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Aim To evaluate the association between spontaneous 
preterm birth (SPTB) and DNA methyltransferase (DNMT)1, 
3A, 3B, and 3L gene polymorphisms, and their contribu-
tion to the clinical characteristics of women with SPTB and 
their newborns.

Methods This case-control study, conducted in 2018, en-
rolled 162 women with SPTB and 162 women with term 
delivery. DNMT1 rs2228611, DNMT3A rs1550117, DNMT3B 
rs1569686, DNMT3B rs2424913, and DNMT3L rs2070565 
single nucleotide polymorphisms were genotyped using 
polymerase chain reaction and restriction fragment length 
polymorphism methods. The clinical characteristics includ-
ed in the analysis were family history of preterm birth, ma-
ternal smoking, maternal age, gestational week at delivery, 
and fetal birth weight.

Results DNMT gene polymorphisms were not significantly 
associated with SPTB. DNMT3B rs1569686 and rs2424913 
minor alleles (T) were significantly more frequent in wom-
en with familial PTB than in women with non-familial PTB, 
increasing the odds for familial PTB 3.30 and 3.54 times un-
der dominant genetic models. They were also significantly 
more frequent in women with SPTB who smoked before 
pregnancy, reaching the most significant association un-
der additive genetic models (odds ratio 6.86, 95% confi-
dence interval 2.25-20.86, P < 0.001; odds ratio 3.77, 95% 
confidence interval 1.36-10.52, P = 0.011, respectively).

Conclusions DNMT3B rs1569686 and rs2424913 gene 
polymorphisms might be associated with positive family 
history of PTB and smoking status.

DNMT3B rs1569686 
and rs2424913 gene 
polymorphisms are associated 
with positive family history 
of preterm birth and smoking 
status
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Preterm birth (PTB), defined as birth before the 37th com-
pleted week of gestation, is the leading cause of neonatal 
mortality and morbidity (1). It also significantly increases 
the risk of long-term health complications compared with 
term birth (2). Up to 25% of PTBs are medically induced 
and 50% are initiated spontaneously with intact fetal mem-
branes (SPTB or idiopathic PTB) (3,4). Due to its heteroge-
neous etiology, SPTB is considered a clinical syndrome (5). 
A recognized risk factor for SPTB is maternal and/or fetal 
(epi)genetic predisposition, which has been confirmed in 
many epidemiological studies (6-8).

DNA methylation patterns guide temporal and tissue-
specific gene expression and ensure genome stability. 
These patterns are extensively modified during gameto-
genesis and prenatal development (8-10), which makes 
DNA methylation a good predictor of gestational age at 
or near birth and a source of information related to the 
developmental stage (11). Epigenetic alterations were 
associated with PTB, and global and site-specific DNA 
methylation patterns were changed in maternal blood, 
placenta, and cord blood of preterm newborns (12-17). 
DNA methylation among preterm infants is influenced 
by both prenatal and postnatal environmental factors, 
such as maternal stress, social deprivation, and smoking 
(18-22).

During methylation process, methyl groups are trans-
ferred to cytosines by DNA methyltransferases (DNMT), 
among which DNMT1, DNMT3A, and DNMT3B are the 
major catalytically active enzymes (23,24). DNMT1 binds 
to hemi-methylated DNA and is responsible for the main-
tenance of established patterns, whereas DNMT3A and 
DNMT3B guide de novo methylation. Unlike the other 
DNMTs, DNMT3L is an enzymatically inactive regulatory 
factor that binds to DNMT3A and DNMT3B and increases 
their activity (23).

Considering that single nucleotide polymorphisms (SNP) 
in DNMT genes might affect the genes’ expression and 
consequently methylation, several studies assessed the 
association of these SNPs with different human repro-
ductive disorders. Polymorphisms of DNMT1 and DNMT3A 
genes were found to be associated with male infertility 
and spontaneous abortion after assisted reproduction or 
natural conception, respectively (25,26). DNMT3L gene 
variants affected birth-weight and were associated with 
male infertility and ovarian endometriosis (27-29), while 
maternal DNMT3B SNPs increased the risk for PTB and 
Down syndrome (27,30,31).

The present study examines the potential association be-
tween maternal DNMT1, DNMT3A, DNMT3B, and DNMT3L 
gene polymorphisms and SPTB. To identify the factors that 
cause epigenetic modifications related to SPTB, we also 
evaluated the association between DNMT gene polymor-
phisms and various clinical characteristics of women with 
SPTB and their newborns (family history of PTB, maternal 
smoking before pregnancy, maternal age and gestational 
week at delivery, and fetal birth weight).

PATIENTS AND METHODS

Patients

This case-control study, conducted in 2018, enrolled Slove-
nian and Croatian women who gave birth at the Division 
of Perinatology, Department of Obstetrics and Gynecol-
ogy, University Medical Center in Ljubljana, Slovenia and 
Department of Obstetrics and Gynecology, Clinical Hospi-
tal Centre of Rijeka, Croatia. All participants gave written 
informed consent. The samples collected in Rijeka are part 
of the TransMedri Biobank – a bank of biosamples for the 
investigation of preterm birth (EU-FP7 Regpot-2010-5, Fac-
ulty of Medicine, University of Rijeka). The study was ap-
proved by the Slovenian National Medical Ethics Com-
mittee (98/12/10, 2010) and the Ethics Committee for 
Biomedical Research of the Faculty of Medicine, University 
of Rijeka (2170-29-02/15-17-2, 2017).

The patient group included 162 women with SPTB (113 Slo-
venian and 49 Croatian). Demographic and clinical data of 
women with SPTB and their newborns were collected in 
accordance with the guidelines for genetic epidemiology 
studies on PTB (2) by means of a self-developed interviewer-
administered questionnaire. As described in more detail in 
our previous study (32), all women with SPTB had singleton 
pregnancies following natural conception and spontaneous 
initiation of PTB before the 37th week of gestation. Gesta-
tional age was estimated from the last menstrual period and 
confirmed by ultrasound in the first trimester. When the dif-
ference between the two estimates exceeded seven days, 
gestational age was revised according to the ultrasound 
measurement. The exclusion criteria for patients were the 
known risk factors for PTB, including diabetes, hyperten-
sion, kidney disease, autoimmune conditions, allergic dis-
eases, birth canal infections, in vitro fertilization, and preg-
nancy complications. None of the live-born children had 
congenital anomalies or evidence of infection. Additional 
maternal and newborn characteristics are shown in Ta-
ble 1. The control group enrolled 162 age- and parity-
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matched women (119 Slovenian and 43 Croatian) who had 
a term singleton birth after an uncomplicated pregnancy.

DNA isolation and genotyping

Genomic DNA was isolated from peripheral blood leuko-
cytes by standard procedure with a commercially available 
kit (Qiagen FlexiGene DNA kit, Qiagen GmbH, Hilden, Ger-
many) and stored at -20°C.

DNMT1 rs2228611, DNMT3A rs1550117, DNMT3B rs1569686, 
DNMT3B rs2424913, and DNMT3L rs2070565 SNPs were gen-
otyped using a combination of polymerase chain reaction 
(PCR) and restriction fragment length polymorphism (RFLP). 
Primers, PCR and RFLP conditions were modified from the 
previously published literature (Supplementary material 1) 
(33-36). Polymerase chain reaction was carried out in thermal 
cyclers (Mastercycle personal, Eppendorf, Hamburg, Germa-
ny and 2720 Thermal Cycler, Applied Biosystems, Carlsbad, 
CA, USA). All restriction enzymes were obtained from New 

England Biolabs (Ipswich, MA, USA), and reactions were per-
formed in accordance with the manufacturer’s recommen-
dations. PCR products and restriction fragments were sepa-
rated using electrophoresis on 3% agarose gels stained with 
GelRedTM (Olerup SSP®, Saltsjöbaden, Sweden).

Statistical analysis

Normality of distribution was tested with the Kolmogorov-
Smirnov test. The Pearson chi square test was used to ex-
amine differences in genotype and allele frequencies be-
tween various groups of participants. Odds ratios (OR) and 
95% confidence intervals (CI) were calculated to determine 
the association between DNMT gene polymorphisms and 
SPTB. The t test was used for comparison of age and fetal 
birth weight means between patients and controls, where-
as one-way analysis of variance (ANOVA) was used for the 
comparison of age and fetal birth weight means between 
the groups with different genotypes of DNMT gene poly-
morphisms. The level of statistical significance was set at 

Table 1. Characteristics of women with spontaneous preterm birth (SPTB) and controls

No (%) of

cases* controls† P

Maternal characteristics
Mean age at delivery (years)II     30 (17-44)     30 (20-42) 0.755‡

Gestational age at delivery     37-41
extremely preterm <28 week     10 (6.4)
very preterm 32-28 weeks     20 (12.7)
moderate to late preterm 32-37 weeks   127 (80.9)
Smoking before pregnancy
yes     45 (71.3)     23 (20.7) 0.184§

no   112 (28.7)     88 (79.3)
Smoking during pregnancy
yes     19 (12.1)     13 (11.7) 0.925§

no   138 (87.9)     98 (88.3)
Previous PTB
yes     13 (8.3)       0
no   144 (91.7)
Familial PTB
yes     48 (30.6)       0
no   109 (69.4)
Newborn characteristics
birth weight (grams)II 2403 (620-3915) 3456 (1570-4560) <0.001‡

congenital anomalies       0       0
evidence of infection       0        0
*epidemiological data were available for 157/162 (97%) women with SPTB.
†epidemiological data were available for 111/162 (69%) controls.
‡t-test.
§χ2 test.
IImedian and range.
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P less than 0.05. Statistical analyses were performed with 
Statistica for Windows, version 13.3 (StatSoft, Inc., Tulsa, 
OK, USA) and MedCalc for Windows, version 14.12.0. (Med-

Calc Software, Mariakerke, Belgium). Statistical power was 
calculated with ClinCalc LLC (https://clincalc.com/stats/
samplesize.aspx) and Hardy-Weinberg equilibrium was cal-
culated using Simple Hardy-Weinberg Calculator – Court 
Laboratory (Washington State University College of Veteri-
nary Medicine, Pullman, WA, USA).

RESULTS

Genetic association between DNMT gene 
polymorphisms and SPTB

Cases and controls did not significantly differ in the dis-
tribution of genotype or allele frequencies of DNMT1 
rs2228611, DNMT3A rs1550117, DNMT3B rs1569686, DN-
MT3B rs2424913, and DNMT3L rs2070565 SNPs (Table 2). 
Neither of the polymorphisms was associated with SPTB 
(data not shown). All genotype frequencies in cases and 
controls were in Hardy-Weinberg equilibrium (data not 
shown). The study had 80% power to detect a 2-fold in-
crease in the minor alleles of all SNPs.

Association of DNMT gene polymorphisms with clinical 
characteristics of women with SPTB and their newborns

Individually, both DNMT3B rs1569686 and rs2424913 mi-
nor alleles (T) were more frequent in women with famil-

Table 2. Genotype and allele frequencies of DNA methyltrans-
ferase (DNMT) gene polymorphisms in women with spontane-
ous preterm birth (SPTB) and controls

No (%) of

cases controls Χ2 P

DNMT1
rs2228611
  genotype
    AA   62 (38.3)   54 (33.3) 1.09 0.581
    AG   74 (45.7)   83 (51.2)
    GG   26 (16.0)   25 (15.5)
  allele
    A 198 (61.1) 191 (58.9) 0.32 0.575
    G 126 (38.9) 133 (41.1)
DNMT3A
rs1550117
  genotype
    GG 135 (83.3) 128 (79.0) 1.02 0.601
    AG   26 (16.1)   33 (20.4)
    AA     1 (0.6)     1 (0.6)
  allele
    G 296 (91.4) 289 (89.2) 0.86 0.353
    A   28 (8.6)   35 (10.8)
DNMT3B
rs1569686
  genotype
    GG   67 (41.4)   57 (35.2) 2.54 0.281
    TG   76 (46.9)   77 (47.5)
    TT   19 (11.7)   28 (17.3)
  allele
    G 210 (64.8) 191 (58.9) 2.36 0.124
    T 114 (35.2) 133 (41.1)
rs2424913
  genotype
    CC   60 (37.0)   48 (29.6) 2.62 0.270
    TC   79 (48.8)   83 (51.2)
    TT   23 (14.2)   31 (19.2)
  allele
    C 199 (61.4) 179 (55.2) 2.54 0.111
    T 125 (38.6) 145 (44.8)
DNMT3L
rs2070565
  genotype
    CC   56 (34.5)   50 (30.9) 1.89 0.389
    TC   89 (55.0)   87 (53.7)
    TT   17 (10.5)   25 (15.4)
  allele
    C 201 (62.0) 187 (57.7) 1.26 0.262
    T 123 (38.0) 137 (42.3)

Table 3. Genotype and allele frequencies of DNMT3B gene 
polymorphisms in women with SPTB according to family his-
tory of PTB*

No. (%) of women with

non-familial PTB familial PTB Χ2 P

DNMT3B
rs1569686
  Genotype
    GG   54 (49.6) 11 (22.9) 10.31   0.006
    TG   45 (41.3) 28 (58.3)
    TT   10 (9.1)   9 (18.8)
  Allele
    G 153 (70.2) 50 (52.1)   9.55   0.002
    T   65 (29.8) 46 (47.9)
rs2424913
  Genotype
    CC   49 (45.0) 9 (18.8) 13.96 <0.001
    TC   50 (45.9) 26 (54.2)
    TT   10 (9.1) 13 (27.0)
  Allele
    C 148 (67.9) 44 (45.8) 13.65 <0.001
    T   70 (32.1) 52 (54.2)
*DNMT – DNA methyltransferase; SPTB – spontaneous preterm birth.
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ial PTB than in women with non-familial PTB (Χ2 = 10.31, 
P = 0.006 and Χ2 = 13.96, P < 0.001, respectively) (Table 3) 
and increased the odds for familial PTB 3.30 and 3.54 times 
under the dominant genetic models (TT + TG vs GG and TT 
+ TC vs CC) (95% CI 1.53-7.14, P = 0.003 and 95% CI = 1.56-
8.01, P = 0.002, respectively) (Table 4).

The individual analysis of DNMT3B SNPs showed that 
rs1569686 and rs2424913 T alleles were also significant-

ly more frequent in patients with SPTB who had smoked 
than patients who had not smoked before pregnancy 
(Χ2 = 10.12, P = 0.001 and Χ2 = 5.35, P = 0.021, respectively) 
(Table 5), reaching the most significant association un-
der the additive genetic models (TT vs GG and TT vs CC) 
(OR 6.86, 95% CI 2.25-20.86, P < 0.001 and OR 3.77, 95% 
CI 1.36-10.52, P = 0.011, respectively, Table 6). None of the 
other polymorphisms contributed to the clinical charac-

Table 4. Association of DNMT3B gene polymorphisms with 
familial PTB*

Familial vs non-familial PTB

Genetic models OR (95% CI) P

rs1569686
TT vs TG+GG 2.28 (0.86-6.05) 0.096
TT+TG vs GG 3.30 (1.53-7.14) 0.003
TT vs TG 1.45 (0.52-3.99) 0.477
TT vs GG 4.42 (1.46-13.40) 0.009
GG vs TG 0.33 (0.15-0.73) 0.006
T vs G 2.17 (1.32-3.55) 0.002
rs2424913
TT vs TC+CC 3.68 (1.48-9.14) 0.005
TT+TC vs CC 3.54 (1.56-8.01) 0.002
TT vs TC 2.50 (0.96-6.47) 0.059
TT vs CC 7.07 (2.38-21.02) <0.001
CC vs TC 0.35 (0.15-0.83) 0.017
T vs C 2.49 (1.53-4.09) <0.001
*OR – odds ratio; CI – confidence interval; DNMT – DNA methyltrans-
ferase; PTB – preterm birth.

Table 5. Genotype and allele frequencies of DNMT3B gene polymorphisms according to smoking before pregnancy*

No. (%) of No. (%) of

DNMT3B SPTB non-smokers SPTB smokers Χ2 P controls non-smokers controls smokers Χ2 P

rs1569686
genotype
  GG   52 (46.4) 13 (28.9) 13.49 0.001   36 (40.9)   7 (30.4) 0.87 0.647
  TG   53 (47.3) 20 (44.4)   40 (45.5) 12 (52.2)
  TT     7 (6.3) 12 (26.7)   12 (13.6)   4 (17.4)
allele
  G 157 (70.1) 46 (51.1) 10.12 0.001 112 (63.6) 26 (56.5) 0.79 0.376
  T   67 (29.9) 44 (48.9)   64 (36.4) 20 (43.5)
rs2424913
genotype
  CC   45 (40.2) 13 (28.9)   27 (30.7)   6 (26.1) 0.19 0.911
  TC   56 (50.0) 20 (44.4)   7.53 0.023   47 (53.4) 13 (56.5)
  TT   11 (9.8) 12 (26.7)   14 (15.9)   4 (17.4)
allele
  C 146 (65.2) 46 (51.1)   5.35 0.021 101 (57.4) 25 (54.4) 0.14 0.711
  T   78 (34.8) 44 (48.9)   75 (42.6) 21 (45.6)
*DNMT – DNA methyltransferase; SPTB – spontaneous preterm birth.

Table 6. Association of DNMT3B gene polymorphisms with 
smoking before pregnancy*

SPTB Controls

Genetic models OR (95% CI) P OR (95% CI) P

rs1569686
TT vs TG+GG 5.45 (1.98-14.99) 0.001 1.33 (0.39-4.59) 0.649
TT+TG vs GG 2.13 (1.01-4.49) 0.045 1.58 (0.59-4.24) 0.361
TT vs TG 4.54 (1.57-13.17) 0.005 1.11 (0.30-4.09) 0.874
TT vs GG 6.86 (2.25-20.86) <0.001 1.71 (0.43-6.89) 0.447
GG vs TG 0.66 (0.29-1.47) 0.311 0.65 (0.23-1.83) 0.412
T vs G 2.24 (1.36-3.71) 0.002 1.35 (0.69-2.60) 0.376
rs2424913
TT vs TC+CC 3.34 (1.35-8.28) 0.009 1.11 (0.33-3.77) 0.864
TT+TC vs CC 1.65 (0.78-3.49) 0.187 1.25 (0.45-3.53) 0.668
TT vs TC 3.05 (1.16-8.01) 0.023 1.03 (0.29-3.68) 0.960
TT vs CC 3.77 (1.36-10.52) 0.011 1.29 (0.31-5.32) 0.729
CC vs TC 0.81 (0.36-1.80) 0.604 0.80 (0.27-2.36) 0.690
T vs C 1.79 (1.08-2.94) 0.022 1.13 (0.59-2.17) 0.711
*OR – odds ratio; CI – confidence interval; DNMT – DNA methyltrans-
ferase.
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teristics of women with SPTB and their newborns (data 
not shown).

DISCUSSION

This study indicates that maternal DNMT3B rs1569686 and 
rs2424913 SNPs might be susceptibility factors for SPTB 
in women who had a positive family history of PTB and 
had smoked before pregnancy. Although genotype and 
allele frequencies of DNMT3B rs1569686 and rs2424913 
SNPs were similar in cases and controls, a subgroup anal-
ysis of women with SPTB yielded two significant associa-
tions for both polymorphisms. First, the minor (T) allele of 
rs1569686 or rs2424913 DNMT3B polymorphism, in both 
homozygous and heterozygous form, increased the odds 
for familial PTB 3.30 and 3.54-fold, respectively, compared 
with the homozygous form of the major alleles (GG and 
CC). Positive family history is an independent risk factor 
and one of the main risk factors for PTB (37-39). Intergen-
erational influences include both genetic and epigenetic 
factors, meaning that both the inherited genetic predispo-
sition to PTB and the mother’s lifestyle affect her own and 
the next generation’s health status (37). DNMT3B rs2424913 
and rs1569686 are located in the 3′-untranslated and pro-
moter regions of DNMT3B gene, 149 and 579 base pairs, 
respectively, upstream from the transcription start site. The 
role of rs2424913 SNP is to regulate the expression of DN-
MT3B gene, while the T allele increases promoter activity 
(38,39) and affects miRNA binding site (40). The functional 
role of rs1569686 SNP is still controversial, although in sili-
co analysis showed that the T allele might affect the bind-
ing activity for several transcription factors (40). A previ-
ous study reported that both maternal and infant DNMT3B 
rs1569686 and rs2424913 gene polymorphisms influenced 
inter-individual variation in global DNA methylation (41). 
In addition, the T alleles of both variants, both in homozy-
gous and heterozygous forms, were associated with the 
risk of several diseases, mostly different cancer types (42-
44). Interestingly, rs1569686 TT genotype and T allele were 
overrepresented in patients with schizophrenia and posi-
tive family history of psychiatric illness (40).

The second important finding in our study was the asso-
ciation of the minor (T) alleles of DNMT3B rs1569686 and 
rs2424913 with maternal smoking, one of the previously 
confirmed environmental risk factors for SPTB (11,45). Ma-
ternal smoking in the pre- and peri-conception period 
(46,47), as well as throughout pregnancy (45), significant-
ly increased the risk for PTB. For example, Haas et al (47) 
showed that pre-conception smoking increased the odds 

for PTB 2-fold (95% CI 1.29-3.75). In our study, women who 
smoked and were homozygous for DNMT3B rs1569686 
TT genotype and rs2424913 TT genotype had respective-
ly 6.86-fold and 3.77-fold higher odds for SPTB compared 
with GG and CC carriers. Interestingly, the lack of signifi-
cant difference in genotype and allele frequencies be-
tween control non-smokers and smokers confirms that 
smoking before pregnancy combined with TT genotype is 
an additional risk factor for SPTB. This finding shows that 
smoking can negatively affect epigenetic modifications in 
the pre-conception period, especially during ovarian folli-
cular development (48). Previously, maternal smoking has 
been shown to adversely affect ovarian reserve and oocyte 
quality (49) and clinical outcomes of assisted reproduc-
tive technologies (50), which most likely have epigenetic 
etiology. As shown by a large epigenome wide associa-
tion study, smoking changed DNA methylation pattern at 
multiple genomic loci, which was only partially reversible 
upon smoking cessation (51). Also, maternal smoking was 
independently associated with reduced site-specific DNA 
methylation among preterm infants at birth, both in moth-
ers who quit smoking before pregnancy and those who 
continued to smoke (52). The spatially and temporally in-
dispensable roles of de novo methyltransferase DNMT3B 
during oogenesis and early embryonic development 
might be affected by the exposure to harmful environ-
mental factors. In humans, DNMT3B transcript is present 
from the primordial follicle stage onwards, but at the ger-
minal vesicle stage its protein is no longer detected in the 
nucleus, indicating that de novo DNA methylation in oo-
genesis occurs during the earliest stages of follicular devel-
opment (53,54). Moreover, DNMT3B seems to be the major 
DNMT that ensures global DNA remethylation during blas-
tocyst formation before implantation (54). Although the 
effect of maternal smoking during pregnancy on global 
and site-specific DNA methylation in the placenta and ne-
onates has been well documented (55-58), its precise im-
pact on DNA methylation and expression on DNMT3B in 
growing oocytes, as well as the long-term consequences 
on fetal growth and the timing of birth, is yet to be de-
termined. Moreover, the implied associations between ge-
netic polymorphisms and the tendency to smoke could be 
confounded by patient selection. However, studies on the 
association between smoking-related cancers and epige-
nomic alterations showed that cigarette smoke influenced 
DNMT3B gene expression, thus changing DNA methyla-
tion patterns (59-61).

Although our study was the first study conducted in 
women with SPTB, the association between DNMT1 
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rs2162560, DNMT3A rs734693, DNMT3B rs2424913, and DN-
MT3L rs7354779 and birth outcome was evaluated in one 
previous study (27). In that study, only maternal DNMT3B 
rs2424913 minor allele was associated with an increased 
risk for PTB, confirming DNMT3B as a potential candidate 
gene for PTB. Furthermore, three independent studies 
found DNMT3B rs1569686 and rs2424913 to be maternal 
risk factors for Down syndrome (30,31,62), again confirm-
ing the importance of DNMT3B gene polymorphisms in 
human reproduction.

Although our study did not find an association between 
SPTB and the other tested polymorphisms in DNMT1, DN-
MT3A, and DNMT3L genes, they still represent good can-
didate genes for SPTB considering their functionality and 
the role DNMTs play in modifications during gametogen-
esis and pregnancy. Although DNMT1 rs2228611 is located 
within exon 17 and is considered to be a synonymous mu-
tation, according to in silico analysis it might affect splic-
ing regulation (40). This polymorphism was also reported 
to affect LINE-1 methylation in women exposed to cadmi-
um (63). DNMT3A rs1550117 is located 448 base pairs up-
stream of the transcription start site, and the A allele de-
creases its expression (64). Intronic DNMT3L rs2070565 is 
also a splice site variant (40). Additionally, there are other 
polymorphisms within these genes that should be consid-
ered for future analysis.

The potential limitations of our study include the analysis 
of only the maternal genotypes and the low number of 
patients in the subgroup analysis, which reduces the study 
power. Moreover, we did not adjust P value for multiple 
comparisons and multiple presented analyses. On the oth-
er hand, the strengths of our study include patient selec-
tion according to the standard clinical definition of SPTB, 
sufficient statistical power, and the use of peripheral blood 
samples for DNA analysis. Further genetic association and 
expression studies in different populations should evalu-
ate the role of DNMT gene polymorphisms in SPTB.
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