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 This article describes the velocity-based motion and orientation 

control method for a differential-driven two-wheeled E-puck 

Robot (DDER) using the Multi-Objective Particle Swarm 

Optimization (MPSO) algorithm in the Virtual Robot 

Experimentation Platform (V-REP) software environment. The 

wheel velocities data and Infra-Red (IR) sensors reading make 

the multi-objective fitness functions for MPSO. We use front, left, 

and right IR sensors reading and right wheel velocity data to 

design the first fitness function for MPSO. Similarly, the front, 

left, and right IR sensors reading, and left wheel velocity data 

have been taken for making the second fitness function for 

MPSO. The multi-objective fitness functions of MPSO minimize 

the motion and orientation of the DDER during navigation. Due 

to the minimization of motion and orientation, the DDER covers 

less distance to reach the goal and takes less time. The Two-

Dimensional (2D) and Three-Dimensional (3D) navigation 

results of the DDER among the scattered obstacles have been 

presented in the V-REP software environment. The comparative 

analysis with previously developed Invasive Weed Optimization 

(IWO) algorithm has also been performed to show the 

effectiveness and efficiency of the proposed MPSO algorithm. 
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1 Introduction 
 

For the last two-three decades, researchers are giving their tremendous effort to minimize the motion and 

orientation of a wheeled robot among obstacles in the environment. But in the complex environment, it 

remains a challenging task yet. Researchers are implementing various types of deterministic and 

nondeterministic algorithms to address this issue. However, the use of nondeterministic algorithms for 

motion and orientation optimization of a wheeled robot is increasing in the last few years because these 

algorithms can quickly minimize the motion and orientation of a wheeled robot through fitness function. 

Nondeterministic algorithms like ant colony optimization algorithm, genetic algorithm, simulated annealing 

algorithm, bacterial foraging optimization algorithm, invasive weed optimization, particle swarm 

optimization algorithm, etc. have been implemented with a single objective fitness function.  

These algorithms helped the wheeled robot to search the collision-free navigation path from the starting 

point to the goal between obstacles in the workspace. Almasri et al. [1] designed the fuzzy controlled sensor 

fusion based collision-free motion planning for a wheeled robot. Further on, twenty-four fuzzy fi-then rules 

were used for the robot navigation in the Webots simulation.  

Pandey et al. [2] presented the navigation method for an autonomous wheeled robot between static and 

dynamic hurdles using multiple adaptive neuro-fuzzy inference system architectures. An improved version 

of a genetic algorithm has been implemented [3] for offline motion planning of a wheeled robot between 
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static obstacles. Jhang et al. [4] designed a differential evolution algorithm tuned interval type-2 fuzzy 

neural controller (IT2FNC) and implemented this technique to make the leader and follower cooperative 

carrying and wall-following control for multiple wheeled robots. Euclidean distance-based single fitness 

function genetic algorithm has been presented in the article [5] for wheeled robot path planning.  

Another interesting article can be found in [6], where the author applied IWO algorithm in multiple 

robots to search the optimal path from start to goal points among obstacles. However, the authors did not 

consider any wheel velocities based multi-objective functions in their work. An extensive review article on 

the swarm robotics navigation and their various control method was reported [7-8]. Besides, the authors 

provide a reference for new future research. McGuire et al. [9] presented a route planning architecture of an 

autonomous wheeled robot using a bug algorithm. In that work, the authors have tested the algorithm in the 

maze-like simulation environment. However, real-time implementation of that algorithm in a wheeled robot 

and experiments were not performed. Orozco-Rosas et al. [10] designed the membrane evolutionary 

artificial potential field method that provided the feasible path for a wheeled robot with a reasonable 

convergence rate between static and dynamic obstacles. However, Euclidean based single objective function 

has been used for motion control. Ant colony optimization and wind-driven optimization algorithm tuned 

fuzzy controller based wheeled robot motion and orientation control technique have been designed in the 

articles [11] and [12], respectively. The authors implemented some interesting multi-objective fitness-based 

various optimization algorithms [14-16] to solve the various engineering computation problems. 

In our study, we observed that most researchers have used Euclidean distance-based single objective 

fitness function [3, 5, 6, 10] to search the collision-free and feasible motion and orientation control for a 

wheeled robot among obstacles in the environment. Nevertheless, for the velocity control based motion 

control of a differential-driven two-wheeled robot, we have to take multi-objective fitness functions for 

implementing any algorithm. Therefore, in the present article, we suggested and implemented the right and 

left wheel velocity based MPSO algorithm that optimizes the motion and orientation of the DDER during 

navigation from the starting to goal points among scattered obstacles.  

The outcomes of navigation results of the DDER among the obstacles have been demonstrated in the V-

REP software environment. This work’s contributions are as follows: - Section 2 presents the kinematic 

study of a differential-driven two-wheeled E-puck robot. Section 3 provides a brief description of the MPSO 

algorithm’s design for motion and orientation control of a DDER among obstacles in the V-REP software 

environment. The outcomes of the experiments and comparative analysis are organized and elaborated in 

Section 4. Finally, the Conclusion part of the present work is summarized in Section 5. 

 

2 Kinematic Study of the Differential-Driven Two-Wheeled E-puck Robot 
 

In this section, we have investigated the kinematic equations for a differential-driven two-wheeled E-

puck robot, which controls the motion and orientation of DDER during navigation and obstacle avoidance in 

the V-REP software environment. Figure 1 illustrates the schematic representation of a DDER. The DDER 

is a differential-driven two-wheeled mobile robot, which is developed by École Polytechnique Fédérale de 

Lausanne.  

The diameter and height of the DDER are 7 cm and 5 cm, respectively. The wheel diameter of the 

DDER is 4 cm; and the total weight of the DDER is 0.16 kg. The DDER can move in the forward direction 

and backward directions, as well as can turn with a top speed of 0.15 m/s. It includes 8 IR sensors with 8 

LEDs. IR sensors of the DDER can read the obstacles between 1 cm to 6 cm range approximately. Figure 2 

shows the top view of the DDER with the eight IR sensors’ position from 0S  to 8S . In this article, we have 

used readings from only four sensors: 0S , 1S , 6S , and 7S . The sensor obstacle readings are taken as 

minima between two neighboring sensors: ( )0 7min ,fD S S= , ( )6 7min ,lD S S= , ( )0 1min ,rD S S= , where 

indices f , l , r  indicate forward, right, and left direction, respectively. 

Moreover, the DDER consists of two independent driving wheels, which carry the mechanical chassis of 

DDER. The two driving wheels attached to the two independent stepper motors drive the DDER.  

The LV  represents the left wheel velocity, and RV  indicates the right wheel velocity in the kinematic 

equations. The DDER moves in the solid plane, and a rigid chassis make it. The axes ( ),c cx y  are the current 
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posture of the DDER from origin O  point in the global frame  , ,O X Y .   denotes the orientation angle of 

the DDER with respect to an axis ( ),O X , b  is the track width between the left and right wheel drive 

systems, r  is the radius of the driving wheels, C  is the center of the mass of the DDER system. The 

following kinematic equations control the velocities and steering angle of the DDER: 

 

( )
2 2

R L
c R L

V Vr
V  

+
=  + =                                                                                                                                                                               (1) 

 

( ) R L
c R L

V Vr

b b
   

−
= =  − =  
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where 
cV  and 

c  represent the center (mean) linear velocity and center angular velocity of the DDER, 

respectively. 
cV  and 

c  control the motion and orientation of the DDER in the V-REP software 

environment, respectively. Next, 
R  and 

L  indicate the angular velocities of the right wheel driving 

system and left wheel driving system, respectively. Additionally, the following equations express the 

velocity (linear and angular) with respect to time ( t ): 
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Figure 1. Differential-driven two-wheeled E-puck Robot (DDER). 
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Figure 2. Top view of the DDER with the position of eight IR sensors. 

 

3 Design of MPSO algorithm for Motion and Orientation Control of DDER Among 

Obstacles in the V-REP Software Environment 
 

This section describes the brief description of the proposed MPSO algorithm and design of multi-

objective fitness functions, which controls and minimizes the motion and orientation of the DDER during 

navigation among obstacles in the V-REP software environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
                                                                                                                            

Figure 3. General flowchart of the MPSO algorithm. 
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3.1 Brief Description of the MPSO Algorithm 
 

MPSO algorithm is a swarm-based nondeterministic or stochastic optimization algorithm, developed by 

Kennedy and Eberhart [13]. The social behavior of fish schooling and bird flocking inspires this algorithm. 

Figure 3 shows the general flow chart of the MPSO algorithm, which combines different mechanisms of the 

algorithm. Mainly MPSO algorithm can be categorized in the four steps: initialization, selection of fitness 

function, velocity, and position up-gradation of particles. In the initialization process, we choose particles’ 

size, the 
vw  weight of the velocity, 1c  cognitive  and 2c  social  components, lower and upper bounds, a 

maximum number of iterations/generations, and problem dimension(s).  

After the initialization process, we put the fitness function of the problem in algorithm’s code. This 

study designs and selects the multi-objective fitness function for the MPSO algorithm. We used front, left, 

and right IR sensors reading as decision variables with the right and left wheel velocity data as predictors to 

design the first and second fitness functions, respectively. 

Further, the generalized multi-objective fitness function for the MPSO algorithm can be written as 

 1 2( ),  ( ),( () , )
T

if x xf f fx x= , where ( )1 2, , , mx x x x=  indicates the position of particles. The next steps 

of the algorithms are velocity and position up-gradation of particles. All the particles move with some 

velocity in the search space, and particles have their position in search space. The position x  and velocity 

v  of the population of the n  particles can be expressed as: 

 

,1 ,2 ,( ) ( ( ),  ( ), , ( ))n n n n mx j x j x j x j= ,                                           (6) 

 

,1 ,2 ,( ) ( ( ),  ( ), , ( ))n n n n mv j v j v j v j= , (7) 

 

where n  and j  denote the number of particles and number of iterations, respectively, after completion of 

one iteration, i.e., 1j + , the velocity and position of particles are updated by the following equations: 

( )
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                                        (8) 

 

, , ,( 1) ( ) ( 1)n m n m n mx j x j v j+ = + + ,                                           
(9) 

 

where , ( )n mv j  and , ( )n mx j  represent the velocity and position of the n  particles at j  number of iteration, 

the 
vw  controls the weight of the velocity  0,  1.2vw  . , , ( )pbest n mx j  denotes the individual best position of 

the n  particles at j  number of iteration. Similarly, the , , ( )gbest n mx j  is called the global best position, which 

is selected from the group of particles’ population.  1 0,  2c   and  2 0,  2c   are known as cognitive and 

social components, respectively, that tune the level of influence of , , ( )pbest n mx j  and , , ( )gbest n mx j . The r  

generates the random number in the range ( )0,  1  to run the algorithm. 

 

3.2 Design of multi-objective fitness functions for the MPSO algorithm 
 

In this section, the multi-objective fitness functions are designed to control the velocity of DDER. We 

have taken the senor data as inputs and velocity data as outputs in the Minitab software, and we have applied 

the general regression method to obtain multi-objective fitness functions. The multi-objective fitness 

functions for 
RV  and 

LV  to minimize the motion and orientation of the DDER are given below: 
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0.0578646+0.906727

0.881006 0.562324

R f

l r

V D

D D

=

+ −
                                           (10) 

 

0.0489124+0.934448

0.11076 1.0997

L f

l r

V D

D D

=

− +
                                           (11) 

 

The ranges of lower and upper bounds are 0.01 , , 0.06f l rD D D   of decision variables in the meter for 

the multi-objective fitness functions of the MPSO algorithm. Equations 10 and 11 reveal the multi-objective 

fitness functions of the algorithm. These functions control and minimize the motion and orientation of the 

DDER during navigation among scattered obstacles in the V-REP software environment. Due to 

minimization of motion and orientation, the DDER covers less distance to reach the goal and also takes less 

time. The 
RV  and 

LV  ranges are fixed between 0.063 m/sec to 0.15 m/sec. Figure 4 shows the Pareto 

optimality graph of multi-objective fitness functions of 
RV  and 

LV , considered minimization problems. 

Table 1 illustrates the selected values of the MPSO algorithm’s parameters, used in experiments. 

 

 

 

 

 

 

 

 
  

Figure 4. Pareto optimality graph of multi-objective fitness functions of RV  (Right Wheel Velocity) and LV  

(Left Wheel Velocity). 

 

Table 1. Selected parameters of the MPSO algorithm in this study and their values. 
 

Parameter Value 

Maximum number of iterations 1000 

Population size of particles 100 

Cognitive component 1c  1.5 

Social component 2c  1.5 

Problem dimension(s) 3 

Weight of the velocity 
vw  1 

Fitness function Multi-objective 

Lower bounds of decision 

variables 
[0.01, 0.01, 0.01] 

Upper bounds of decision 

variables 
[0.06, 0.06, 0.06] 
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4 Experimental Results of DDER Among Three-Dimensional Scattered Obstacles and 

Comparison with Previously Developed Invasive Weed Optimization in the Two-

Dimensional Scenario 
 

This section presents the experimental results of DDER among obstacles in the V-REP software 

environment using the MPSO algorithm, and comparison with previously developed IWO algorithm [6] in 

the 2D scenario. 
 

4.1 Experimental Results of DDER Among Three-Dimensional Scattered Obstacles Using MPSO algorithm 
 

V-REP software-based 3D motion and orientation results of the DDER have been presented in this 

section using the MPSO algorithm. The kinematic equations and MPSO algorithm are mentioned in the form 

of a MATLAB script (m-file). The programming script uses the different parameters for the MPSO 

algorithm and their values from Table 1. The 3D environment and simulation result of DDER among 

scattered obstacles was designed and performed in the V-REP software. The remote Application Program 

Interface (API) functions are used to connect the MATLAB and V-REP software. After establishing a 

connection, we run the MATLAB script, and simultaneously we start the V-REP simulation. The script 

sends the navigation command to the DDER in the 3D V-REP software environment, and the MPSO 

algorithm controls the right and left wheel velocities by receiving the fD , 
lD , and 

rD  readings. 

Furthermore, Figure 5 reveals 3D motion and orientation result of DDER among scattered obstacles in 

the V-REP software environment using the MPSO algorithm. In the Figure 5, the DDER starts motion from 

(10 cm, 10 cm), and reaches the goal that is placed at coordinates (200 cm, 200 cm). To show the motion 

and orientation control of DDER, blue color cuboid and red color cylindrical obstacles are randomly placed 

in the environment. At first, the DDER starts to move directly towards the goal until the obstacles are 

detected within the specified sensory range. Then MPSO is activated and sends the velocity control 

command to DDER to avoid the obstacles. Figure 6 shows the recorded angular velocities (degree/sec) of 

the right wheel (red color) and left wheel (green color) of DDER during navigation among scattered 

obstacles in Figure 5 (V-REP software environment). 

Similarly, Figure 7 shows the recorded linear velocities (meter/sec) of the right wheel (blue color) and 

left wheel (cyan color) of DDER during navigation among scattered obstacles in Figure 5 (V-REP software 

environment). As we can see in Figure 5, the goal (purple color small cuboid) is placed at the right corner, 

and due to this, most of the time, the DDER takes a right turn to reach the goal. Therefore, in Figures 6 and 

7, the left wheel’s linear and angular velocity is high as compared to the right wheel. The DDER covers the 

distance of 125 cm to reach the goal from the starting point between scattered obstacles and takes 30 

seconds. 

 

Table 2. Navigation path length and time comparison data between the proposed MPSO algorithm and a 

previously developed IWO algorithm [6]. 
 

Name of 

Algorithm 

Figure 

Number 

Start 

Point 

(cm) 

Goal (cm) 

Navigation 

Path Length 

Navigation 

Time 

Navigation 

Path Length 

Error 

cm Sec cm 

MPSO Figure 8 (10, 10) 
(200, 

200) 
125 30 s 2.46 

IWO [6] Figure 8 (10, 10) 
(200, 

200) 
133 32 s 3.94 
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4.2 Comparison with Previously Developed Invasive Weed Optimization 
 

This sub-section shows the comparative analysis between the proposed multi-objective fitness function 

based MPSO algorithm and previously developed Euclidean distance-based IWO algorithm [6] in the same 

2D scenario between scattered obstacles. In the article [6], the authors implemented the IWO algorithm for 

optimal trajectory planning of Khepera-II wheeled robot in known and unknown environments. Figure 8 

shows the 2D motion and orientation comparison result between the MPSO algorithm and IWO algorithm 

among scattered obstacles in the same 2D scenario. In Figure 8, the yellow gold color path reveals the 

MPSO algorithm controlled motion and orientation results. Similarly, the green pickle color trajectory 

presents the IWO algorithm-driven navigation results of the DDER. As we can see in Figure 8, the MPSO 

algorithm gives a smooth trajectory, and the IWO algorithm provides a rough path because the MPSO 

algorithm directly controls the wheel velocities of the DDER, and for the IWO algorithm, authors take the 

Euclidean distance based fitness function that searches the random coordinate during navigation. 

Besides, Table 2 provides the path length and time comparison data between the proposed MPSO 

algorithm and a previously developed IWO algorithm. The MPSO algorithm running DDER takes 125 cm to 

reach the goal from the start with the navigation path length error of 2.46 cm, while the IWO algorithm 

running DDER covers 133 cm to reach the goal from the start with the navigation path length error of 3.94 

cm. Therefore, the comparative analysis reveals that the velocity controlled MPSO algorithm gives a 

reasonable convergence rate with less path length error than the previously developed IWO algorithm. 

 

5 Conclusion 
 

We presented the optimization of motion and orientation of DDER through wheel velocities based multi-

objective fitness functions using the MPSO algorithm in the V-REP software environment. The designed 

MPSO algorithm consists of two multi-objective fitness functions. The first and second fitness functions 

controlled and optimized the right wheel velocity and left wheel velocity of DDER. Due to the minimization 

of wheel velocities, the DDER covers less distance to reach the goal from the starting point among the 

scattered obstacles.  

The programming of the MPSO algorithm and kinematic equations have been written in MATLAB 

scripts. Through the remote API functions, these scripts give the motion and orientation controlling 

command to the DDER in the V-REP software environment among scattered obstacles. The obtained 2D and 

3D navigation results show that the multi-objection fitness functions of the MPSO algorithm successfully 

controls and minimizes the velocities of DDER in the tested environment. The comparative analysis in 

Section 4 reveals that the MPSO algorithm controlled robot covers 125 cm in 30 seconds to reach the goal 

from the starting point. Whereas the IWO benchmark algorithm controlled robot takes 133 cm in 32 

seconds. Therefore, it can be concluded that the MPSO algorithm is more efficient than the IWO algorithm. 

Future work can include these multi-objective fitness functions for other non-deterministic optimization 

algorithms to search for a more accurate path and better convergence rate. 
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Figure 5. 3D motion and orientation results of DDER among scattered obstacles in the V-REP software 

environment using the MPSO algorithm. 
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Figure 6. Recorded angular velocities (degree/sec) of a right wheel (red color) and left wheel (green color) 

of DDER during navigation among scattered obstacles in Figure 5 (V-REP software environment). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7. Recorded linear velocities (meter/sec) of a right wheel (blue color) and left wheel (cyan color) of 

DDER during navigation among scattered obstacles in Figure 5 (V-REP software environment). 

                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 8. 2D motion and orientation comparison result between proposed MPSO algorithm and previously 

developed IWO algorithm [6] among scattered obstacles in the same scenario.
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