
Abstract—Identifying software identifiers that implement a 

particular feature of a software product is known as feature 

identification. Feature identification is one of the most critical and 

popular processes performed by software engineers during 

software maintenance activity. However, a meaningful name must 

be assigned to the Identified Feature Implementation Block (IFIB) 

to complete the feature identification process. The feature naming 

process remains a challenging task, where the majority of existing 

approaches manually assign the name of the IFIB. In this paper, 

the approach called FeatureClouds was proposed, which can be 

exploited by software developers to name the IFIBs from software 

code. FeatureClouds approach incorporates word clouds 

visualization technique to name Feature Blocks (FBs) by using the 

most frequent words across these blocks. FeatureClouds had 

evaluated by assessing its added benefit to the current approaches 

in the literature, where limited tool support was supplied to 

software developers to distinguish feature names of the IFIBs. For 

validity, FeatureClouds had applied to draw shapes and 

ArgoUML software. The findings showed that the proposed 

approach achieved promising results according to well-known 

metrics in terms of Precision and Recall. 

Index terms—feature naming, feature implementation blocks, 

software engineering, word clouds. 

I. INTRODUCTION

EATURE identification or location is the process of detecting

the source code elements, such as classes or methods, that 

implement particular functionality in a software product [1]. 

Several works have been carried out on feature identification, 

whether from single software or a group of software products 

[2]. Feature naming is the activity of suggesting a meaningful 

name for the extracted feature implementations. In this work, a 

feature is a functionality provided by a software product. 

Software identifier name (e.g., package, class, method, and 

attribute) is one of the most significant software understanding 
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resources [3]. The identifier names of Feature Implementation 

Block (FIB) need to be analyzed for feature naming. Normally, 

a FIB contains many identifier names which include several 

words. Software identifier names are often constructed by 

mixing fragments of words, acronyms, and abbreviations (e.g. 

setRectangleY). For feature identification of a legacy software 

system, one main problem is to understand the FIB and name it. 

The analysis of identifier names is a very helpful way in 

naming decisions. Current studies support the feature 

identification process in a single software [4], or in a set of 

software product variants [5]. Considering the feature 

identification process, the current approaches are based either 

on a static code analysis or on a dynamic analysis of the 

software product. Other approaches further exploit information 

retrieval methods [6]. In the use of the proposed approach, we 

suppose that the IFIBs exist in advance. Thus, it is important to 

clarify that the feature identification process is out of the scope 

of this study. This paper focuses only on the feature naming of 

the identified blocks. Figure 1 presents an example of the IFIBs 

from software source code.  

Fig. 1. The IFIBs from software source code
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Figure 1 shows that the implementation of features can either 

be identified from a single software system or by a group of 

software product variants. Also, the given figure shows that 

each block that constitutes an implementation of the feature 

consists of a set of software identifiers such as package, class, 

method, and attribute. 

Existing contributions in the literature of feature 

identification, including the work of Al-msie’deen et al. [5], 

overlook the feature naming phase during the identification of 

FIBs. The majority of current feature implementations 

identification approaches are not focused on a feature naming 

problem, and usually, this phase is carried out manually [7, 8]. 

The absence of support for feature naming in existing 

approaches is a critical threat to their efficiency. 

In this paper, we propose an approach called FeatureClouds 

to support feature naming during the feature identification 

process from software source code. The proposed approach 

exploits the word cloud visualization technique [9] to help 

software engineers to name the IFIBs. As each block include 

only the implementation of a single feature. Feature naming is 

based on an analysis of the content of each IFIB to propose a 

feature name. Where the IFIBs can be named by selecting words 

with the highest frequency from word clouds. 

FeatureClouds is a generic approach, where this approach 

works on the IFIBs whether from a single software product or 

software product variants. FIB is a software artifact the consists 

of a collection of software identifiers (i.e., packages, classes, 

methods, or attributes). Thus, these code identifiers implement 

a particular software feature. 

In our work, we do not suppose there is domain knowledge 

regarding the features of a software product. Therefore, the 

domain experts cannot manually suggest feature names to FIBs 

based on their knowledge about the existing software system. 

Thus, there is a need to develop an approach for feature naming 

without domain expert intervention and based on the 

vocabulary used in the identified blocks. FeatureClouds is a 

significant improvement over existing approaches, as it aims to 

automatically give a name for the IFIB based on its content. 

The rest of the paper is structured as follows. Section II 

presents related work closest to the proposed contribution. 

Section III details FeatureClouds approach. Section IV presents 

FeatureClouds experimentations. Finally, Section V concludes 

the paper. 

 

II. RELATED WORK 
 

Davril et al. [10] introduced a feature naming method as a 

part of their Feature Model (FM) extraction approach. The 

authors presented an approach for constructing a FM from 

product descriptions in natural language. In their work, to build 

the FM and present it to the human user, there is a need to assign 

a meaningful name for the identified feature (cluster or block). 

Thus, the authors developed a cluster-naming process to select 

the most frequent phrase from all feature descriptors in the 

cluster. Meaningful names are selected for the mined features 

based on the most frequent phrases discovered for each of the 

clusters or blocks. 

Al-msie’deen et al. [11] used the source code of the mined 

FIBs to generate feature names automatically. In their work, all 

identifier names found in the FIB are mined. Then, each 

identifier name is divided into tokens by using a camel-case 

scheme. After that, a weight is assigned to each extracted token 

based on its frequency in the block. Finally, a feature name was 

constructed using the highest weighted words. The number of 

words used in the feature name was selected by a software 

engineer. For instance, the engineer can choose the highest two 

words to create the feature name. For the purpose of features 

readability, the authors assigned feature names based on the 

most frequent tokens of the IFIBs. They did not evaluate feature 

names and they did not provide details about the feature naming 

process. 

Martinez et al. [12] offered a word cloud visualization 

technique to support software developers in naming the IFIBs 

from a collection of software product variants. This 

visualization is used through the feature implementation 

identification process to propose feature names to software 

engineers. In their work, once FIBs are identified from software 

product variants, the authors used the VariClouds approach to 

visualize the code elements inside each FIB and determine 

important words that assist software engineers to identify 

feature names. VariClouds approach employs information 

retrieval methods, like TF-IDF, to analyze the code elements 

inside each FIB. Their approach is semi-automatic, where the 

domain expert manually reviews words in the cloud to identify 

feature names for the IFIBs. While this study presents a fully 

automatic approach for feature naming based on the IFIBs in 

advance, without any interventions from the domain expert. We 

conducted experiments using a real FIBs to verify our intuition 

that word cloud gives better results in this field. 

The study presented by Martinez et al. [12] is the closest to 

ours. The authors use optional filters such as camel case splitter 

for words dividing. In this paper, the word processing has done 

before it has presented in the final word cloud. This processing 

is done via word splitting and stemming. These two steps are 

the core of our approach and not an optional filter. 

FeatureClouds uses two filters to filter out unwanted words 

from the word clouds. The short-word filter intends to filter out 

the words which have less than three letters. Also, the word-

frequency filter is used as a sign for the word frequency across 

the IFIBs. In the VariClouds approach, there is no indication of 

how many times a word is repeated within a block. Word cloud 

layout in VariClouds approach is a typewriter. While 

FeatureClouds layouts are typewriter and spiral layouts [9]. 

VariClouds displayed words in the word cloud in alphabetical 

order (i.e., a-z). While FeatureClouds shows words in the cloud 

in an alphabetical or frequency order. In frequency order, words 

appear according to their importance in the cloud where the 

most important words appear first in the word cloud. 

VariClouds did not provide clear evaluation criteria for the 

quality of the feature name obtained for each block. While we 

evaluated our results with clear metrics like recall and precision. 

AL-msie’deen et al. [7] assigned manually the feature names 

to the IFIBs, based on the study and analysis of the content of 

each block and on their knowledge of software product variants. 

Where the software variants are well documented, and their 

feature names are known in advance. AL-msie’deen et al. [8] 

suggested feature naming process as a research direction to 

suggest the feature names automatically for the IFIBs. 

Consequently, that is what we have done in this study by 

developing a feature naming approach called FeatureClouds. 
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Ziadi et al. [13] suggested an approach to find feature 

implementations across software variants source code. The 

authors manually proposed feature names of the IFIBs. The 

names were given to feature implementations based on the 

existing FM document. Thus, our work is more effective for 

feature naming, where we automatically assign feature names 

of the IFIBs based on the word cloud. 

AL-msie’deen et al. [14] developed an approach to suggest a 

name for the IFIBs based on the use-case diagrams of software 

variants. In their study, FIB has given a name based on the 

textual similarity between the use-case description and block 

content. In our work, we rely just on the content of the FIB, and 

we do not need any other artifacts of the software system. 

Furthermore, our work considers the legacy software system, 

which is not documented well, and usually, all software artifacts 

are missing. 

Adjoyan et al. [15] suggested an automatic approach for 

service identification from the Object-Oriented (OO) source 

code. Their paper aims to migrate the OO legacy system into 

Service Oriented Architecture (SOA). For the legibility of the 

identified service blocks, authors assign names based on the 

most frequent words across the identified blocks. The authors 

documented the resulting services by allocating a name using 

the most frequent words in their class names. The authors do 

not evaluate service names, and they do not offer details about 

the service naming process. The proposed approach can be used 

to name the identified service implementation blocks. 

Kebir et al. [16] suggested a method to extract components 

from software source code. The authors suggested names to the 

identified components based on the source code of the identified 

clusters. They provided component names based on the most 

frequent tokens of the identified clusters. For each cluster, the 

class names are split into words based on the camel-case 

method. Then, a weight is given to each obtained token, and at 

last, a component name is created using the strongest weighted 

tokens. FeatureClouds approach can be used to name the 

identified component implementation clusters. 

Shatnawi et al. [17] proposed an approach to reverse engineer 

the architecture model of a collection of software product 

variants. They aimed to identify the main components and 

dependencies between those components. In their work, for 

comprehensibility, they named the identified components by 

using the most frequent words across the identified component 

implementation clusters. Each component cluster contains a 

collection of software classes. Based on the most frequent 

words across class names, they allocate a name for that cluster. 

Their work is very similar to the study proposed by Adjoyan et 

al. [15]. Also, the authors of this study do not evaluate 

component names, and they do not give any details about the 

component naming process. The approach proposed in this 

paper can be applied to name the identified component 

implementation clusters. 

Table I presents a comparison between feature naming 

approaches. The studied approaches have been evaluated based 

on the criteria of naming method (automatic versus manual), 

inputs (feature blocks, product descriptions, service blocks, 

component blocks, use-case diagrams), and outputs (word 

clouds, most frequent tokens, feature names). 

 
TABLE I 

SUMMARY OF FEATURE NAMING APPROACHES (COMPARISON TABLE) 
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1 Davril et al. [10]  x     x    x 

2 Al-msie’deen et al. [11] x      x    x 

3 Martinez et al. [12] x     x    x  

4 AL-msie’deen et al. [7] x       x x   

5 Ziadi et al. [13] x       x x   

6 AL-msie’deen et al. [14] x    x   x   x 

7 Adjoyan et al. [15]   x    x    x 

8 Kebir et al. [16]    x   x    x 

9 Shatnawi et al. [17]    x   x    x 

10 Al-msie’deen et al. [FeatureClouds] x     x     x 

 

The majority of the current studies manually suggest feature 

names of the extracted FIBs based on existing software 

documentation. In the related work, no work automatically 

provides a name for the IFIBs. 

Table II presents a comparison between feature naming 

approaches that exploited the word cloud visualization 

technique. There is only one study concerned with feature 

naming based on the word-cloud in the literature, which is the 

study of Martinez et al. [12]. We evaluate this closest work to 

our approach based on the following criteria: granularity level 

of block code, programmed method, cloud filters, evaluation 

criteria of the proposed name, cloud layout, cloud arrangement, 

word preprocessing. 
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TABLE II 

SUMMARY OF FEATURE NAMING APPROACHES BASED ON WORD CLOUD TECHNIQUE (COMPARISON TABLE) 

Reference Feature blocks - code 
granularity level 

Programmed 
method 

Cloud filters Evaluation 
criteria 
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Cloud 
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preprocessing 

P
ac

k
ag

e 

C
la

ss
 

M
et

h
o
d
 

A
tt

ri
b

u
te

 

S
em

i-
au

to
m

at
ic

 

A
u

to
m

at
ic

 

C
am

el
-c

as
e 

sp
li

tt
er

 

W
o

rd
s 

st
em

m
in

g
 

S
h

o
rt

 w
o

rd
 

W
o

rd
-f

re
q

u
en

cy
 

R
ec

al
l 

 P
re

ci
si

o
n
 

T
y
p

ew
ri

te
r 

sp
ir

al
 

A
lp

h
ab

et
ic

al
 

F
re

q
u
en

cy
 

W
o

rd
s 

sp
li

tt
in

g
 

W
o

rd
s 

st
em

m
in

g
 

Martinez [12]  x   x  x x     x  x    

FeatureClouds x x x x  x   x x x x x x x x x x 

 

III. THE FEATURECLOUDS APPROACH 

 

An overview of the suggested method is given in Figure 2. 

The inputs are the FIBs extracted from software source code. 

The outputs are the most frequent words across FIBs (i.e., FIB 

names). 

 

 

Fig. 2. Overview of FeatureClouds process 

 

FIB contains the source code elements (aka. block 

identifiers) that implement a particular feature. Thus, from each 

block, FeatureClouds extracts the block identifier names. The 

block identifier names are the only source of the naming 

process. Figure 3 shows an example of FIBs identified from 

drawing shapes software variants by the Revpline approach 

[18]. The IFIBs consist of all code granularity levels (i.e., 

package, class, method, and attribute). 

In this paper, we rely on the block contents to assign a feature 

name for each block. Feature implementations are blocks of the 

code identifiers. Word clouds are a representation of the 

identifier names that are constructed in the FIBs. These word 

clouds are built with a FeatureClouds approach as detailed in 

the following. 

 

A. Extracting Identifier Names (words) 

The first step of our feature naming process is the extraction 

of software identifier names (aka. words) from the IFIB. Table 

III shows the software identifier names for each FB in Figure 3. 

 

 

Fig. 3. FIBs identified from drawing shapes software variants 

 

 FeatureClouds accepts the IFIB as input. Then, 

FeatureClouds produces a words file as output for each block. 

The words file of a particular block includes all software 

identifier names of this block. 

 
TABLE III 

IDENTIFIER NAMES EXTRACTED FROM FIBS IN FIGURE 3 

Identifier names Identifier names 

MyOval Rectangle 

getOvalx RectangleSettings 

getOvaly Drawing.Shapes.Rectangle 

Oval setRectangley 

setOvaly setRectanglex 

setOvalx Rectanglex 

Drawing.Shapes.Oval Rectangley 

Ovalx getRectangley 

Ovaly MyRectangle 

OvalSettings getRectanglex 

 

B. Splitting Words 

In this step, software identifier names are split into words (or 

tokens) based on the camel-case syntax [18]. For example, 

RectangleSettings is split into rectangle and settings. Camel-

case method splits identifier names based on capital letters, 

special characters, and numbers. This method is uncomplicated 

and commonly used for software identifier splitting. Table IV 

shows samples of the split words from the drawing shapes 

software identifiers.  
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TABLE IV 

WORDS OBTAINED FROM FIBS IN FIGURE 3 

Words or tokens Words or tokens 

my rectangle 

oval rectangle 

get settings 

ovalx drawing 

get shapes 

ovaly rectangle 

oval set 

set rectangley 

ovaly set 

set rectanglex 

ovalx rectanglex 

drawing rectangley 

shapes get 

oval rectangley 

ovalx my 

ovaly rectangle 

oval get 

settings rectanglex 

 

C. Returning Words to Their Roots 

In this step, the word stemming process is performed (e.g., 

eliminating word endings) via WordNet [19]. WordNet tool is 

a huge lexical database of the English language. In our work, 

stemming is employed to replace English words with their 

stems or roots. For instance, in drawing shapes software, the 

root of the word "drawing" is "draw". Table V shows samples 

of the word roots from drawing shapes software. 

 
TABLE V 

SAMPLES OF ENGLISH WORDS AND THEIR ROOTS FROM DRAWING SHAPES 

Word roots Word roots 

My Rectangle 

Oval Rectangle 

Get Set 

Ovalx Draw 

Get Shape 

Ovaly Rectangle 

Oval Set 

Set Rectangley 

Ovaly Set 

Set Rectanglex 

Ovalx Rectanglex 

Draw Rectangley 

Shape Get 

Oval Rectangley 

Ovalx My 

Ovaly Rectangle 

Oval Get 

Set Rectanglex 

 

D. Identifying Words Arrangement 

FeatureClouds employs typewriter-style to place words in the 

word cloud from left to right side, and from top to bottom side. 

FeatureClouds shows words in the word cloud in alphabetical 

arrangement. Software engineer appears more capable to find 

words in alphabetically ordered word clouds [9]. Table VI 

displays samples of words in an alphabetical arrangement. 

 

E. Determining Word Weights 

In this step, the weight is given to the word based on its 

frequencies in the IFIB. In our work, the weight of the word 

shows the word frequency in a given FB. Table VII shows 

samples of words and their weights from drawing shapes 

software. 
 

TABLE VI 

SAMPLES OF WORDS IN AN ALPHABETICAL ARRANGEMENT 

Words in alphabetical order Words in alphabetical order 

Draw Draw 

Get Get 

Get Get 

My My 

Oval Rectangle 

Oval Rectangle 

Oval Rectangle 

Oval Rectangle 

Ovalx Rectanglex 

Ovalx Rectanglex 

Ovalx Rectanglex 

Ovaly Rectangley 

Ovaly Rectangley 

Ovaly Rectangley 

Set Set 

Set Set 

Set Set 

Shape Shape 

 
TABLE VII 

SAMPLES OF WORDS AND THEIR WEIGHTS FROM DRAWING SHAPES 

SOFTWARE 

Word Weight Word Weight 

Draw 1 Draw 1 

Get 2 Get 2 

My 1 My 1 

Oval 4 Rectangle 4 

Ovalx 3 Rectanglex 3 

Ovaly 3 Rectangley 3 

Set 3 Set 3 

Shape 1 Shape 1 

 

Word weight is a very important issue in our approach, as 

repeating a given word multiple times in a FIB is a good 

indication of the importance of that word. When a software 

developer uses one word to name several software identifiers, 

this indicates the importance of this word. Mostly, a word that 

is repeated frequently within a given block reflects the 

functionality that that block provides to the end-user. For 

example, in the drawing shapes software, when the word “oval” 

is repeated more than the rest of the words in the block (4 

times), this block is named oval. The function provided by this 

FB is to enable the drawing of an oval by the user of this 

software. As a result, there is a close relationship between the 

functionality provided by the given block and the most 

frequently occurring words across it. Therefore, the word with 

a higher weight is suitable for naming the given block. 

 

F. Creating Word Cloud 

FIBs are obtained using existing feature identification 

approaches such as the Revpline approach [18]. Then, the 

software engineers use FeatureClouds to assign a feature name 

to each block. The name is assigned based on the most frequent 

identifier name in each block, where the constructed word 

clouds show the most frequent words across each block. The 

main hypothesis of our approach for feature naming is that the 

most frequent words across each block are those that make each 
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feature implementation unique regarding the rest of the IFIBs. 

Also, in our work, we consider that the most frequent words 

across each block reflect the real functionality provided by each 

block to the end-user (i.e., feature). Figure 4 shows the word 

clouds that are constructed from the FIBs in Figure 3. In Figure 

4, the word-frequency filter can be used as a pointer for the word 

frequency across FIB. This filter defines the frequency of the 

word across the block as an accurate number between square 

brackets after any word in the cloud. 

 

 

Fig. 4. Word clouds built from the IFIBs in Figure 3 

 

In Figure 4, FeatureClouds assigns the caption (aka. label) 

"oval" to the IFIB. Also, it assigns the caption "rectangle" to 

the other FIB. The number of words used in a feature name is 

selected by the software developer, where he can change the 

settings of the FeatureClouds approach to retrieve the highest 

two (or three) words for each block. 

In the drawing shapes software case study, the name of the 

features is well documented through the FM [20]. The FM gives 

us a ground truth to assess the feature naming process proposed 

in this work, where the manual feature naming is presented in 

the drawing shapes software FM [18]. The real name of the oval 

feature in the FM is “draw_oval”, while the name of the 

rectangle feature is “draw_rectangle”. The font size of the word 

in the retrieved word cloud is the number of times the word is 

repeated throughout the IFIB. In the word clouds, words that 

emerge with a large font size are more critical than the rest of 

the words. 
 

IV. EXPERIMENTATION 
 

This section presents the ArgoUML case study, evaluation 

metrics, experimental results, and the threats to validity of our 

approach. 

 

A. Case Study 

To evaluate the FeatureClouds approach, we selected the 

ArgoUML case study, where the name of the features are well 

known and documented. ArgoUML is an open-source, Java-

based program. ArgoUML variants are ten software products, 

and its FM consists of nine features [21]. These features are: 

class, activity, collaboration, use-case, state, sequence, 

cognitive, logging, and deployment feature. We recommend 

researchers use the Revpline approach to extract FIBs from a 

collection of software product variants [18]. Figure 5 shows the 

ArgoUML FM. 

 

Fig. 5. ArgoUML FM [21] 

 

B. Evaluation Metrics 

The effectiveness of our approach is determined by their 

recall, and precision [18]. For the named feature by 

FeatureClouds, a precision metric is the proportion of correctly 

retrieved words from the word cloud to the total number of 

retrieved words from the word cloud (cf. Equation 1). Recall 

metric is the proportion of correctly retrieved words from word 

cloud to the total number of relevant words from the manual 

feature name (cf. Equation 2). All FeatureClouds metrics have 

values between zero and one. If the recall is equal to one, all 

relevant feature name words are retrieved. However, some 

retrieved words might not be relevant to the manual feature 

name. If precision is equal to one, all retrieved feature name 

words are relevant. However, relevant words might not be 

retrieved from a word cloud. The evaluation metrics of 

FeatureClouds approach for a feature name are defined as 

follows: 

 

Precision =
∑ correctly retrieved words

∑ words that are retrieved 
                             (1) 

 

Recall =
∑ correctly retrieved words

∑ words that are relevant 
                                    (2) 

 

C. Experimental Results 

Figure 6 shows the IFIB, at class level, of activity diagram 

feature from ArgoUML variants. The real name of this feature 

is “activity”. FeatureClouds retrieves two words for this block 

as feature name, which are activity and diagram. Our 

implementation of FeatureClouds is available at the main 

author website [22]. 

Figure 7 shows the word cloud extracted from the activity 

diagram implementation block. The most frequent word across 

this block is activity and diagram. Software engineers might not 

use meaningful vocabularies to name the software identifiers. 

In this case, the FeatureClouds approach will fail to provide a 

meaningful name for the identified FB. For example, the 

retrieved feature name “class diagram” has more meaning than 

the “action model” name. 
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Fig. 6. The IFIB of the activity diagram feature 

 
 

 

Fig. 7. A word cloud of the IFIB In Figure 6 

 

FeatureClouds gives a “collaboration” name for the IFIB of 

the collaboration feature in ArgoUML. Also, FeatureClouds 

assigns a “state” name for the IFIB of the state feature from 

ArgoUML. In our work, when naming all FIBs, it is impossible 

that two or more FIBs have the same name. All the named 

features from ArgoUML have a unique name. 

Table VIII shows the feature names named by the 

FeatureClouds approach and shows the manual names of 

ArgoUML features as described in the ArgoUML FM. Results 

show that the FeatureClouds approach can retrieve a feature 

name for the IFIB. The feature name suggested by the approach 

is too close to the real or manual name, as described in the FM. 

Moreover, the experimental results in Table VIII show that 

the word clouds are useful for assigning the names for FIBs. 

Especially when manual feature names were not available, 

word clouds consider a unique method and perfect technique 

toward feature naming. Results also proved that the word clouds 

worked as confirmation for the feature naming decision. Based 

on the obtained results, we can say that word clouds minimize 

software engineers' understanding time and assist them to be 

more reliable with the feature naming decisions. 

Depending on the results obtained from the presented case 

study, we should state here that the words that formed the 

manual name of the class and cognitive support features are not 

retrieved by the suggested approach as the feature name. On the 

other hand, these words appear undoubtedly on the word cloud 

(e.g., class and cognitive). These words appear less frequently 

than the other words in the block. Thus, the approach doesn't 

assign it as the feature name of the IFIBs. 

TABLE VIII 

FEATURE NAMING RESULTS IN ARGOUML 

Feature Naming Findings in ArgoUML 

Variants 

Evaluation 

Metrics 

Feature naming 

via the FM 

Feature naming via 

FeatureClouds approach 

Recall Precision 

State State 100% 100% 

Collaboration Collaboration 100% 100% 

Activity Activity & diagram 100% 50% 

Use case Use & case 100% 100% 

Sequence Fig & sequence & diagram 

& message 

100% 25% 

Deployment Fig & deployment & 

diagram 

100% 33% 

Class Action & m & u & l & 
model & list 

0% 0% 

Cognitive support Cr & to & name & do 0% 0% 

Logging Log & info 100% 50% 

 

In ArgoUML, there is a mismatch between the manual names 

and the implementation details of some features. For example, 

in the case of the cognitive support feature, there is a full 

mismatch between the manual name and the words (or 

vocabulary) arising from FIB. The most frequent words of the 

cognitive support block are: cr, to, name, and do (cf. Table 

VIII). Moreover, there is a full mismatch between the manual 

name and the words appearing from FIB of a class diagram. The 

most frequent words of the class block are: action, m, u, l, 

model, and list (cf. Table VIII). 

In the ArgoUML case study, findings show that recall 

appears very high for the majority of retrieved feature names by 

FeatureClouds (cf. Table VIII). This means that all words 

formed the manual feature name are retrieved via word cloud. 

For the class and cognitive support features, the recall metric is 

equal to zero. This means that the approach was unable to 

retrieve the feature name (or the words that make up the feature 

name) from the word cloud for these two features. Considering 

the precision metric, it is also quite high thanks to our 

FeatureClouds approach that identifies feature names based on 

the vocabulary of the IFIBs. Figure 8 shows the precision and 

recall for state feature. For cognitive support and class features, 

the precision metric is equal to zero. This means that our 

approach was unable to retrieve the feature names for these 

blocks, where the relevant words are not retrieved from the 

word cloud. 

For qualitative analysis of our approach, we evaluated 

FeatureClouds with three software engineers familiar with 

ArgoUML. Software engineers performed a feature naming 

process for the IFIB by using word clouds. We asked to report 

their feedback for FB naming. Engineers found that feature 

naming using the word clouds consider an excellent method 

where the retrieved cloud represents all words and their 

frequencies for each block. Also, engineers found that the use 

of the word cloud visualization technique has proven helpful in 

supporting domain experts with feature naming, especially 

when domain knowledge is missing. In addition, engineers 

stated that the word cloud visualization paradigm is an effective 

technique for feature naming and very helpful in the naming 

decisions and accelerating the feature naming process. 
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Fig. 8. FIB, word cloud, manual feature name, named feature by 

FeatureClouds, recall and precision metrics for state feature of ArgoUML 

software 

The results found that the best straightforward method for 

extracting the feature name from a block of identifier names is 

to split identifier names into fundamental words (e.g., 

OvalSettings → Oval + Settings). Also, to make the feature 

name more clear, fundamental words must be returned to their 

roots or stems (e.g., Logging → Log). In our work, when a 

software identifier name is developed of partial mixed words, 

the camel-case splitting algorithm is no longer useful and 

should be enhanced with other methods. For instance, 

gET_OptimizeN is split into “g”, “E”, “T”, “Optimize”, and 

“N”. 

To evaluate the performance of our approach, we selected a 

large software system as a case study where the names of the 

software features are well documented. FeatureClouds shows 

excellent performance during the feature name process based 

on the execution times. Also, the results show the scalability of 

our approach to dealing with large, medium, and small systems. 

The ArgoUML case study is considered a large software 

system, where it is consists of 120,348 Lines of Code (LoC). 

Table IX presents feature naming results of the ArgoUML case 

study in more detail. The findings are characterized by metrics 

NoC (Number of Classes), NoW (Number of Words), ET 

(Execution Times) in ms, and MFW/R (Most Frequent Words/ 

Repetition). 

 
TABLE IX 

FEATURE NAMES DETAILS FOR ARGOUML SOFTWARE BASED ON FEATURECLOUDS 

ID Feature name NoC NoW ET MFW/R 

1 State 35 50 1303 State (32) Fig (15) 

2 Collaboration 16 25 963 Collaboration (12) Diagram (9) 

3 Activity 18 26 980 Activity (8) Diagram (8) 

4 Use case 39 33 1019 Use (17) Case (17) 

5 Sequence 38 47 1091 Fig (16) Sequence (12) 

6 Deployment 20 23 990 Fig (8) Deployment (7) 

7 Class 1494 581 10340 Action (317) Model (260) 

8 Cognitive support 205 198 3279 Cr (86) To (35) 

9 Logging 0 6 668 Log (2) Info (2) 

 

FeatureClouds can be used to name the identified feature, 

component, and service implementation blocks. Thus, 

FeatureClouds is a general approach and applicable to naming 

software features, components, and services. Also, 

FeatureClouds can be used to name the concepts extracted from 

the artifacts of the software system [23]. Moreover, 

FeatureClouds can be used to get the important vocabulary of 

the obtained evolution scenarios of the software system [24]. 

Comparing our approach to the work of Martinez et al. [12], 

which is the only work in the literature that addresses the feature 

naming process for the IFIBs based on the word cloud, we 

found the performance of our approach is better than their work. 

The proposed approach deals with all code granularity levels, 

while their approach deals with software classes only. The work 

of Martinez et al. [12] is a semi-automatic approach, where the 

engineer manually analysis the words of the cloud to identify 

feature names for the IFIB, while our work is an automatic 

approach, where the suggested approach automatically retrieves 

feature name to the IFIB without the intervention of domain 

experts. 

Also, the work of Martinez et al. [12] doesn’t show the 

repetition for each word in the given block. While our work 

shows the repetition for each word across a given block. 

Moreover, our approach includes preprocessing of software 

identifiers such as word splitting and stemming, while Martinez 

et al. [12] deal with software identifiers as it without any 

preparation process. Furthermore, the mined word clouds in the 

work of Martinez et al. [12] are missing cloud filters, while our 

clouds include unique filters such as short word and word-

frequency filters. 

 

D. Threats to Validity 

The threat to validity of FeatureClouds approach is that 

software developers might not use a good vocabulary to name 

software identifiers (i.e., identifiers are not properly named). 

This means that word cloud may not be trustworthy in all cases 

to assign a meaningful name to the IFIBs. Also, naming the 

feature using the identifier names of the IFIB is not always 

dependable. In the FeatureClouds approach, we rely on the most 

frequent words in the word cloud to suggest the name for each 

FIB. The proposed name may not be appropriate to the feature 
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role or functionality. This means that identifier names are not 

suitable in all cases to retrieve feature name and should be 

enhanced with other techniques. Moreover, when a software 

engineer makes use of mixed words to label software identifiers 

(such as MyRecTanGle) the camel-case splitting method can’t 

handle these identifiers and should be improved with other 

splitting algorithms. Furthermore, WordNet may not be 

trustworthy in all cases to return the word root and should be 

enhanced with other methods. Finally, a word cloud is missing 

important filters such as search filter and the cloud should be 

enhanced with other filters. 

 

V. CONCLUSION AND PERSPECTIVES 
 

FeatureClouds is an approach that employs a word cloud 

visualization technique to provide feature names for the IFIBs 

from a set of product variants or single software. It is 

constructed for assisting software engineers in feature naming. 

We evaluated it in numerous case studies such as ArgoUML 

and drawing shapes software. The findings show its soundness 

in feature naming. The findings of FeatureClouds have shown 

some limitations for the feature naming process. For instance, 

the suggested approach has returned irrelevant names to some 

blocks, and this occurs when identifiers are not properly named 

by software programmers. Thus, the retrieved feature name may 

not be appropriate or reflect feature role or functionality in the 

software system. Also, WordNet or camel-case method may not 

be trustworthy in all cases to return the word root or to split 

identifier name. Thus, these methods should be enhanced and 

improved with other methods. In the current approach, we give 

the same weights for all software identifiers types that make up 

the IFIB. As future work direction, we plan to assess the use of 

word weights for different software identifier types (i.e., 

package, class, method, and attribute). For instance, in the IFIB, 

the word that belongs to the class name has more importance 

(i.e., weight) than the word that belongs to the attribute name. 
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