-ring.

(3) Every right R-module crumbles.

(4) Every injective right R-module crumbles.

(5) 0 is a modest R-module.

(6) There exists an injective modest R-module.

(7) Every injective right R-module is modest.

(8) Every modest right R-module is injective.

(9) Every direct summand of a modest R-module is modest.

Proof. (3) ⇒ (1), (3) ⇔ (5), (5) ⇒ (6), (7) ⇒ (3), (3) ⇒ (8) and (3) ⇒ (9) are
clear.

(1) ⇔ (2): Since crumbling modules are exactly locally Noetherian V -modules,
it follows from [5, Proposition 1] that R is a right SSI-ring.

(2) ⇒ (3): Let M be an R-module and N any submodule of M . It is assumed
that Soc(M/N) is injective and so there exists a submodule K/N of M/N such that
M/N = Soc(M/N)⊕K/N . Thus M crumbles.

(3) ⇔ (4): It follows from Lemma 3.
(6) ⇒ (7): Let M be an injective modest module. Then Mod-R = In−1(M) =

CRMod-R. For every injective module I, we have In−1(I) = Mod-R = CRMod-R
so that I is modest.

(8) ⇒ (6): By Theorem 1, R has a modest module, say N . It is assumed that N
is injective.

(9) ⇒ (5): By Theorem 1, R has a modest module, say N . Then, it is assumed
that 0 is a modest module as a direct summand of N .

Using Theorem 3, it is easy to characterize the rings over which every module is
modest.

Corollary 5. Let R be a ring. If every right R-module is modest, then R is semisim-
ple Artinian.

Example 1 (see [11, Example 3.2]). Let K be a field, A an infinite set, Q =
∏
i∈A

Ki,

where Ki = K for all i ∈ A, L =
⊕
i∈A

Ki, and let R be the subring generated by L
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and 1Q. Then R is a V -ring which is not Noetherian and so R is not an SSI-ring.
By [8, Theorem 1] and Theorem 3, there exists a working-class R-module which is
not modest.

As a generalization of right V -rings, a ring R is called a right weakly-V-ring (a
rightWV -ring for short) if every simple R-module is R/I-injective for any right ideal
I of R such that R/I is proper. A right WV -ring need not be right Noetherian, in
general. In [12], it is shown that a right WV -ring R is Noetherian if and only if
every cyclic right R-module M can be written as M = A ⊕ B, where A is either a
CS-module or a Noetherian module and B is a projective module. Here we obtain
a similar relationship using modest modules.

Theorem 4. Let R be a right WV -ring. Then R is a right Noetherian ring if and
only if J(R) is modest.

Proof. (⇒): Let R be a right Noetherian ring and J(R) N -injective for some R-
module N . Suppose that a ∈ N . Clearly, J(R) is aR-injective. Then R/ annr(a) ∼=
aR. If annr(a) = 0, then J(R) is injective and so J(R) = 0. Since R is a right
WV -ring, it follows from [13, Corollary 6.8] that R is a right V -ring. Thus R is a
right SSI-ring. Applying Theorem 3, we obtain that N crumbles.

Let annr(a) ̸= 0. Since R is right Noetherian and a rightWV -ring, R/ annr(a) ∼=
aR is a Noetherian V -module. Therefore, N crumbles by Lemma 3. Hence, J(R) is
modest by Lemma 1.

(⇐): If J(R) = 0, R is a right SSI-ring by Theorem 3. Thus R is a right
Noetherian ring. Suppose that J(R) ̸= 0. It follows from [13, Lemma 6.12] that
J(R) is simple. Since R is a right WV -ring, J(R) is R/J(R)-injective. Then, it is
assumed that R/J(R) is a right Noetherian R-module. Hence R is a right Noetherian
ring.

In general, a semisimple module need not be poor. Rings over which there is a
semisimple poor right module are studied in [10]. Now, we give a characterization of
rightWV -rings which are not right V -rings such that every semisimple right module
is either modest or injective.

Theorem 5. Let R be a right WV -ring which is not a right V -ring. Then the
following statements are equivalent.

(1) R is a right Noetherian ring.

(2) Every non-injective semisimple right R-module is modest.

(3) J(R) is modest.

Proof. (1) ⇒ (2): LetM be a non-injective semisimple right R-module andM mR-
injective for some cyclic right R-modulemR. SinceM is not injective, R/ annr(m) ∼=
mR is proper. By (1), mR is Noetherian and so it crumbles since R is a right WV -
ring. Therefore, In−1(M) ⊆ CRMod-R by Corollary 3.

Let N be a crumbling module. By Lemma 1, M is N -injective. Thus M is
modest.

(2) ⇒ (3): It is clear since J(R) is a non-injective simple right R-module.
(3) ⇒ (1): It follows from Theorem 4.
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Corollary 6. A right WV -ring is right Artinian if and only if J(R) is poor.

Proof. If J(R) = 0, it is clear by Theorem 4. Suppose that J(R) ̸= 0.
(⇒): R is a rightWV -ring which is not a right V -ring. R is also right Noetherian.

It follows from Theorem 5 and Corollary 4 that J(R) is poor.
(⇐): Since R is a right WV -ring and J(R) ̸= 0, J(R) is simple and R/J(R)-

injective. It is assumed that R/J(R) is semisimple. Thus, R is right Artinian.

A ring R is said to be local if R/J(R) is simple, and it is said to be semilocal
if R/J(R) is semisimple. It is well known that over a semilocal ring a module with
zero radical is semisimple. Using this fact we have the following result.

Corollary 7. Let R be a semilocal ring andM a right R-module. Then the following
statements are equivalent.

(1) M is modest.

(2) M is poor.

(3) M is working-class.

Remark 1. The structure of poor abelian groups is completely determined in [2,
Theorem 1]. Let R be a commutative hereditary Noetherian ring and M an R-
module. Assume that M is modest. By [8, Theorem 5], we obtain that M is poor.
In particular, if R is the ring of integers, then M is a poor abelian group.

3. Weakly semi-artinian modules and rings

Let M be a module. We define the crumbling submodule of M as the sum of all
submodules ofM that crumble and denote it by C(M). It follows from Lemma 3 that
C(M) is the largest submodule ofM that crumbles. It is clear that Soc(M) ⊆ C(M).

Proposition 2. Let R be a ring andM an R-module. Then the following statements
hold.

(1) If f :M → N is a homomorphism of R-modules, then f(C(M)) ⊆ C(N).

(2) For every submodule K of M , C(K) = K ∩ C(M).

(3) C(M)�M if and only if C(K) ̸= 0 for every 0 ̸= K ≤M .

(4) C(M) is a fully invariant submodule of M .

(5) C(
⊕
i∈I

Mi) =
⊕
i∈I

C(Mi).

(6) C(M) is coatomic.

(7) If C(M) ⊆ Rad(M), then C(M) is a small submodule of M .
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Proof. (1): It follows from Lemma 3.
(2): It is clear that C(K) ⊆ K ∩C(M). Let a ∈ K ∩C(M). Then aR is a (locally)
Noetherian V -module and so a ∈ aR ⊆ C(K). Therefore, K ∩ C(M) ⊆ C(K) and
C(K) = K ∩ C(M).
(3): (⇒) By (2), we have C(K) = K ∩ C(M) ̸= 0.
(⇐) Let C(M) ∩ L = 0 for some submodule L of M . It follows from (2) that
C(L) = C(M) ∩ L = 0, which contradicts with the assumption. Thus, L = 0 and
C(M)�M .
(4): It is a consequence of (1).
(5): Let a ∈ C(

⊕
i∈I

Mi). Then there exist elements aij ∈ Mij (1 ≤ j ≤ n) such that

a = ai1 + ai2 + . . . + ain . Since aR is a (locally) Noetherian V -module, aijR ⊆ aR
is a (locally) Noetherian V -module and so aij ∈ aijR ⊆ C(Mij ) for every j in
{1, 2, . . . , n}. Therefore, a = ai1+ai2+. . .+ain ∈ C(Mi1)⊕C(Mi2)⊕· · ·⊕C(Min) ⊆⊕
i∈I

C(Mi). By (1), we have
⊕
i∈I

C(Mi) ⊆ C(
⊕
i∈I

Mi).

(6): Let Rad(C(M)/X) = C(M)/X for some submodule X of C(M). Then X +
Rad(C(M)) = C(M). Since C(M) crumbles, Rad(C(M)) = 0 by Lemma 4, and so
X = C(M).
(7): Let C(M) + N = M for some submodule N of M . Then Rad(M) + N = M ,
which implies that Rad(M/N) =M/N . Note that M/N ∼= C(M)/[C(M) ∩N ]. By
Lemma 3 and Lemma 4, we have M/N = Rad(M/N) = 0.

Following Proposition 2, let us note that for a ring R, C(RR) is an ideal of R.

A module M is called locally projective whenever g : A −→ B is an epimorphism
and f :M −→ B is a homomorphism of R-modules A and B, then for every finitely
generated submoduleM0 ofM there exists a homomorphism h :M −→ A such that
gh|M0

= f |M0
. It is clear that every projective module is locally projective.

Proposition 3. Let R be a ring andM a locally projective R-module. Then C(M) =
MC(RR).

Proof. Clearly, we have MC(RR) ⊆ C(M) by Proposition 2-(1). Let m ∈ C(M).
Since M is a locally projective module, there are a finite number of homomorphisms
fi : M −→ R and elements mi ∈ M (1 ≤ i ≤ n) such that m1f1(m) +m2f2(m) +
...+mnfn(m) = m. Applying Proposition 2-(1) once more, we obtain that fi(m) ∈
C(RR) and so C(M) ⊆MC(RR). Hence C(M) =MC(RR).

Corollary 8. For a projective right R-module M , C(M) =MC(RR).

We call a module M weakly semi-artinian if C(M/N)�M/N for every nonzero
factor moduleM/N ofM , and a ring R right weakly semi-artinian if RR is a weakly
semi-artinian module. Semi-artinian modules and crumbling modules are weakly
semi-artinian.

Proposition 4. Let M be a weakly semi-artinian module and N a submodule of M .
Then N and M/N are weakly semi-artinian.
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Proof. Let K ≤ N with N/K ̸= 0. If L/K ∩ C(N/K) = 0, it follows from Propo-
sition 2 (2) that

0 = L/K ∩ C(N/K)

= L/K ∩ [C(M/K) ∩N/K]

= C(M/K) ∩ L/K

and so L/K = 0. It means that N is weakly semi-artinian.
Let N ≤ A �M . Then we can write

M
N
A
N

∼=
M

A
.

It follows from the assumption that M/N is weakly semi-artinian.

Let c denote the left exact preradical which assigns to each module its crumbling
submodule. The crumbling series of M is the ascending chain of submodules

0 = c0(M) ⊆ c1(M) ⊆ c2(M) ⊆ . . . ⊆ cα(M) ⊆ cα+1(M) ⊆ . . . ,

where c0(M) = 0, c1(M) = C(M), cα+1(M)/cα(M) = C(M/cα(M)) for every ordi-
nal α ≥ 0 and cα(M) =

∪
0≤β<α cβ(M) if α is a limit ordinal. The corresponding

radical c is obtained in the following way:

c(M) = cα(M), where α is the first ordinal for which cα(M) = cα+1(M).

Proposition 5. Let M be a module. Then the following hold.

(1) Every submodule cα(M) is fully invariant.

(2) If M is self-projective, then so is M/cα(M) for all α.

Proof. (1): Suppose that the statement is false. Then there is a least ordinal α
such that cα(M) is not fully invariant. Clearly, α is not zero, nor is it a limit
ordinal. Let f be an endomorphism of M . Since f(cα−1(M)) ⊆ cα−1(M) under
the assumption on α, f induces an endomorphism f ′ of M ′ = M/cα−1(M). Then
we have f ′(c1(M

′)) ⊆ c1(M
′) by Proposition 2 so that f(cα(M)) ⊆ cα(M). Hence

cα(M) is fully invariant, a contradiction.
(2) follows from (1) and the fact that factor modules of self-projective modules by
fully invariant submodules are again self-projective (see [9, 3.1]).

Theorem 6. The following are equivalent for a module M .

(1) M is weakly semi-artinian.

(2) Every nonzero homomorphic image of M has a nonzero crumbling submodule.

(3) cρ(M) =M for some ordinal ρ ≥ 0.
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(4) There exists an ascending chain of submodules

0 =M0 ⊂M1 ⊂ · · · ⊂Mα ⊂Mα+1 ⊂ · · · ⊂Mτ =M

such that Mα+1/Mα crumbles for each 0 ≤ α < τ and Mα =
∪

0≤β<αMβ if α
is a limit ordinal.

(5) There exists an ascending chain of submodules

0 = L0 ⊂ L1 ⊂ · · · ⊂ Lσ ⊂ Lσ+1 ⊂ · · · ⊂ Lτ =M

such that Lσ+1/Lσ is weakly semi-artinian for all ordinals 0 ≤ σ < τ , and, for
all limit ordinals σ, Lσ =

∪
0≤ρ<σ Lρ.

Proof. (1) ⇒ (2) and (3) ⇒ (4) ⇒ (5) are clear.
(2) ⇒ (3): Considering the crumbling series of M , there exists an ordinal ρ ≥ 0

such that cρ+1(M) = cρ(M) so that C(M/cρ(M)) = 0. It follows from (2) that
M = cρ(M).

(5) ⇒ (1): Suppose that there is an ascending chain

0 = L0 ⊂ L1 ⊂ · · · ⊂ Lσ ⊂ Lσ+1 ⊂ · · · ⊂ Lτ =M

of submodules of M with the properties given in (5). Let K and N be submodules
of M with K $ N . We will show that C(N/K) ̸= 0.

We have N ∩ Lτ = N ̸= K = K ∩ Lτ . Let σ be the least ordinal such that
N ∩ Lσ ̸= K ∩ Lσ. It is clear that 0 < σ ≤ τ and σ is not a limit ordinal. Then
N ∩ Lσ−1 = K ∩ Lσ−1 so that

(N + Lσ−1)/(K + Lσ−1) ∼= N/[K + (N ∩ Lσ−1)] = N/K.

Let us show that N ∩ Lσ ̸⊆ K + Lσ−1. If this is not true, then we have

N ∩ Lσ ⊆ K + (N ∩ Lσ−1) = K + (K ∩ Lσ−1) = K

so that N ∩ Lσ = K ∩ Lσ, which is a contradiction.
Then the module

[N ∩ Lσ +K + Lσ−1]/(K + Lσ−1)

is a nonzero subfactor of the weakly semi-artinian module Lσ/Lσ−1 and so it has a
nonzero crumbling submodule. Hence C(N/K) ̸= 0.

As a consequence, we see that a sum of weakly semi-artinian modules is weakly
semi-artinian and every module contains a maximal weakly semi-artinian submodule
which is the union of the crumbling series of the module. Using these facts, we can
characterize right weakly semi-artinian rings in terms of their right modules.

Proposition 6. The following are equivalent for a ring R.

(1) R is right weakly semi-artinian.
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(2) Every right R-module is weakly semi-artinian.

(3) Every nonzero right R-module has a nonzero crumbling submodule.

(4) Every R-module is an essential extension of its crumbling submodule.

It turns out that the notion weakly semi-artinian modules are related to T -
nilpotency of J(R). Let R be a ring and M a right R-module. Recall that J(R) is
T -nilpotent on M if for every m ∈ M and every sequence a1, a2, . . . ∈ J(R) there
exists an integer n such that ma1a2 · · · an = 0. J(R) is called left T -nilpotent if it is
T -nilpotent on RR, i.e. for every sequence a1, a2, . . . ∈ J(R) there exists an integer
n such that a1a2 · · · an = 0

Proposition 7. J(R) is T -nilpotent on every weakly semi-artinian right R-module.

Proof. Let M be a weakly semi-artinian right R-module. For each m ∈M we can
define o(m) to be the smallest ordinal β for which m ∈ cβ(M). Then o(m) cannot be
a limit ordinal, because m ∈

∑
α<β

cα(M) implies m ∈ cα(M) for some α < β. Hence

we can write o(m) = α + 1 for some α (unless m = 0). However, cα+1(M)/cα(M)
crumbles and so Rad(cα+1(M)/cα(M)) = 0, and therefore cα+1(M)J(R) ⊆ cα(M).
It follows that o(ma) < o(m) for every nonzero m ∈M and a ∈ J(R). If a1, a2, . . . is
a sequence of elements of J(R) such that ma1a2 · · · an ̸= 0 for every n, then o(m) >
o(ma1) > o(ma1a2) > . . . > o(ma1a2 · · · an), but since every strictly descending
chain of ordinals is finite, this is impossible.

Here are some consequences regarding right weakly semi-artinian rings. The
proofs of some of the following results are straightforward and therefore omitted.

Corollary 9. Let R be a right weakly semi-artinian ring. Then J(R) is left T -
nilpotent.

Corollary 10. A ring R is right perfect if and only if it is semilocal and right weakly
semi-artinian.

Corollary 11. A ring R is right weakly semi-artinian if and only if J(R) is left
T -nilpotent and R/J(R) is right weakly semi-artinian.

Proof. (⇒): It is clear.
(⇐): Let M be a nonzero right R-module. Since J(R) is left T -nilpotent, there

is a submodule L of M such that LJ(R) = 0 by [15, Lemma 2.9]. Then LR/J(R)

is a right weakly semi-artinian module and so C(LR/J(R)) ̸= 0, which implies that
C(LR) ̸= 0. This shows that M is weakly semi-artinian. By Proposition 6, R is
right weakly semi-artinian.

4. On rings with one right middle class

In this section, we consider the rings with exactly one right middle class of injectivity
domains, say I, in the case when I = CRMod-R.
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Definition 2. We call a ring R a right CMC-ring if it has CRMod-R as the only
right middle class of injectivity domains.

Lemma 7. A factor ring of a right CMC-ring is either a right CMC-ring or it has
no right middle class.

Proof. It follows from Corollary 2.

Lemma 8. Let R be a right CMC-ring. Suppose that there exists a singular right R-
module M such that injective hull E(M) of M does not crumble. Then the following
conditions hold.

(1) Every nonsingular right R-module is injective (hence semisimple).

(2) The second singular submodule splits in any right R-module.

(3) There exists a ring direct sum R = S ⊕ T , where S is semisimple and C(T ) is
essential in TT with Z(TT ) ⊆ C(TT ).

(4) C(RR)�RR.

Proof. (1): Since every nonsingular module is E(M)-injective and E(M) does not
crumble, every nonsingular module is injective, hence semisimple.

(2): It follows from the proof of [10, Lemma 2 (ii)].
(3): By (2), we have RR = A ⊕ Z2(RR) for some right ideal A. AR is semisim-

ple by (1). It follows from the proof of [10, Lemma 2 (iii)] that A is a two-sided
ideal. Assume that Z(RR) does not crumble. Then Z(E(RR)) does not crum-
ble by Lemma 3. Since Z(E(RR)) is a fully invariant submodule of E(RR), it
is quasi-injective. Then Z(E(RR)) is neither poor nor modest so that it is injec-
tive. Z(RR) = Z(E(RR)) ∩ RR is a closed submodule of R, which implies that
Z(RR) = Z2(RR) and Z(RR) splits in RR. Then Z(RR) must be zero contradicting
our assumption. Therefore, Z(RR) crumbles. Letting S = A and T = Z2(RR), we
have a ring decomposition into a semisimple ring S and a ring T such that C(T ) is
essential in TT with Z(TT ) ⊆ C(TT ).

(4): It follows from (3), since Soc(RR) ⊆ C(RR).

Corollary 12. Let R be a right CMC-ring. Suppose that either R is a non-right
GV -ring or R/ Soc(RR) is a non-right SSI-ring. Then the following conditions hold.

(1) Every nonsingular right R-module is injective (hence semisimple).

(2) The second singular submodule splits into any right R-module.

(3) There exists a ring direct sum R = S ⊕ T , where S is semisimple and C(T ) is
essential in TT with Z(TT ) ⊆ C(TT ).

(4) C(RR)�RR.

Proof. If R is not a right GV -ring, then there is a singular simple right R-module
M which is not injective. Then Rad(E(M)) ̸= 0 for the injective hull E(M) of M
so that E(M) does not crumble.
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If R/ Soc(RR) is not a right SSI-ring, then there is a singular right R-module N
which does not crumble by [9, 16.2]. By Lemma 3, E(N) does not crumble.
In both cases, Lemma 8 completes the proof.

Lemma 9. Let R be a right CMC-ring. Then R is either right weakly semi-artinian
or right Noetherian.

Proof. Assume that R is not right weakly semi-artinian. Let I be the union of
the right crumbling series of R. Then R/I either has no right middle class or is a
(nonzero) right CMC-ring with C(R/IR/I) = 0 by Lemma 7 and the assumption.
If R/I has no right middle class, it follows from the proof for [10, Lemma 5] that R
is right Noetherian.

If R is a (nonzero) right CMC-ring with C(R/IR/I) = 0, since Soc(R/IR/I) ⊆
C(R/IR/I) = 0, Corollary 12 implies that R is a right SSI-ring, a contradiction.
Therefore, R is right weakly semi-artinian in this case.

Lemma 10. Let R be a right CMC-ring. If R has a locally Noetherian right module
which does not crumble, then R is right Noetherian.

Proof. Let M be a locally Noetherian right R-module which does not crumble and
let {Ei|i ∈ I} be any family of injective right R-modules. Then, by [9, 2.5 p. 10],⊕

i∈I Ei is M -injective. Since R is a right CMC-ring and M does not crumble,⊕
i∈I Ei is injective. Hence R is right Noetherian.

The following result shows where the class of right CMC-rings lies.

Theorem 7. Let R be a right CMC-ring. Then R is either a right V -ring or right
Noetherian.

Proof. Assume that R is not a right V -ring. Then there exists a simple right R-
module S, which is properly contained in E(S). By Lemma 9, R is either right
weakly semi-artinian or right Noetherian. If R is right weakly semi-artinian, then
E(S)/S has a nonzero submodule K/S that crumbles. Since S is Noetherian and
K/S is locally Noetherian, K is also locally Noetherian by [16, 27.2 (iii)]. Since
S ≪ K, we have 0 ̸= S ⊆ Rad(K) which implies that K does not crumble. By
Lemma 10, R is right Noetherian.

Remark 2. Let R be a right CMC-ring which is not right Noetherian. It follows
from Theorem 7 and [10, Example 3] that R is weakly semi-artinian, but not semi-
artinian.

Here we give an example of a right Noetherian ring which is not a right CMC-
ring.

Example 2. Let R be a right Noetherian and right WV -ring which is not a right
V -ring.

Let X be a non-injective right R-module and aR ⊆ In−1(X). Since X is
not injective and aR ∼= R/ annr(a), we have annr(a) ̸= 0. Therefore, by [13,
Corollary 6.13], J(R) = SocR ⊆ annr(a). It follows from [13, Corollary 6.8]
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and assumption that R/ annr(a) ∼= aR crumbles. Thus, according to Corollary 3,
In−1(X) ⊆ CRMod-R.

Next, we show that CRMod-R = {A ∈ Mod-R : A is singular}. Let N ∈
CRMod-R and 0 ̸= a ∈ N . Since R is not a right V -ring and aR ∼= R/ annr(a), we
have annr(a) ̸= 0 and so a ∈ Z(N). It means that N is singular. The converse is
clear.

Therefore, there exists a non-injective non-singular right R-module M such that
In−1(M) = CRMod-R = {A ∈ Mod-R : A is singular}. Following Corollary 12(1),
R is not a right CMC-ring.

Using Theorem 7, commutative CMC-rings are easy to determine. Recall that
a ring R is said to have no simple middle class if every simple R-module is either
poor or injective.

Corollary 13. Let R be a commutative CMC-ring. Then R is regular.

Proof. Let R be a commutative CMC-ring. By Theorem 7, R is either a V -ring
or Noetherian. If R is a V -ring, then it is regular. Suppose that R is not a V -ring.
Then there is a simple R-module S properly contained in its injective hull E(S).
Since S ≪ E(S), Rad(E(S)) ̸= 0 so that E(S) does not crumble. If there is a simple
right R-module T with T � S, then T is E(S)-injective and under the assumption
on R, it is injective. Since R is Noetherian, S is poor by [3, Corollary 4.3]. Then
every crumbling module is semisimple by [10, Theorem 1], a contradiction.

Corollary 14. Let R be a commutative CMC-ring. Then R has no simple middle
class.

The following two examples show that regular rings need not be CMC-rings.
Indeed, there are infinitely many injectivity domains over the rings at hand.

Example 3. We consider the ring in Example 1 once again. Let K be a field, A
an infinite set, Q =

∏
i∈A

Ki, where Ki = K for all i ∈ A, L =
⊕
i∈A

Ki, and let R be

the subring generated by L and 1Q.
Then R is an SI-ring, Soc(RR) = L � R and L is a maximal ideal. For every

subset I of A, let MI =
⊕
i∈I

Ki, NI = RR/MI . For each i ∈ A, let ei be the identity

of Ki.
Claim 1: Let U = uR be a cyclic R-module and

⊕
i∈I

Vi ≤ U , where I is infinite

and Vi ̸= 0 for all i ∈ I. Then
⊕
i∈I

Vi cannot be a direct summand of U .

Suppose that
⊕
i∈I

Vi is a direct summand in U . Then there is an epimorphism

f : U →
⊕
i∈I

Vi. But Im f = f(uR) = f(u)R is contained in
⊕
i∈F

Vi for some finite

subset F of I, so f cannot be an epimorphism, a contradiction.
Claim 2: Let I, J ⊆ A. If I ⊆ J ; then MI is NJ -injective.
Let K ≤ NJ and f : K → MI be a homomorphism. Take any r +MJ ∈ K

and let f(r +MJ) =
∑
i∈I

mi with mi ∈ Ki. For each i ∈ I, mi = f(r +MJ)ei =
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f(rei +MJ) = f(0) = 0 since rei ∈ Ki ⊆ MI ⊆ MJ ; therefore f(r +MJ) = 0. So
HomR(K,MI) = 0 for every K ≤ NJ . Hence MI is NJ -injective.

Claim 3: If I, J ⊆ A and J\I is infinite, then MJ is not NI-injective.
Suppose that MJ is NI-injective. Since MJ\I is a direct summand of MJ , it is

also NI-injective. Let π : RR → NI be the canonical epimorphism. Since MJ\I ∩
Kerπ = MJ\I ∩MI = 0, NI contains a submodule

⊕
i∈ J\I

Xi isomorphic to MJ\I .

Then
⊕

i∈ J\I
Xi is NI-injective, but

⊕
i∈ J\I

Xi cannot be a direct summand of NI by

Claim 1. A contradiction.
Claim 4: There are infinitely many different injectivity domains over R.
Take any family {Ik}k=1,2,... of subsets of A such that I1 ⊇ I2 ⊇ · · · where

Ik\Ik+1 is infinite for every k (for example, for A = Z+, Ik = {n ∈ Z : 2k|n}).
Then injectivity domains In−1(MIk) are different. Indeed, for k < n, MIk is not
NIn-injective, whereas MIn is NIn-injective, so In−1(MIk) ̸= In−1(MIn).

Example 4. Let Q =
∞∏
i=1

Ki, where Ki = K is a field. Take any two infinite disjoint

subsets I and J of Z+. Using arguments similar to those in the previous example,
it is easy to show that MI =

⊕
i∈I

Ki is
∏
j∈ J

Kj-injective, but not
∏
i∈I

Ki-injective, so

In−1(MI) ̸= In−1(MJ).
Taking infinitely many disjoint infinite subsets of Z+ (for example, In = {pin|pn is

the nth prime, i = 1, 2, . . .}), we see that there are infinitely many different injectivity
domains.

Remark 3. By the proof in the example above, for such a ring R, every non-injective
non-singular right R-module is modest.

The following result gives a criteria for being a right CMC-ring. Let M be a
module. If every M -injective module is injective, M is called a test module for
injectivity.

Theorem 8. A ring R is a right CMC-ring if and only if the following conditions
are satisfied:

(1) There is a crumbling R-module which is not semisimple.

(2) There is an R-module K such that SocK is not a direct summand of K and
every such module is a test module for injectivity.

(3) For every R-module A, if there is a crumbling R-module B ̸∈ In−1(A), then
A is poor.

Proof. (⇒): Let R be a right CMC-ring. Then there are three modules M,N and
L such that In−1(M) = SSMod-R ̸= In−1(N) = CRMod-R ̸= In−1(L) = Mod-R,
that is,M is poor, L is injective and N is modest, but not poor and not injective. So
there is a crumbling module which is not semisimple and there is a non-crumbling
module, therefore, there is an R-module K such that SocK is not a direct summand
of K.
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To show that every such module K is a test module for injectivity, let T be
a module which is K-injective. Then K ∈ In−1(T )\In−1(N), which implies that
In−1(T ) = Mod-R and so T is injective.

Let A be a module for which we have a crumbling R-module B ̸∈ In−1(A).
Then A is not injective and not modest. Since R is a right CMC-ring, In−1(A) =
SSMod-R, that is, A is poor.

(⇐): LetM be a poor module, N a modest module that is not poor (the existence
of such a module follows from part (1) and Theorem 1) and L an injective module.
We prove that there are only three different injectivity domains: In−1(M), In−1(N)
and In−1(L).

Suppose that there is a module T such that In−1(T ) is different from these three
classes. Then either In−1(T ) ̸⊆ In−1(N) or In−1(T ) $ In−1(N).

a) In−1(T ) ̸⊆ In−1(N) = CRMod-R. In this case, there is a non-crumbling
module U such that T is U -injective. Then there is a factor module V of U such
that SocV is not a direct summand of V . Since T is V -injective as well, T is injective
by (2), so In−1(T ) = Mod-R = In−1(L), a contradiction.

b) In−1(T ) $ In−1(N) = CRMod-R. In this case, there is a crumbling module
C such T is not C-injective. Condition (3) implies that T is poor, so In−1(T ) =
In−1(M) = SSMod-R, a contradiction. Hence R is a right CMC-ring.
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