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Aim To determine how daylight exposure in mice affects 
melatonin protein expression in blood and Kiss1 gene ex-
pression in the hypothalamus. The second aim was to as-
sess the relationship between skin cancer formation, day-
light exposure, melatonin blood level, and  kisspeptin gene 
expression level.

Methods New-born mice (n = 96) were assigned into the 
blind group or daylight group. The blind group was raised 
in the dark and the daylight group was raised under 12 
hours light/12 hours dark cycle for 17 weeks. At the end of 
the 11th week, melanoma cell line was inoculated to mice, 
and tumor growth was observed for 6 weeks. At the end of 
the experiment, melatonin level was measured from blood 
serum and Kiss1 expression from the hypothalamus.

Results The blind group had significantly higher mela-
tonin and lower Kiss1 expression levels than the daylight 
group. Tumor volume was inversely proportional to mela-
tonin levels and directly proportional to Kiss1 expression 
levels. Tumor growth speed was lower in the blind than in 
the daylight group.

Conclusion Melatonin and Kiss1 were shown to be 
nvolved in tumor suppression. They were affected by day-
light and were mutually affected by each other. 
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Melatonin is an endocrine hormone produced by the pi-
neal gland and several body tissues, and its blood levels 
are inversely proportional to the amount of light received 
throughout the day (1,2). Melatonin alterations regulate 
the circadian rhythm of many bodily functions (3). It has 
been shown that circadian rhythm disruptions may lead to 
impaired thyroid-stimulating hormone (TSH) secretion, in-
crease in nocturnal cortisol secretion, changes in lipid and 
glucose metabolism, changes in cytokine balance, and in-
hibition of antioxidant genes (4). Melatonin also regulates 
production of kisspeptin, a protein coded by Kiss1 and syn-
thesized mostly in hypothalamic tissue and  (5). It has been 
shown that kisspeptin levels vary depending on melatonin 
blood concentration (6).

Melatonin’s tumor suppressor properties are the subject of 
considerable research. Its antioxidant properties and DNA 
protective features (nuclear and mitochondrial) have been 
extensively confirmed (7,8), while cell culture and animal 
studies have emphasized its role in the suppression of dif-
ferent tumor types (9,10). For example, the incidences of 
breast cancer, stomach cancer, and skin cancer were lower 
in blind people, whose melatonin levels were consistently 
higher than those in sighted individuals (11,12).

Melatonin and kisspeptin synthesis are both affected by 
daylight exposure (13). Also, decreased melatonin blood 
levels lead to increased kisspeptin synthesis in the hypo-
thalamus (14,15). Although kisspeptin’s primary function is 
the seasonal control of reproduction, various studies also 
showed its antimetastatic role (16,17).

The relationships between daylight exposure and mela-
tonin, daylight exposure and kisspeptin, and kisspeptin 
and melatonin have been widely investigated, but there 
have been no detailed studies on their mutual effects. This 
study aimed to determine how daylight exposure in mice 
affected melatonin blood levels and the rate of kisspep-
tin synthesis in the hypothalamus. In addition, we inves-
tigated the relationship between skin cancer formation, 
daylight intake, melatonin blood level, and kisspeptin syn-
thesis rate.

Material and methods

The study, conducted in 2017, used 96 newborn BALB/c al-
bino mice obtained from the Çukurova University Faculty 
of Medicine Experimental Medicine Research and Appli-

cation Center. No inclusion or exclusion criteria other 
than age and sex were applied. This study was ap-

proved by the Ethics Committee of the Çukurova Univer-
sity Faculty of Medicine Experimental Medicine Research 
and Application Centre.

Mice groups and experimental workflow

The mice were assigned to the blind group (n = 48) or the 
daylight group (n = 48). Each group was further divided 
into the control (n = 12) and melanoma (n = 36) subgroups. 
All subgroups had an equal number of male and female 
mice. The blind group was housed with their mothers in a 
dark room (0 lux) one week after birth. Since visual skills in 
mice develop 10-14 days after birth, the exposure to dark-
ness was used to imitate blindness from birth (18). The 
daylight group was housed with their mothers in a room 
with normal daylight (4000 lux, 12 hours daylight, 12 hours 
dark) one week after birth. All mice were separated from 
their mothers at the end of week 3 and were raised under 
appropriate conditions (unlimited Laboratory Diet 5K52, 
unlimited water, 20°C, 50% humidity). At the end of week 
11, the mice in the melanoma subgroups were subcutane-
ously injected with B16F10 cell line and raised for 6 more 
weeks (17-week old mice). The tumor sizes were measured 
weekly with a caliper. At the end of week 17, tumor sizes 
were measured, blood samples were taken, and the hypo-
thalamuses were removed.

Melanoma cell line injection

The cell lines were prepared and injected according to the 
modified protocol by Overwijk and Restifo (19). B16F10 
cells, which were in the active dividing state in the cell 
culture, were collected and diluted with DMEM to a con-
centration of 106 cells/mL. Melanoma cell solution of 100 
μL (105 cells) was administered subcutaneously to the ab-
dominal areas.

Tumor size measurement and volume calculation

The measurements were made between the longest trans-
verse (width) and the longest longitudinal (length) sec-
tions. The short section was considered to be the tumor 
width and the long section was considered to be the tu-
mor length. Tumor volume was calculated by the formula: 
tumor volume = width × width × length/2 (20,21).

Determination of melatonin concentration

Melatonin blood concentration was determined with ELI-
SA kit (SunredBio Inc., Shanghai, China, detection range: 
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15.6-1000 pg/mL) according to the manufacturer’s pro-
tocol. Since the melatonin level was measured from the 
blood serum, no standardization was done.

Determination of Kiss1 expression

Expression was determined in the hypothalami.  The ex-
pression level was determined with real time quantitative 
polymerase chain reaction by using the TaqMan Gene Ex-
pression Assay (ThermoFisher Scientific Inc, Waltham, MA, 
USA) containing the FAM stained probe designed for Kiss1 
gene. RNA was isolated with TRIzol method (22). Comple-
mentary DNA was synthesized with High-Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems Inc., Fos-
ter City, CA, USA). The expression level of Kiss1 gene was 
determined with ΔCt method using β-actin gene as ref-
erence (23). One of the samples was accepted as “1” and 
the expression levels of other samples were determined 
relatively.

Statistical analysis

Normality testing was conducted with the Kolmogorov-
Smirnov test. Significance of differences between the 
groups in melatonin and Kiss1 levels was assessed with the 
independent t test, while the significance of differences 
between the groups in the rate of tumor volume change 
was assessed with the two-way ANOVA. Correlations be-
tween melatonin and Kiss1 values and tumor volumes 
were assessed with the Pearson correlation analysis. The 
level of statistical significance was set to 0.05. The analysis 

was conducted with Graphpad Prism 6 software (Graph-
Pad Software Inc, San Diego, CA, USA).

Results

At the end of the experiment, 87 mice survived. Nine mice 
(1 healthy from the daylight group and 8 injected mice, 5 
from daylight and 3 from blind group) died from unknown 
causes and were excluded from the study.

The blind group had significantly higher melatonin level 
(17.26 ± 0.97 ng/L vs 12.77 ± 0.53 ng/L P ≤ 0.001, t = 3.980) 
and significantly lower Kiss1 expression level than the day-
light group (5.89 ± 1.21 vs 13.00 ± 2.92 P = 0.024, t = 2.306 
for Kiss1).

Healthy mice had significantly higher melatonin level 
(16.09 ± 1.26 ng/L vs 9.59 ± 0.98 ng/L, P = 0.002, t = 3.440) and 
significantly lower Kiss1 expression level than tumor-bear-
ing mice (3.08 ± 1.15 vs 11.96 ± 3.07, P = 0.003, t = 3.280).

A tumor was formed in 12 of 72 mice injected with a mela-
noma cell line. Six of these were female and 6 were in the 
daylight group. There was no difference between the groups 
and sexes in the number of tumor-bearing mice. The weekly 
change of tumor volume from the injection to sacrifice is 
shown in Table 1. There was a strong inverse correlation (cor-
relation coefficient = -0.766, P = 0.004) between melatonin 
levels and tumor volumes and a strong positive correlation 
(correlation coefficient = 0.849, P = 0.001) between Kiss1 ex-
pression levels and tumor volumes (Figure 1).

Table 1. Tumor volumes (mm3) of melanoma bearing mice by week

Mouse* Week 1† Week 2 Week 3 Week 4 Week 5 Week 6

Blind group
F - 18.00   87.50   486.00   936.00   936.00
F - 32.00 320.00 2560.00 7488.00 7488.00
F - 22.50 245.00 1764.00 4630.50 4630.50
F -   6.00   56.00   288.00   726.00   726.00
M - 13.50   56.00   320.00   786.50   786.50
M -   6.00   31.50   220.50   550.00   550.00
Daylight group
F - 32.00 486.00 3240.00 3971.00 3971.00
F - 40.00 936.00 6083.50 8125.00 8125.00
M - 18.00 650.00 2601.00 3610.00 3610.00
M - 13.50 550.00 1912.50 2432.00 2432.00
M - 13.50 288.00   936.00 1470.00 1470.00
M -   6.00 220.50   786.50 1352.00 1352.00
*F – female; M – male.
†Week numbers represent weeks after injection.
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Tumor volumes measured each week (Table 1) were di-
vided by the values at the week 2, when tumors were first 
spotted, and the growth rate was determined for every 
week after tumor formation (Table 2). The tumor volumes 
in the daylight group grew significantly faster than those in 
the blind group (P = 0.026) (Figure 2).

Discussion

In this study, mice kept in darkness (blind group) had a 
slower tumor growth rate in comparison with mice ex-
posed to daylight conditions (daylight group). Further-
more, the blind group had significantly higher melatonin 
level and significantly lower Kiss1 expression level than 

the daylight group. One of the most important factors 
that regulate the melatonin cycle is the light stimulation 
of the retinal nerves (24,25). Individuals with partial visual 
impairment who could perceive light had slightly deviat-
ed melatonin cycle, whereas individuals with complete vi-
sual impairment, not able to perceive light, had an abnor-
mal cycle during the day (26). In addition, individuals who 
had lost both eyes had disrupted circadian rhythm and a 
spontaneous melatonin cycle (27). The higher melatonin 
levels in the blind group observed in this study could be 
attributed to the irregular melatonin cycle in the blind, 
leading to higher melatonin levels during the day (26,27). 
Both groups were sacrificed during the daytime to detect 
the baseline blood melatonin levels.

Figure 1. The relationship between melatonin and Kiss1 and tumor volumes at the end of the experiment (P < 0.05).

Table 2. Changes in rate of tumor growth (volumes) by week

Mouse* Week 2† Week 3 Week 4 Week 5 Week 6

Blind group
F 1.00   4.86   27.00   52.00   52.00
F 1.00 10.00   80.00 234.00 234.00
F 1.00 10.89   78.40 205.80 205.80
F 1.00   9.33   48.00 121.00 121.00
M 1.00   4.15   23.70   58.26   58.26
M 1.00   5.25   36.75   91.67   91.67
Daylight group
F 1.00 15.19 101.25 124.09 124.09
F 1.00 23.40 152.09 203.13 203.13
M 1.00 36.11 144.50 200.56 200.56
M 1.00 40.74 141.67 180.15 180.15
M 1.00 21.33   69.33 108.89 108.89
M 1.00 36.75 131.08 225.33 225.33
*F – female; M – male.
†Week numbers represent weeks after injection.
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The Kiss1 expression level was significantly higher in the 
daylight than in the blind group. Kisspeptin synthesis is 
directly proportional to the duration of daylight exposure 
(28), because kisspeptin controls reproductive behavior, 
which is increased in the long-day season (29).

Melatonin levels were very low in tumor-bearing mice 
compared with healthy mice. Grinevich and Labunetz (30) 
also found very low melatonin levels in melanoma patients 
compared with healthy individuals. Low melatonin levels 
in tumor-bearing mice may be related to the circadian 
rhythm disruption. Another possibility is that mice with 
lower melatonin levels developed melanoma, while mice 
with higher melatonin levels were able to protect them-
selves from tumor formation. However, despite the differ-
ent melatonin levels, there was no difference between the 
daylight and blind group in the number of tumor-bearing 
mice, which makes this possibility less probable. Kiss1 ex-
pression level was much higher in tumor-bearing than in 
healthy mice. If we take into account kisspeptin’s antimeta-
static and anticancer properties, it can be concluded that 
the hypothalamic synthesis of kisspeptin was increased 
because of tumor formation. Contrary to our findings, Shi-
rasaki et al (31) reported that Kiss1 expression was reduced 
in metastatic melanomas. This difference can be explained 
by the fact that our mice did not have metastases. In ad-
dition, tumor volume strongly inversely correlated with 
melatonin, whereas it strongly directly correlated with 
Kiss1. Tumor volumes increased as the melatonin level de-
creased, which indicates the protective effect of melatonin 
on melanoma formation. Tumor volumes also increased 
with the increase in Kiss1 expression level, and considering 

the fact that the mice had no metastases, this observation 
may be explained by potential effect of changed kisspep-
tin synthesis on metastasis inhibition. However, this inter-
pretation has to be confirmed by kisspeptin assessment in 
tumor tissues.

The main limitation of the study was the fast melanoma 
growth. In addition, the study did not analyze both protein 
and gene expression of melatonin and kisspeptin – we an-
alyzed melatonin protein expression in blood and kisspep-
tin gene expression level in the hypothalamic tissue.  

Our results showed that melatonin and Kiss1 were im-
portant tumor suppressors and were highly affected by 
daylight. In addition, these two tumor suppressors were 
mutually affected by each other. Our results indicate that 
melatonin and kisspeptin are highly affected by daylight 
and involved in tumor suppresion. Furher investigation is 
needed in order to clarify impact of other factors on me-
latonin and kisspeptin role in tumor growth and suppres-
sion. Future studies should analyze both protein and gene 
expression of melatonin and kisspeptin in tumor tissues to 
answer the remaining questions, particularly how to gen-
erate more slowly progressing cancers in mice.
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