
A Study of Vulnerability Identifiers i n Code
Comments: Source, Purpose, and Severity

Yusuf Sulistyo Nugroho* , Member, IEEE, Dedi Gunawan , Member, IEEE, Devi Afriyantari Puspa Putri,
Syful Islam* , and Abdulaziz Alhefdhi

Abstract—Software vulnerability is one of the weaknesses in
computer security that challenges developers to rectify. Software
maintainers rely on code comments to maintain their source code,
including fixing vulnerability issues. To facilitate understanding
the security issues in the related code, vulnerability identifiers
are commonly included in code comments. However, not all
vulnerability-related code comments describe clearly the pur-
poses of the inclusion of the identifiers. Based on this evidence, we
investigate the importance of vulnerability identifiers contained
in source code comments, which is the novelty of this paper.
We performed a study of 1,491 code comments that refer
to vulnerability identifiers to define their categories. We then
applied a mixed-method approach to classifying the types of the
related repository and code, the rationale of identifier references,
and the severity level of vulnerabilities in the code. The results
indicate that vulnerability identifiers in code comments are useful
to notify security issues for the related source code, and our study
widens up chances for future work to further investigate these
problems.

Index Terms—code comments, identifier, vulnerability.

I. INTRODUCTION

Software systems and their vulnerabilities have become
a widespread concern for developers during software devel-
opment [1] - [4]. As one of the weaknesses in computer
security, vulnerability is used by a threat actor to exploit the
system to perform unauthorized actions [5], [6]. The high-
skilled attacker may take benefit from the vulnerability to
steal the users’ personal information, run the systems remotely,
terminate the systems, or even damage the systems.

Investigating and fixing software vulnerabilities are impor-
tant tasks in the software development process. Several studies
have been conducted to identify and prevent vulnerabilities. A
study on the impact of security issues in the npm package
shows the results of vulnerability discovery, fixing procedure
of vulnerabilities in the package and vulnerability effects
to the other packages in the ecosystem [7]. Based on the
findings, the authors built a guideline for package maintainers

Manuscript received October 19, 2021; revised February 18, 2022. Date
of publication May 24, 2022. Date of current version May 24, 2022. The
associate editor prof. Tihana Galinac Grbac has been coordinating the review
of this manuscript and approved it for publication.

Y. S. Nugroho, D. Gunawan, and D. A. P. Putri are with the Universitas
Muhammadiyah Surakarta, Indonesia. S. Islam is with the Noakhali Science
and Technology University, Bangladesh. A. Alhefdhi is with the Prince Sattam
Bin Abdulaziz University, Saudi Arabia.

E-mails: {yusuf.nugroho, dedi.gunawan, deviapputri}@ums.ac.id, syfulc-
ste@nstu.edu.bd, a.alhefdhi@psau.edu.sa.

Digital Object Identifier (DOI): 10.24138/jcomss-2021-0124
* Corresponding authors

and tool developers to improve the process of dealing with
security issues. Another study [8] proposed a framework to
automatically describe and predict vulnerabilities with high
accuracy. The results also demonstrated that they explored the
development of vulnerabilities in specific products.

In most cases, software maintainers rely on source code
comments when updating the source code [9]. Since source
code comments store valuable information of software engi-
neering tasks, many works have made use of code comments
in their studies. For example, source code comments have
been found to document personal and team tasks [10], indicate
technical debt [11] - [13], code linkage [14], and publication
citations [15]. Several qualitative studies on code comments
have also been undertaken. A survey on prior studies that
have made use of source code comments reports that code
comments can assist programmers to comprehend the code
and have a particular impact on software development and
maintenance [16]. Another study on code comments in dif-
ferent Java projects [17] reveals that the common purpose of
developers writing comments in the source code is to provide
communication between software developers.

Code comments are also used to indicate vulnerabili-
ties in the related code by referencing vulnerability iden-
tifiers. For example, in the following code comment, the
CVE-2013-4238 is referred to indicate vulnerability in the
project source code.1

GENERAL_NAME_print() doesn’t handle NULL bytes in
ASN1_string correctly, CVE-2013-4238

CVE is Common Vulnerabilities and Exposures identifica-
tion number that describes cybersecurity product and service.
Although many works have shown the benefits and general
reasons for writing comments, to the best of our knowledge, a
comprehensive analysis of the role of vulnerability identifiers
in source code comments has never been undertaken.

In this paper, we investigate the importance of vulnera-
bility identifiers inclusion in source code comments, which
is the novelty of this work. To achieve this goal, we stud-
ied 1,491 distinct vulnerability-related code comments from
32,007 GitHub repositories across 7 popular programming
languages. Initially, we performed a quantitative analysis of
the extracted vulnerability-related code comments. We then
qualitatively and empirically studied the characteristics of the
identifiers, code, and the severity of code.

1https://github.com/mozillazg/pypy/blob/981c7a7748b15b7a68a714426d8
454d428520109/pypy/module/ ssl/interp ssl.py#L891

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022 165

1845-6421/06/2021-0124 © 2022 CCIS

Original scientific article

https://orcid.org/0000-0001-6391-0851
https://orcid.org/0000-0003-1816-3142
https://orcid.org/0000-0002-7441-6987

The results of our study show that the CVE (Common Vul-
nerabilities and Exposures) are the most frequent vulnerability
identifiers cited in code comments. They are mentioned in
a little less than 50% of the analyzed GitHub repositories
that are categorized as software projects. The inclusions of
vulnerability identifiers are mainly for notifying workaround
and warning reasons of the vulnerabilities that are contained
in multiple statements of the main source code. Furthermore,
the referenced CVE identifiers in code comments commonly
have critical and high severity where they have been included
in the comments for more than 2 years.

In sum, the contributions of this paper are as follows:
• A comprehensive study of vulnerability-related source

code comments from 32,007 GitHub repositories across
7 programming languages.

• A mixed-method approach to qualitatively analyze the
inclusion of vulnerability identifiers in source code com-
ments.

• A set of implication and recommendation for both soft-
ware developers and researchers.

The rest of the paper is organized as follows. Section II
describes the related work. Section III presents our study set-
tings to conduct the research. In detail, we explain the research
questions, data collection process, and online appendix. The
results of the study and their interpretations are described in
Section IV. Section V and VI present the implication of our
study and threats to validity, respectively. Finally, we conclude
this paper in Section VII.

II. RELATED WORK

In this section, we present the works related to the analysis
of vulnerability identifiers in source code comments.

A. Software Vulnerability
A number of studies on software vulnerability have

been conducted in different systems, such as Android-based
apps [18], Windows operating system [19], and open source
systems [20]. Linares-Vásquez et.al [18] presents a large-
scale study on Android-related vulnerabilities. In the study,
the authors proposed a detailed taxonomy of the types of
Android-related vulnerabilities, and investigated the affect
and survivability of the vulnerabilities to assist developers
in verifying and validating mobile apps. Guo et al. [19]
proposed a vulnerability detection technique in Windows sys-
tems by comparing the security patches. In the other work,
Jimenez et al. [20] investigated the effectiveness of three
prior vulnerability prediction techniques in three open source
systems (Linux Kernel, OpenSSL, and Wireshark). To com-
plement prior studies, we investigated vulnerability-contained
code comments from 32,007 open source projects across 7
programming languages extracted from GitHub repositories.

Several studies on software vulnerabilities have used CVE-
related databases for their reference. A study by Han et al. [21]
extracted a large amount of vulnerability data from the CVE
Database to build a deep learning-based technique to predict
the severity level of vulnerability. In comparison with previous
works, besides referencing to CVE and NVD databases, we
enhanced our work by also referencing the CERT/CC database.

B. Source Code Comments

Many researchers have analyzed source code comments
in their works. Pascarella et al. [22] built an automated
classification of code comments to the defined taxonomy. Fluri
et al. [23] investigated the evolution of source code comments
to understand whether developers comment their code and to
what extent they add comments or adapt them when the code is
changed. Source code comments are also used in prior works
to develop an automated classifier on self-admitted technical
debt [24], [25], and a new approach to detect fragile code
comments [26].

Haouari et al. [17] explored the habits of developers in
writing code comments and analyzed the existing comments in
different open source Java projects. They found that the most
important purposes of code comments are to communicate
between code authors or to note future changes.

The linkage between source code and external sources
for software development is another related topic. Hata et
al. [14] investigated the role of links included in source code
comments. Their findings report that links in source code
comments suffer from decay, insufficient versioning when the
link targets evolve, and lack of bidirectional traceability.

In comparison with previous works, we have also made use
of the source code comments as our main dataset. However,
none of the related work provides a comprehensive analysis
of the importance of vulnerability identifiers in source code
comments, which is the objective of this paper.

III. RESEARCH METHOD

The purpose of this research is to investigate the importance
of vulnerability identifiers contained in source code comments.
In the following, we describe our methodology to conduct
the research. In details, we define the research questions, data
collection procedure, and present an online appendix.

A. Research Questions

To guide the study, we formulate the following research
questions with their motivations.
RQ1: What is the characteristic of vulnerability-related iden-
tifier in code comments?

• RQ1.1: Is the repository a software development project?
Motivation: The motivation of RQ1.1 is to exclude the
non-software development project repositories from our
study to reduce bias in our analysis. With this exclusion
process, we only focus on the code comments from
software development projects.

• RQ1.2: Does the source code comment relate to vulner-
ability?
Motivation: Similar to RQ1.1, the motivation of RQ1.2

is to reduce bias of the code comments investigation.
In this research question, we aim to classify whether
the vulnerability identifiers inclusion in code comments
relate to vulnerability. We found that some source code
comments reference a vulnerability identifier only for
motivating example.

• RQ1.3:What are the purposes of vulnerability identifier
inclusion in source code comments?

166 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022

Motivation: The key motivation of this research question
is to manually investigate the reasons why developers put
vulnerability identifiers in the source code comments.

RQ2: What kind of code is described in the vulnerability-
related code comments?

• RQ2.1: Is the vulnerability-related code source code or
test code?
Motivation: Since GitHub software projects may separate
their main code and the code for testing, this research
question aims to analyze whether the vulnerability iden-
tifiers are included in the source code or test code.

• RQ2.2: Where is the actual vulnerability with relation to
the comment?
Motivation: This research question aims to identify
whether the vulnerability-related code consists of single
or multi statements. This is important to show developers
the most frequent actual location of the vulnerability to
address the issues accurately.

RQ3: How vulnerable is the code in GitHub repositories?
• RQ3.1: How severe is the vulnerability impact on the

code?
Motivation: The severity level of vulnerability indicates
the measurement of the vulnerability impact in their code.
Thus, in this research question, we investigate the severity
levels based on the most frequent identifiers included
in the code comments to understand the severity of the
source code.

• RQ3.2: How long does the vulnerability reside in the
code?
Motivation: The key motivation of RQ3.2 is to analyze
how long the vulnerability identifiers have been refer-
enced in the code comments.

B. Data Collection

We now describe our methods for identifier definition and
the extraction of source code comments.

1) Identifiers Definition: To define the vulnerability identi-
fiers, we initially extracted all identifiers from 2 popular vul-
nerability databases, that is, National Vulnerability Database
(NVD)2 and Coordination Center of the Computer Emergency
Response Team (CERT/CC) Vulnerability Notes Database.3

From the extraction, we found 4 unique vulnerability identi-
fiers plus 1 additional keyword to indicate the vulnerability
scoring system identified in both databases, that is:

• CVE id (Common Vulnerabilities and Exposures iden-
tification number) describes cybersecurity product and
service.

• CWE id (Common Weakness Enumeration specification)
represents a vulnerability type.

• CPE Name (Common Platform Enumeration) is a struc-
tured naming scheme for information technology systems,
software, and packages.

• VU Notes describes a vulnerability issue that include
summaries, technical details, remediation information,
and lists of affected vendors.

2https://nvd.nist.gov/
3https://www.kb.cert.org/vuls/

• CVSS (Common Vulnerability Scoring System) is an open
framework for communicating the characteristics and
severity of software vulnerabilities.

2) Source Code Comments Extraction: In our study, the
source code comments were extracted using the same pro-
cedure as prior work [14]. We extracted the code comments
from 32,007 GitHub repositories across 7 languages, that are,
C, C++, Java, JavaScript, PHP, Python, and Ruby (on August
10, 2020). We selected these languages since they were ranked
consistently in the top 10 languages on GitHub between 2014
and 2019 (based on the number of pull requests, pushes,
stars, and issues) [27]. To extract the related code comments,
we applied the following regular expression of our 4 defined
vulnerability identifiers and 1 additional keyword,

(?:CVE-[0-9]{4}-[0-9]{4,}|cpe:2.[23]:\w:\w+:|
CWE-[0-9]+|(?<![\w\d])CVSS(?![\w\d])|VU#[0-9]+)

From our extraction, we obtained 6,751 code comments that
contain at least one identifier. After we removed the du-
plication, we ended at 1,491 distinct comments. We then
categorized the comments specifically based on the types of
the referenced vulnerability identifiers.

Frequency of vulnerability-related comments. In our col-
lected dataset, we found that a code comment may contain
more than one type of vulnerability identifiers. Thus, we
categorized the comments into more than one categories. For
example, if a comment cites both CVE id and CWE id, we
classified the comment as both CVE id-related comment and
CWE id-related comment. As shown in Table I, the CVE are
the most common vulnerability identifiers that are explicitly
referenced in the source code comments, as many as 1,366
(90.58%) comments. This indicates that cybersecurity product
and the associated services are common issues faced by
software developers. Although the number of code comments
is not as many as the CVE identifiers-related comments,
CVSS and CWE identifiers are also referenced by software
developers to indicate the vulnerabilities in the source code,
accounting for 63 (4.18%) and 60 (3.98%) comments, re-
spectively. Finally, there are few source code comments that
reference to the VU Notes and the CPE Names, as many as
16 (1.06%) and 3 (0.2%) code comments, respectively.

Identifiers references. We found that a source code comment
may contain more than one vulnerability identifier of the
same type but different identity numbers. This is indicated
by the number of appearances of the 5 defined vulnerability
identifiers that is higher than the number of the related code
comments. Table I describes that the most dominant identifiers,
the CVE identifiers, appear 1,921 times in 1,366 source code
comments. The second and third highest identifiers that are
referenced in source code comments, CVSS and CWE id are
cited as many as 127 and 92 times, respectively. While the
VU Notes and CPE Names have been explicitly referenced 22
and 8 times in the code comments.

To get insights about the most programming languages of
projects that contain vulnerable code, we counted the number
of projects classified by different programming languages.
Table II describes that C++ is the most widely used language
in the studied projects that include the specified vulnerability

Y. S. NUGROHO et al.: A STUDY OF VULNERABILITY IDENTIFIERS IN CODE COMMENTS 167

TABLE I
NUMBER OF VULNERABILITY-RELATED CODE COMMENTS AND

IDENTIFIERS REFERENCES

identifiers # related comments # references

CVE id 1,366 (90.58%) 1,921
CVSS 63 (4.18%) 127
CWE id 60 (3.98%) 92
VU Notes 16 (1.06%) 22
CPE Names 3 (0.20%) 8

TABLE II
FREQUENCY OF PROJECTS BASED ON THE PROGRAMMING LANGUAGE

language # projects

C++ 144 (40.91%)
Python 65 (18.47%)
Java 55 (15.63%)
PHP 38 (10.80%)
Ruby 34 (9.66%)
JavaScript 15 (4.26%)
C 1 (0.28%)

Total 352 (100%)

identifiers (40.91%), followed by Python and Java, as many
as 18.47% and 15.63%, respectively. On the other hand, the
least programming language applied by developers that contain
vulnerability identifiers is C language, that is 0.28%.

Figure 1 shows that the most common identifiers found
in our analysis, the CVE identifiers, are dominantly refer-
enced by software developers who wrote their code in all
7 programming languages, accounting for more than 60%
references in the source code comments. Additionally, we
found that 100% of the projects developed in C language
use CVE identifiers to notify the vulnerabilities. CVSS is
the second most vulnerability keyword referenced in projects
written in Java, JavaScript, Python, and Ruby languages. On
the other side, the second most vulnerability identifier cited
in C++ projects is CWE. VU Note and CPE Name are the
vulnerability identifiers that are only referenced by C++, Java,
and Python projects.

For the statistical evaluation, we find that there is a re-
lationship between programming languages and the vulner-
ability identifiers. Our null hypothesis on “the programming
languages and the vulnerability identifiers are independent” is
rejected (i.e., p-value is < 0.001).

C. Appendix

Our online appendix contains a dataset of 1,491 manually
analyzed vulnerability-related code comments. The appendix
is available at https://github.com/yusufsn/VulnerabilityKeyw
ordsAnalysis.

IV. RESULTS

In this study, we aim to comprehensively understand the
vulnerability identifiers in terms of their sources, purposes,
and the severity level of the vulnerability that are referenced
by software developers in the source code comments. Since
our data collection in Section III-B2 shows that CVE identifier

is the most vulnerability identifier included in the source code
comments, we analyze the severity level of the cited CVE
identifiers.

A. RQ1: What is the characteristic of vulnerability-related
identifier in code comments?

Our approach to answer RQ1 is through manual analysis
on 1,491 collected code comments to investigate the category
of repositories (RQ1.1), the nature of source code comments
(RQ1.2), and to extract the purposes of software developers
referencing vulnerability identifiers in the source code com-
ments (RQ1.3).

To answer the three sub-questions in RQ1, we performed
an interactive process of manual coding. In this process, all
authors of this paper discussed the initial coding guide for
annotating the code comments. Then, the first three authors la-
beled the first 30 code comments in the sample independently
using the specified labels. The kappa agreement is calculated
to measure the agreement between three annotators. 4 If the
kappa score is more than or equals to 0.61 [28], the annotation
task for the remaining data is conducted only by a single
annotator.

• RQ1.1: Is the repository a software development project?

In our collected data, we found that the repositories that
include the vulnerability identifiers in the code comments do
not always represent software development projects. To reduce
bias in our analyses, this research question is implemented to
identify the repositories whether they are categorized as soft-
ware development projects, as classified in a prior study [29].
As described previously in the approach, to categorize the
repositories in our data, we identified them manually and
calculated the kappa score between three annotators. From
the calculation, we obtain 86.67% which describes “almost
perfect” [28]. Based on this agreement, the manual labeling
for the remaining samples was then undertaken only by the
first author.

Results. As illustrated in Figure 2, the result of our manual
analysis shows that vulnerability identifiers are mostly ref-
erenced in the non-software development projects, as many
as 51%. The vulnerability identifiers are also referenced by
software developers in their software projects, accounting for
46% of total data. However, only 3% of GitHub repositories
in our dataset are inaccessible.

• RQ1.2: Does the source code comment relate to vulner-
ability?

To facilitate our investigation to become more valid, we
applied a binary classification to identify whether the code
comments relate to vulnerability issues. This is because al-
though we applied the vulnerability identifiers to extract code
comments from the target repositories, we could not guarantee
that the collected comments that contain the identifiers in our
dataset always relate to vulnerability. The code comments
might describe other things instead of vulnerability-related

4http://justusrandolph.net/kappa/

168 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022

100 89.3 60.6 75 92.2 92.7 87.5

0 0.9 28.2 25 0 5.3 11.6

0 7.3 6.3 0 7.8 1.5 0.9

0 2.2 0.7 0 0 0.5 0

0 0.3 4.2 0 0 0 0CPE Name

CVE ID

CVSS

CWE ID

VU Note

C C++ Java JavaScript PHP Python Ruby
Languages

V
ul

ne
ra

bi
lit

y
Id

en
tif

ie
rs

0

25

50

75

100
Percentage

Fig. 1. Frequency of vulnerability identifier references based on programming languages

0 200 400 600 800

Yes

No

‘404’

682 (46%)

765 (51%)

44 (3%)

RQ1.1: Is the repository a software development project?

Fig. 2. Distribution of answers to “Is the repository a software development
project?”. Initial agreement among the annotators before consolidating the
coding schema: 86.67% across the first 30 code comments.

0 100 200 300 400 500 600

Yes

No

583 (85%)

99 (15%)

RQ1.2: Does the source code comment relate to vulnerability?

Fig. 3. Distribution of answers to “Does the source code comment relate to
vulnerability?” across 682 code comments.

issues, for instance, the CVE id is used as a motivating
example.5

After removing the non-software development project repo-
sitories identified in RQ1.1, we only investigated the code
comments from software development projects, as many as
682 repositories. In this analysis, the first three authors of
this paper independently performed manual annotation to the
first 30 sample code comments and computed the kappa score.
The calculation yields 73.33% which describes “substantial”
agreement [28]. With this agreement, thus, the remaining
sample data were then manually coded by the first author.

Results. Figure 3 describes that in the software project repo-
sitories, most code comments that include the vulnerability
identifiers relate to vulnerability issues, accounting for 85%.
While 15% of code comments do not relate to vulnerability

5Example of non-vulnerability-related comment:
https://github.com/ronin-ruby/ronin-exploits/blob/dd25c368ade8d95cdeb5ba2
844d4d8d1c4c70a2b/lib/ronin/advisory.rb#L77

issues. It indicates that the inclusion of the identifiers in code
comments is mostly used for developers to notify that the
related code has vulnerability issues.

• RQ1.3:What are the purposes of vulnerability identifier
inclusion in source code comments?

Based on the finding in RQ1.2 that shows most code com-
ments relate to vulnerability issues, we then further investigate
the identifiers to comprehensively understand the rationale of
developers putting the vulnerability identifiers explicitly in
source code comments. To achieve this goal, we manually
analyzed 583 vulnerability-related code comments classified in
RQ1.2. In this analysis, all authors of this paper first discussed
the coding guide to identify the purposes of vulnerability
identifiers inclusion in code comments.

The following lists describe all 6 codes that emerged from
our analysis with their descriptions available in the coding
guide:

• origin: code is reused from other sources,
• workaround: code is needed to address security issues,
• warning: notify security issues, recommendation of not

use or careful use of the code,
• see/see-also: the comment indicates that the identifier

points to additional reading material (usually accompa-
nied by a phrase such as “see”, “see also”),

• keyword-only: the comment only contains the identifier
or link, without further explanation.

• source code context: the identifier adds additional infor-
mation to the source code (use this code for things that
do not obviously fit into any of the previous).

The approach to answer RQ1.3 is similar to the two prior
RQs. The first three authors of this paper manually investigated
the first 30 code comments independently to annotate the pur-
poses of vulnerability identifiers inclusion in code comments
based on the defined codes. The agreement score between
three annotators is 72.22% which indicates “substantially”
agreed [28]. This somewhat lower agreement can be explained
by the need to extrapolate the purpose of a vulnerability

Y. S. NUGROHO et al.: A STUDY OF VULNERABILITY IDENTIFIERS IN CODE COMMENTS 169

0 50 100 150 200 250 300

Workaround

Warning

Keyword-only

See/see-also

Source code context

Origin

285 (49%)

105 (18%)

64 (11%)

57 (10%)

53 (9%)

19 (3%)

RQ1.3:What are the purposes of vulnerability identifier inclusion in source code comments?

Fig. 4. Distribution of answers to “What are the purposes of vulnerability
identifier inclusion in source code comments?” across 583 vulnerability-
related code comments.

identifier without being able to interview the code author who
added the identifier.

Results. As depicted in Figure 4, the reference of vulnera-
bility identifiers is majorly used as a workaround, accounting
for 49%. The inclusion of the identifiers is to indicate that
the code is needed to address vulnerability issues. The second
most common purpose of developers citing the vulnerability
identifiers is used as a warning to notify security issues in the
source code, as many as 18%. The developers recommend
not to use the code or be careful of using the code. As
many as 11% of code comments only contain the vulnerability
identifiers, that are used to notify the vulnerability without
any further explanation. The other purpose of vulnerability
identifiers inclusion in code comments is for additional reading
materials to the source code, that is 10% of identifiers present
see/see-also and 9% of identifiers represent source code con-
text. Lastly, although the frequency is not as many as the other
purposes, code reuse is also described in vulnerability-related
code comments, accounting for 3%.

Summary of RQ1. We found that a little less than 50%
of GitHub repositories that refer to vulnerability identifiers
in their code comments are software project repositories.
There are different purposes for the inclusion of vulnerability
identifiers in source code comments, where they are commonly
used by the developers as a workaround to indicate that the
code is needed to address security issues.

B. RQ2: What kind of code is described in the vulnerability-
related code comments?

Similar to the procedure to answer RQ1, we conducted a
manual analysis to investigate the code that is described by the
vulnerability-related code comments. Using 583 vulnerability-
related code comments in the data identified from RQ1.2, the
first three authors of this paper independently performed a
manual annotation to the first 30 code comments to categorize
the source code (RQ2.1) and the location of vulnerability in
the code (RQ2.2). The kappa score is then calculated to check
the level of agreement between the three raters.

• RQ2.1: Is the vulnerability-related code source code or
test code?

In software development projects, developers usually build
the code in two types, that is, main source code and test
code for software testing. To understand the types of code that

0 100 200 300 400 500

Source

Test

472 (81%)

111 (19%)

RQ2.1: Is the vulnerability-related code source code or test code?

Fig. 5. Distribution of answers to “Is the vulnerability-related code source
code or test code?” across 583 code comments.

commonly relate to the vulnerability issues, in this analysis,
we manually categorized the code using the defined labels.
The two types of code used in this analysis are described as
follows:

• test: the code is used for testing, usually the code is placed
in the “test” directory in a repository,

• source: the primary code used in a project (use this label
for any types of code other than test code).

The manual categorization of the first 30 code types between
three annotators reaches the kappa score 95.56% or “almost
perfect” [28]. Based on this encouraging result, the remaining
data was then coded by a single author.

Results. Figure 5 shows the results of the qualitative ana-
lysis. The vulnerability identifiers are majorly cited in code
comments where the related code are source code in the
software project repositories, accounting for 81%. While the
other 19% of code in our dataset are classified as test code.
Combined with the result of RQ1.3, this can be interpreted
that the vulnerability identifiers are used to notify and address
the security issues in the main code of a software, instead of
just for software testing.

• RQ2.2: Where is the actual vulnerability with relation to
the comment?

To comprehensively understand the actual code that might
contain the vulnerability, we investigated the location of the
code that relates to the code comments. In this qualitative
analysis, all authors of this paper initially discussed the
common coding guide to define the location of the vulnerable
code. Based on the consensus, we specified two codes with a
short description, as follows:

• single: the vulnerability-related code consists of single
statement, although some code written in multiple lines.

• multiple: the vulnerability-related code consists of multi-
ple statements.

Using the defined coding guide, the first three authors
independently classified the first 30 samples manually to define
the location of the code. The calculation of kappa score
between the three raters in this iteration yields 77.78% or
“substantial” agreement [28]. Based on this score, the first
author then manually analyzed the remaining samples.

Results. Figure 6 summarizes the findings of this analysis.
Out of 583 code comments which relate to vulnerabilities, 453
(78%) comments describe that the vulnerability issues emerge
in the code that consists of multiple statements. While 22% of
code comments show that the vulnerability issues are located
in a single statement.

170 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022

0 100 200 300 400

Multiple

Single

453 (78%)

130 (22%)

RQ2.2: Where is the actual vulnerability with relation to the comment?

Fig. 6. Distribution of answers to “Where is the actual vulnerability with
relation to the comment?” across 583 code comments.

Summary of RQ2. We identified that most vulnerability-
related comments describe the vulnerability issues located in
the main source code that consists of multiple statements.

C. RQ3: How vulnerable is the code in GitHub repositories?

Since only CVE identifiers provide the severity level of
vulnerability, thus, in this analysis we only focus on code
comments that include CVE. To answer the RQ3, we dis-
tributed the analyses in 2 sub-research questions, that is, (i)
investigating the severity levels of CVE identifiers (RQ3.1),
and (ii) identifying the duration of CVE identifiers inclusion
in the code comments (RQ3.2).

• RQ3.1: How severe is the vulnerability impact on the
code?

To answer this research question, we classified the severity
levels of all 1,921 CVE identifiers that appear in the source
code comments, as shown in Table I. According to CVSS score
v3.0 in the NVD database, the severity levels of vulnerability
are defined into 4 levels: Low to represent the least severe
vulnerability with the score between 0.1 and 3.9, Medium (4.0-
6.9), High (7.0-8.9), and Critical, the most severe vulnerability
level in the database with the score ranging from 9.0 to 10.0. 6

For several vulnerabilities, all required information to specify
the CVSS score sometimes are not available. This typically
happens due to the unwillingness of the software vendors in
providing the detailed information relates to the announced
vulnerabilities.

Results. By putting aside the “none” severity level, Table III
demonstrates that developers commonly included CVE iden-
tifiers in their code comments with high severity levels and
critical levels, as many as 21,81% and 15,25%, respectively.
This indicates that plenty of code in software project repo-
sitories needs more attention to handle the vulnerability issues.
The number of cited CVE identifiers where their severity
level are categorized medium is found as many as 9.47%
in the collected code comments. Although it is not as many
as the other levels, the low-severity CVE identifiers are also
mentioned in code comments during the software development
process.

In this RQ, we also identified the most frequent CVE identi-
fiers that are mentioned in source code comments. The affected
products and the severity levels of the most common cited
CVE ids were extracted from the NVD Database. As described
in Table IV, CVE-2016-10033 and CVE-2016-10045 are the
most CVE identifiers that are cited by software developers

6https://nvd.nist.gov/vuln-metrics/cvss

TABLE III
FREQUENCY OF CVE IDENTIFIERS REFERENCED IN CODE COMMENTS

BASED ON THE SEVERITY LEVELS

Severity levels # CVE id references %

High 419 21.81%
Critical 293 15.25%
Medium 182 9.47%
Low 20 1.04%
None 1,007 52.42%

sum 1,921 100%

in their code comments, accounting for 1.25% and 1.20%, re-
spectively. The severity level of both CVE identifiers is critical
which affects the PHPMailer products. Although the severity
levels of CVE-2009-3555, CVE-2012-2459, and CVE-2014-
6278 are unavailable according to the NVD Database, these
three CVE identifiers are also common to refer to in the
source code comments which affect OpenSSL, Bitcoin Core,
and Bash, respectively. The other CVE identifiers that are
frequently cited in source code comments are CVE-2014-0160
and CVE-2016-7420 with high and medium severity levels, as
many as 0.88% and 0.62%, respectively.

• RQ3.2: How long does the vulnerability reside in the
code?

In this research question, we analyzed the date that the first
time the developers explicitly mentioned the CVE identifiers
in the code comments. To achieve this goal, we analyzed all
1,366 source code comments that refer to the CVE identifiers,
as described in Table I. To extract the date, we implemented
a tool [30], [31] that uses git blame (also as known as
“annotate”) to the selected code comments. With this tool, we
are able to extract the actual date the first time the code author
wrote the CVE-related comments.

To obtain the time duration of the CVE identifiers that
have been referred to in the code comments, we calculated
the time differences between the initial creation date of the
code comments yielded from the annotation and December
31, 2019. We chose the end of 2019 to calculate the time
differences since the dataset of source code comments was
extracted in August 2020. The resulting time differences are
described in days.

Results. As illustrated in Figure 7, the duration of CVE
identifiers referenced in the source code comments is varied
for all vulnerability severity levels. The CVE identifiers that
are identified as critical severity levels have been cited by the
developers for mostly between 600 and 1,100 days (with the
first quartile (q1): 612, median: 889, and the third quartile (q3):
1,095). In most cases, the high and medium severity levels of
the CVE identifiers are included in the source code comments
for between 400 and 1,100 days (with q1: 490, median: 739,
q3: 1,042 for high severity levels, and q1: 482, median: 751,
q3: 936 for medium severity levels). The time duration of the
low severity CVE identifiers cited in code comments is more
varied compared to the other three prominent severity levels
(q1: 376, median: 721, q3: 1,219). On the other hand, the CVE
identifiers that unknown severity levels, have mostly been cited
much longer in the code comments, that is more than 1,500

Y. S. NUGROHO et al.: A STUDY OF VULNERABILITY IDENTIFIERS IN CODE COMMENTS 171

TABLE IV
TOP 10 CVE IDENTIFIERS THAT ARE REFERENCED IN SOURCE CODE COMMENTS

CVE id Severity level Product affected by the CVE # Code comments %

CVE-2016-10033 Critical The isMail transport in PHPMailer before 5.2.18 24 1.25%
CVE-2016-10045 Critical The isMail transport in PHPMailer before 5.2.20 23 1.20%
CVE-2009-3555 None TLS protocol and SSL protocol 3.0 and possibly earlier 20 1.04%
CVE-2016-10074 Critical Mail transport in Swift Mailer before 5.4.5 17 0.88%
CVE-2014-0160 High TLS and DTLS implementations in OpenSSL 1.0.1 17 0.88%
CVE-2012-2459 None Denial of service in Bitcoin network 13 0.68%
CVE-2016-7420 Medium Crypto++ through 5.6.4 12 0.62%
CVE-2016-10034 Critical zend-mail component before 2.4.11, 2.5.x, 2.6.x, and 2.7.x before 2.7.2, and

Zend Framework before 2.4.11
10 0.52%

CVE-2014-6278 None GNU Bash through 4.3 bash43-026 10 0.52%
CVE-2014-6271 Critical GNU Bash through 4.3 10 0.52%

0 1,000 2,000 3,000 4,000 5,000

Critical

High

Medium

Low

None

days

Fig. 7. Number of days the CVE identifiers reside in source code comments
until December 31, 2019. Although there are number of CVE identifiers that
are included more than 5,000 days for the “None” severity level, we limit up
to 5,000 in the figure.

days. The result hints that the vulnerabilities have majorly
notified developers for years. Thus, software developers should
be aware of this phenomenon.

Summary of RQ3. Our findings show that most CVE iden-
tifiers referenced in source code comments are critically and
highly severe, where they indicate the vulnerability issues in
the related code for more than 2 years.

V. IMPLICATION AND RECOMMENDATION

In this section, we present a description of the impact of
our study results, as follows:

• In our study, we found that the utilization of vulnerability
identifiers in code comments as a mean of indicating
workaround is needed to address security issues. Re-
searchers have demonstrated that open source software
is prone to security vulnerabilities [32]. Furthermore,
Figure 7 shows the evidence that vulnerability can exist
in source code for several years. Therefore, we suggest
open source software developers to check vulnerability-
related code on a regular basis.

• We noticed that there are many code comments only
include vulnerability identifiers without any further ex-
planation. Since code comment is crucial for communi-

cation between software maintainers, thus, writing code
comments with clear description is required, as suggested
in prior study [9].

• We also observed that most related comments that de-
scribe vulnerabilities are located in the main source
code that consists of multiple statements. It indicates
the feasibility of automatic tools development to predict
open source software security vulnerabilities based on
new features, such as vulnerability identifiers, statement
types, etc. Several previous research works show the path
to develop feature-based automatic software vulnerability
detection, such as dynamic behavior features [33] and
flaw function heuristic [34].

We can also recommend researchers to consider future
work, as follows:

• Further study on vulnerability-related code evolution to
understand the changes of source code to address the
vulnerability issues,

• Analyze vulnerability-related commit messages to under-
stand the more general purposes of vulnerability identi-
fiers inclusion in the commit message,

• Investigate the CVE ID-related discussion on Stack Over-
flow (SO), as the SO threads might be useful to overcome
the vulnerability in the code.

• Analyze the code length and the complexity of the method
to help practitioners in getting new insight about software
vulnerability.

VI. THREATS TO VALIDITY

Several potential threats to the construct validity emerge
in our study. Regarding the code comments extraction, it is
possible that not all vulnerability-related source code com-
ments could be extracted using the defined regular expression,
since the vulnerability identifiers might be written in different
formats in code comments. In addition, we limited the data
extraction until the end of 2019, so that the data from the
beginning of 2020 to the date of data collection in this work
will not be obtained. However, the number of these issues is
small, thus, we consider that the impact of the missing code
comments is not significant. The other threat to the construct
validity relates to our manual labeling. The labels might be
affected by annotator’s misunderstanding or mislabeling. To
mitigate this issue, the annotators resolve the disagreements

172 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022

through discussion, so that we can minimize the mislabeling
in our manual analyses.

The threats to the external validity appear in the data
preparation. Despite we investigate a large number of GitHub
repositories across 7 popular programming languages, the
results could not be generalized to other software development
projects, and other programming languages.

We mitigate the threats to reliability by preparing an online
appendix of our analyzed dataset. The appendix is described
in Section III-C.

VII. CONCLUSION

This paper presents an empirical analysis of vulnerability
identifiers that are explicitly written in source code com-
ments. The source code comments were extracted from 32,007
GitHub repositories across 7 popular programming languages,
that are, C, C++, Java, JavaScript, PHP, Python, and Ruby. To
understand the characteristics and the role of the vulnerability
identifiers in code comments, we conducted 2 analyses, (i)
quantitative and qualitative analysis on 1,491 vulnerability-
related code comments to get insights the rationale of software
developers adding the vulnerability identifiers in source code
comments, and (ii) severity analysis on the most dominant
vulnerability identifiers.

Our work has shown that CVE, the most common vulnera-
bility identifiers found in source code comments, has critical
and high severity levels to indicate that the related code is
used to address the vulnerability issues and alert developers
on using the code. Based on this work which has identified the
common vulnerability identifiers in code comments and their
general purposes, there are many opportunities for future work:
understanding the evolution of vulnerability-related comments
and source code, and further investigations of source code
comments, to name a few.

ACKNOWLEDGMENT

This research is fully funded by Hibah Integrasi Tridharma
(HIT) Universitas Muhammadiyah Surakarta under the grant
number 007/A.3-III/FKI/I/2021.

REFERENCES

[1] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE transactions on software engineering,
vol. 37, no. 6, pp. 772–787, 2010.

[2] X. Wang, R. Ma, B. Li, D. Tian, and X. Wang, “E-wbm: an effort-based
vulnerability discovery model,” IEEE Access, vol. 7, pp. 44 276–44 292,
2019.

[3] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and A. B. Bener, “Mining
trends and patterns of software vulnerabilities,” Journal of Systems and
Software, vol. 117, pp. 218–228, 2016.

[4] J. Ruohonen, S. Rauti, S. Hyrynsalmi, and V. Leppänen, “A case
study on software vulnerability coordination,” Information and Software
Technology, vol. 103, pp. 239–257, 2018.

[5] N. Munaiah, A. Rahman, J. Pelletier, L. Williams, and A. Meneely,
“Characterizing attacker behavior in a cybersecurity penetration testing
competition,” in 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2019, pp. 1–6.

[6] F. Piessens and I. Verbauwhede, “Software security: Vulnerabilities and
countermeasures for two attacker models,” in 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2016, pp.
990–999.

[7] A. Decan, T. Mens, and E. Constantinou, “On the impact of security
vulnerabilities in the npm package dependency network,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
ser. MSR ’18. Association for Computing Machinery, 2018, p. 181–191.

[8] M. A. Williams, R. C. Barranco, S. M. Naim, S. Dey, M. S. Hossain,
and M. Akbar, “A vulnerability analysis and prediction framework,”
Computers & Security, vol. 92, p. 101751, 2020.

[9] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” in 2013 21st international conference on program
comprehension (icpc). IEEE, 2013, pp. 83–92.

[10] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, “Todo or
to bug: exploring how task annotations play a role in the work prac-
tices of software developers,” in Proceedings of the 30th international
conference on Software engineering, 2008, pp. 251–260.

[11] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2014, pp. 91–100.

[12] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying different
types of self-admitted technical debt,” in 2015 IEEE 7Th international
workshop on managing technical debt (MTD). IEEE, 2015, pp. 9–15.

[13] E. da Silva Maldonado, E. Shihab, and N. Tsantalis, “Using natural
language processing to automatically detect self-admitted technical
debt,” IEEE Transactions on Software Engineering, vol. 43, no. 11, pp.
1044–1062, 2017.

[14] H. Hata, C. Treude, R. G. Kula, and T. Ishio, “9.6 million links in source
code comments: Purpose, evolution, and decay,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), 2019,
pp. 1211–1221.

[15] A. Inokuchi, Y. S. Nugroho, S. Wattanakriengkrai, F. Konishi, H. Hata,
C. Treude, A. Monden, and K. Matsumoto, “From academia to software
development: Publication citations in source code comments,” arXiv
preprint arXiv:1910.06932, 2019.

[16] B. Yang, Z. Liping, and Z. Fengrong, “A survey on research of code
comment,” in Proceedings of the 2019 3rd International Conference on
Management Engineering, Software Engineering and Service Sciences.
Association for Computing Machinery, 2019, p. 45–51.

[17] D. Haouari, H. Sahraoui, and P. Langlais, “How good is your comment?
a study of comments in java programs,” in 2011 International Sympo-
sium on Empirical Software Engineering and Measurement. IEEE,
2011, pp. 137–146.

[18] M. Linares-Vásquez, G. Bavota, and C. Escobar-Velásquez, “An empir-
ical study on android-related vulnerabilities,” in 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), 2017,
pp. 2–13.

[19] H. Guo, Y.-Y. Wang, Z.-L. Pan, and S.-W. Liu, “Research on detecting
windows vulnerabilities based on security patch comparison,” in 2016
Sixth International Conference on Instrumentation Measurement, Com-
puter, Communication and Control (IMCCC), 2016, pp. 366–369.

[20] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, and
M. Harman, “The importance of accounting for real-world labelling
when predicting software vulnerabilities,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE 2019. Association for Computing Machinery, 2019, p.
695–705.

[21] Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng, “Learning to predict severity
of software vulnerability using only vulnerability description,” in 2017
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2017, pp. 125–136.

[22] L. Pascarella, M. Bruntink, and A. Bacchelli, “Classifying code com-
ments in java software systems,” Empirical Software Engineering,
vol. 24, no. 3, pp. 1499–1537, 2019.

[23] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Analyzing the co-
evolution of comments and source code,” Software Quality Journal,
vol. 17, no. 4, pp. 367–394, 2009.

[24] R. Maipradit, C. Treude, H. Hata, and K. Matsumoto, “Wait for it:
identifying “on-hold” self-admitted technical debt,” Empirical Software
Engineering, vol. 25, no. 5, pp. 3770–3798, 2020.

[25] A. Alhefdhi, H. K. Dam, Y. S. Nugroho, H. Hata, T. Ishio, and
A. Ghose, “A framework for self-admitted technical debt identification
and description,” arXiv preprint arXiv:2012.12466, 2020.

[26] I. K. Ratol and M. P. Robillard, “Detecting fragile comments,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 112–122.

[27] C. Zapponi, “Githut 2.0: A small place to discover languages in github,”
https://madnight.github.io/githut/, accessed: 2020-07-28.

Y. S. NUGROHO et al.: A STUDY OF VULNERABILITY IDENTIFIERS IN CODE COMMENTS 173

[28] A. Viera and J. Garrett, “Understanding interobserver agreement: The
kappa statistic,” Family Medicine, vol. 37, no. 5, pp. 360–363, 5 2005.

[29] I. Rehman, D. Wang, R. G. Kula, T. Ishio, and K. Matsumoto, “New-
comer candidate: Characterizing contributions of a novice developer to
github,” in 2020 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 2020, pp. 855–855.

[30] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess?” in Proceedings of the 8th Working
Conference on Mining Software Repositories, 2011, pp. 153–162.

[31] F. Rahman and P. Devanbu, “Ownership, experience and defects: a fine-
grained study of authorship,” in Proceedings of the 33rd International
Conference on Software Engineering, 2011, pp. 491–500.

[32] X. Qing, “Initial analysis of open source software in network and infor-
mation security system,” Computer Application and Software, vol. 30,
pp. 325–327, 2013.

[33] Y. Li, L. Ma, L. Shen, J. Lv, and P. Zhang, “Open source software
security vulnerability detection based on dynamic behavior features,”
Plos one, vol. 14, no. 8, p. e0221530, 2019.

[34] Q. Liu, H. Chen, Y. Wen, and X. Li, “Towards a flaw function
heuristic vulnerability static analysis framework for executable file,” in
2011 Seventh International Conference on Mobile Ad-hoc and Sensor
Networks. IEEE, 2011, pp. 436–440.

Yusuf Sulistyo Nugroho is a lecturer at the Depart-
ment of Informatics, Universitas Muhammadiyah
Surakarta, Indonesia. He received his Ph.D degree
from Nara Institute of Science and Technology
in 2020. His research interests include Empirical
Software Engineering, Software Documentation, and
Mining Software Repositories. Further info on his
homepage: https://yusufsn.github.io/.

Dedi Gunawan is currently being a lecturer in In-
formatics Department, Universitas Muhammadiyah
Surakarta. He graduated from electrical engineering
from Universitas Muhammadiyah Surakarta. In 2014
he obtained Master degree from National Dong Hwa
University, Taiwan while in 2019 he achieved
Doc-toral degree from Kanazawa University,
Japan. His current research interest including
privacy enhancing technology, data anonymity,
privacy preserving data mining and privacy
preserving data publishing.

Devi Afriyantari Puspa Putri is a lecturer at
the Department of Informatics, Universitas Muham-
madiyah Surakarta, Indonesia. She received her
Master degree of Advanced Computer Science from
University of Manchester in 2017. Her research
interests include: Outlier detection and Mobile pro-
gramming.

Syful Islam is working as an assistant profes-
sor of Noakhali Science and Technology Univer-
sity, Bangladesh. He received the M.E. and Ph.D.
degree from Nara Institute of Science and Tech-
nology, Japan. His research interests include soft-
ware ecosystem, mining Stack Overflow, mining
software repositories etc. Contact him at syfulc-
ste@nstu.edu.bd

Abdulaziz Alhefdhi is a PhD candidate at the
School of Computing and Information Technology,
University of Wollongong (UOW), Australia. He
is also a lecturer at the department of Computer
Science at Prince Sattam bin Abdulaziz University
(PSAU), Saudi Arabia. Alhefdhi received his Bach-
elor’s and Master’s degrees in Computer Science
form Imam Mohammad Ibn Saud Islamic Univer-
sity (IMSIU), Saudi Arabia and the University of
Queensland (UQ), Australia, respectively. He is a
member of the Decision Systems Lab (DSL) in

UOW. His research interests include Software Analytics and AI-empowered
Software Engineering.

174 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 2, JUNE 2022

	Introduction
	Related Work
	Software Vulnerability
	Source Code Comments

	Research Method
	Research Questions
	Data Collection
	Identifiers Definition
	Source Code Comments Extraction

	Appendix

	Results
	:: What is the characteristic of vulnerability-related identifier in code comments?
	:: What kind of code is described in the vulnerability-related code comments?
	:: How vulnerable is the code in GitHub repositories?

	Implication and Recommendation
	Threats to Validity
	Conclusion
	References
	Biographies
	Yusuf Sulistyo Nugroho
	Dedi Gunawan
	Devi Afriyantari Puspa Putri
	Syful Islam
	Abdulaziz Alhefdhi

