Testing forms an important phase of transformer manufacturing, ensuring that the product complies with the customer specifications and guaranteed technical particulars.

ABSTRACT
Testing forms an important phase of transformer manufacturing, ensuring that the product complies with the customer specifications and guaranteed technical particulars. Transformer engineers must have a thorough knowledge of testing procedures as per national standards.

KEYWORDS
Standards, testing, IEC, Cigre, IEEE
1. Introduction

In Part VI of this column, we covered national standards for different types of transformers used for various applications. In this part, we have compiled transformer testing standards available to power engineers. In addition to standards for various transformer tests, tests used for thermal evaluation of insulation systems and painting are also covered. However, transformer oil and diagnostic tests are not included as they will be covered in the forthcoming parts of this column.

2. Standards

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>General, testing of dry-type transformers</td>
<td></td>
<td>C57.12.91 – 2020 (2011)</td>
<td></td>
</tr>
<tr>
<td>Test code for dry-type reactors and smoothing reactors for DC transmission</td>
<td>1277 - 2020 (2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test guide for electrical measurements</td>
<td></td>
<td>IEEE 120 - 1989</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>PD testing – dry-type transformers</td>
<td></td>
<td>C57.124 - 1991</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance measurement for rotating machinery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation resistance test of oil-filled transformers – diagnostic field testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High voltage testing</td>
<td>60060-1 Ed 3.0 - 2010 (general definitions and test requirements)</td>
<td>IEEE Std 4 - 2013 (1995)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60060-2 Ed 3.0 - 2010 (measuring system)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61180-Ed 1.0 - 2016 (test techniques for LV equipment)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High voltage site testing</td>
<td>60060-3 - Ed 1.0 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determination of max winding temperature rise in liquid-filled transformers</td>
<td>IEEE Std 1538 - 2000 (R2011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry-type transformer -determination of hot spot temperature of dry-type transformers</td>
<td></td>
<td>C57.134 - 2013 (2000)</td>
<td></td>
</tr>
<tr>
<td>Temperature rise test above rated load</td>
<td>C57.119 - 2018 (2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for thermal evaluation of dry-type transformers (cast resin and resin encapsulated)</td>
<td></td>
<td>C57.12.60 - 2020 (2009)</td>
<td></td>
</tr>
<tr>
<td>Test for thermal evaluation of dry-type transformers (ventilated dry-type)</td>
<td>C57.12.56 - 1986 (withdrawn)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for thermal evaluation of dry-type transformers (Dry-type specialty and general purpose)</td>
<td></td>
<td>IEEE 259 - 1999</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Test procedure for thermal evaluation of insulation system of dry-type transformer</td>
<td></td>
<td>C57.12.60 - 2009 Amendment 1 - 2013</td>
<td></td>
</tr>
<tr>
<td>Test code for resistance measurement</td>
<td></td>
<td>IEEE118 - 1978</td>
<td></td>
</tr>
<tr>
<td>Dielectric frequency response test (DFR)</td>
<td>CIGRE Brochure 254 - 2002 and 812-2020</td>
<td>C57.161 - 2018</td>
<td></td>
</tr>
<tr>
<td>Sweep frequency response analysis (SFRA)</td>
<td>IEC 60076-18 - Ed 1.0 2012 CIGRE Brochure-342 - 2008</td>
<td>C57.149 - 2012</td>
<td></td>
</tr>
<tr>
<td>High current testing</td>
<td>62475 Ed1.0 - 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>60216-6 Ed 2.0:2006 (2005) Determination of thermal endurance indices (TI & RTE) of an insulating material using the fixed timeframe method</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 9227: 2017 Salt spray test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 1513 - Examination and preparation of test samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 1514 – Panels for testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 1519- 2011 – Bend test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO2808-2008 Determination of film thickness</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 2813 – Determination of gloss</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO2409-2013 Cross-cut test for adhesion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 4618 -2006 Terms and definitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO4624: 2016 Pull-off test for adhesion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 7784-2: 2016 Resistance to abrasion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 6270-2: 2007 Resistance to humidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 2812 -2 007 Resistance to liquids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 15528 –Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 18872- Guidelines for the introduction of scribe marks through coatings on metallic panels for corrosion testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC60068-2 - 1, 2, 11, 14, 30, 78 - environmental testing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Painting

ASTM B117-90: “Standard test method of salt spray (fog) testing”

ASTM D1735-87: “Standard practice for testing water resistance of coatings using water fog apparatus”

ASTM D523-89: “Standard test method for specular gloss”

ASTM D3363-74: “Standard test method for film hardness by pencil test”
3. Conclusion

Testing forms an important phase of transformer manufacturing. This ensures that the product complies with the customer specifications and the technical particulars guaranteed by the manufacturer. Transformer engineers must have a thorough knowledge of testing procedures as stipulated in the national standards. In-process, tests are also relevant for assuring product quality and reliability.

Authors

P. Ramachandran started his career in the transformer industry in 1966 at TELK, Kerala, a Hitachi Joint venture, in India. He worked with ABB India during 1999-2020. He has more than 50 years of experience in the design and engineering of power products, including power transformers, bushings, and tap-changers. He received a Bachelor of Science Degree in Electrical Engineering from the University of Kerala, India, and a Master of Business Administration Degree from Cochin University, India. He is a Fellow of the Institution of Engineers (India), and he represented India in CIGRE Study Committee A2 for transformers during 2002 – 2010.

A. S. Jhala started his professional career with T&R India Limited Ahmedabad in 2005 and is now Deputy General Manager. He has been associated with various functions during his career viz. Testing, Designs and Technology Development. He was actively involved with several development projects including establishment and institutionalizing licensed technology for 765 kV transformers and 400 / 765 kV shunt reactors. He has been associated with Bureau of Indian Standards (BIS) responsible for standardisation activities in India, Central Board of Irrigation and Power (CBIP) and Indian Electrical and Electronics Manufacturers Association (IEEMA). He is also on the board of Managing committee of Electrical Research and Development Association (ERDA). He has contributed about 30 technical papers in national / international seminars.