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SUMMARY 

One of the most fundamental laws of Nature is formulated by the Second Law of Thermodynamics. 

At present, in its usual formulation the central concept is entropy characterized in terms of 

equilibrium state variables. We point out that because thermodynamic changes arise when systems are 

out of equilibrium and because entropy is not a natural state variable characterizing non-equilibrium 

states, a new formulation of the Second Law is required. In this paper, we introduce a new, more 

general, but still entropic measure that is suitable in non-equilibrium conditions as well. This new 

entropic measure has given a name extropy. The introduction of extropy allows us to formulate the 

Second Law in a more suitable and precise form, and it resolves some conceptual difficulties related 

to the interpretation of entropy. We point out that extropy has a fundamental significance in physics, 

in biology, and in our scientific worldview. 
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INTRODUCTION 

One of the most fundamental laws of nature is Second Law of Thermodynamics. This law 

tells that changes during any adiabatic transition of any system proceeds toward the 

equilibrium, and in this process a certain thermodynamic quantity - called entropy - is never 

less than that of its initial value [1]. The point is that macroscopic changes do not occur 

without the presence of non-equilibrium and non-equilibrium processes are not necessarily 

adiabatic. We attempt here to reformulate the second law with the help of a more general 

thermodynamic state variable measuring the distance from equilibrium. This distance is not 

symmetric like geometrical distance just because thermodynamic changes have a preferred 

direction towards the equilibrium. We call this more general thermodynamic state variable 

measuring the distance form equilibrium as extropy [2 – 5]. 

Let us mention some of the characteristic problems related to entropy that we are aware of at 

present. In the highly popular website “The Second Law of Thermodynamics” 

(http://www.secondlaw.com – #1 in the Google search list of information under the search 

term “thermodynamics” and also #1 under “second law”; the site won the Internet Guide 

Award of The Encyclopedia Britannica) Lambert [6] claims that the idea of the Second Law 

is “the biggest, most powerful, most general idea in all of science”. The concept of entropy, 

together with the concept of energy, is of central importance for science. Unfortunately, there 

seems to be wide-ranging confusion regarding this fundamental concept. Recently a new 

impetus is given to clarify the concept of entropy [7 – 12]. It is pointed out that entropy is not 

a measure of ‘disorder’ since ‘disorder’ is a highly qualitative and not precisely defined 

concept that sometimes contradicts to the characterization offered by an entropic measure. 

Instead, Leff [7] and Lambert [6] proposed that entropy is a measure of energy dispersion: 

“Energy spontaneously tends to flow only from being concentrated in one place to becoming 

diffused or dispersed and spread out”. This formulation is a significant improvement in 

comparison to the older one regarding entropy as a measure of disorder. Moreover, it could 

be very much helpful also due to its metaphoric power. The physical content is also valid at 

least in cases when only one gradient is present. We point out that in more general cases this 

formulation still requires further improvement. For example, friction is a basic 

thermodynamic process in which kinetic energy is transformed into heat. Now it is an 

everyday experience to observe that when someone applies the brakes of a car all of a very 

sudden, the part of the wheel of the car in contact with the road is suddenly heated to large 

temperatures. The point is that the process of energy transfer from the car’s global kinetic 

energy to a small region of its wheel is not “energy spreading”. More generally, the 

phenomenon of “spontaneous energy focusing” (www.physics.ucla.edu/Sonoluminescence/ 

page2.html) like sonoluminescence, spark generation, turbulence etc. (e.g. [13 – 17]) seems 

to indicate that either the concept of spontaneity in Lambert’s formulation of the Second Law 

is problematic in some cases or the validity of Lambert’s formulation is not universal. In this 

paper, we will present a more general and more precise formulation of the Second Law. 

ENTROPY IN ISOLATED, CLOSED, AND OPEN SYSTEMS 

For isolated systems, standard entropy is a good measure of the direction of changes relative 

to thermodynamic equilibrium. The positive sign of entropy change indicates the direction 

towards equilibrium state having the highest entropy. For closed systems - the difference 

from the isolated ones is that they are able to exchange energy (heat) with their surroundings 

– entropy is already not always a good measure of the direction of changes. Equilibrating 

processes (shortly: e-processes) are the ones occurring in a system that interacts only with its 

equilibrium environment. In contrast, processes in which the system exchanges matter/energy 
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not only with its environment will be termed as not-necessarily-equilibrating processes or n-

processes. For example, the Earth can be regarded as a closed system when we neglect mass 

transfer with its cosmic environment. The Earth receives a varying amount of solar radiation 

corresponding to the varying phase of solar activity. Clearly entropy cannot tell the direction 

of global changes of the Earth in each and every instant. 

For open systems, i.e. systems that exchange not only energy but matter with their 

surroundings, entropy is even less good indicator of changes to occur. For example, when we 

have two systems from the same material, and we know that one having smaller entropy than 

the other, what do we know about the relation of these systems? One possibility is that the 

system with smaller entropy is in a larger distance from the thermodynamic equilibrium than 

the other. Another is that the system with smaller entropy is in the same distance from 

equilibrium but it has a smaller amount of mass. Entropy in itself does not tell which the case 

is. The point is that entropy can increase (or decrease) in two types of processes: in 

e-processes or in n-processes. For example, in the case of biological growth the mass of the 

given system increases, accompanied by the extensive increase of entropy. 

Moreover, not only changes within the system can lead to changes relative to the equilibrium, 

but also changes in its relations to its environment. Therefore, environmental changes can 

also induce changes in a system. In order to obtain a general law telling the direction of 

system’s changes, we will need a thermodynamic quantity that is based not only in the 

thermodynamic parameters of the system, but also on the parameters of its environments. The 

simplest of all these thermodynamic measures, as we will show here, is the thermodynamic 

distance from thermodynamic equilibrium as measured in entropic units. Entropic units make 

it possible that entropy can be a special case of the new, more general thermodynamic 

variable. How can we obtain such a highly desired variable? 

THE INTRODUCTION OF EXTROPY: THE STATE VARIABLE 
CHARACTERIZING THE ENTROPIC DISTANCE FROM EQUILIBRIUM 

We want to characterize the distance of nonequilibrium states from the state of 

thermodynamic equilibrium (distance from equilibrium, De). One immediate idea is to 

measure the distance of our system from the equilibrium by the temperature difference 

between it and its environment, 

0TTDe  . 

This seems to be a good measure in many cases, and, in everyday life, we measure the degree 

of nonequilibrium with it in many cases well. This subjective guess proposes the measure, 

which is larger for larger systems, so we need the distance as the extent of non-equilibrium, 

0TTUDe  . 

Nevertheless, the temperature is not a universal measure, since in many cases the system is not 

in pressure equilibrium with its environment. For pressure the extent of non-equilibrium is 

pVppV  0 . 

With the measure De = U|T – T0| we have UT and Vp in the same units, as it is shown by 

the First Law of Thermodynamics which states that the work W has the same unit as the 

internal energy U. It means that if there is a measure for the extent of non-equilibrium, it has 

the form 









 pVT

T

U
KDe , 
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where K is a parameter. This is still not a general measure, since in many cases there is a 

difference in chemical composition between the system and its environment, and so in the 

corresponding thermodynamic parameter ; we have add also N to De. Similarly, in case 

of electric potential difference can be important; in case of a difference in gravitational 

potential energy a term mgh should be added, and so on. In general, the measure of the 

distance from thermodynamic equilibrium will be 

 ... WUDe  . (1) 

After a simple transformation of (1), with the choice K = 1 

 ...)()(1 0  NVp
T

T
UDe  . (2) 

In this way, we obtain a measure for the distance from thermodynamic equilibrium in energy 

units. This is a good measure of the distance from thermodynamic equilibrium, if it is 

(i) zero in equilibrium, 

(ii) positive in nonequilibrium, 

(iii) always decreasing in equilibration processes. 

We can see that De fulfils (i), since in equilibrium t = p =  = … = 0. In general, it is 

easy to see that De (ii) fulfils, since in nonequilibrium t, p,  … > 0. 

From these two requirements, it arises that De > 0 in nonequilibrium, De decreases to zero as 

we proceed towards equilibrium. The larger the t, p, m etc., the larger is the distance 

from equilibrium, and the larger is De. Regarding (iii), it is important to note that in 

thermodynamics it is crucial to consider processes in which the various differences (t, p, 

m etc.) are transformed into each other. For such processes, our measure De sums up the 

contributions of the various differences to the arising distance from equilibrium. Until now, 

the concept “equilibration” is not characterized quantitatively. If we characterize 

equilibration by De, we find the De is not only a suitable measure of the distance from 

equilibrium, but it is a quantitative measure of equilibration as well. Unfortunately, the 

absolute value in the formula of De makes it difficult to handle. 

Now we will show how to obtain thermodynamics from equations (1 – 3). Equation (1) was 

written on the basis of intuitive notion of the distance from equilibrium. Let us notice that (1) 

has a remarkable violation of symmetry. All the terms (except the thermal ones) are written in 

the form extensiveintensive difference. Volume, mole numbers are extensive variables – 

proportional to the extension of the system), while pressure and chemical potentials are the 

intensives (they are the same in equilibrium, and their difference is related to the degree of 

non-equilibrium). On the other hand in the thermal term, energy is extensive, but 1 – T0/T is 

not a difference of the intensive parameter, it is only a number, not a physical state variable, 

as all physical variable has a measuring unit, and it is not only a number. 

Formally the problem can be solved in two ways - and they lead to different, but concise 

thermodynamic measures. 

a) Instead of energy, an other physical quantity with the dimension energy/temperature is 

used. It is the entropy. The point we note is that while energy can be measured and 

determined, it is overly complicated to obtain the exact value of entropy for real systems. 

With this selection, the measure of distance from equilibrium will be the quantity known 

as exergy B. 

   ...0  NVpTTSB  .  

b) The other way is the modification of the intensives 
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   ...0  NVpTTSB ...
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
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





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p
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TT
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
  

For the first sight it may seem clumsier than necessary. But imagine such a physics where 

instead of Kelvin scale T* = 1/T is used. The third law would change to the statement - 

infinite temperature is the lowest, and one never can reach it. Similarly, if in this physics 

p* = p/T is used, then the ideal gas equation would be p* =R N/V. It would be simpler, 

naturally other expressions would be more complicated, but it can be done. In that case 

       ...*

0

**

0

**

0

*  NppVTTU  .  

Formally this relation has the same structure as exergy, but it is an entropic measure.  is 

called extropy. 

An important remark is that in the formula (2) defining De the first term U|1 – T0/T| is the 

product of U, the internal energy, and |1 – T0/T|, a term without physical meaning because it 

is dimensionless. We point out that if we write this term into a form T0*U|1/T0 – 1/T|, the last 

factor |1/T0 – 1/T| has a physical meaning measuring the distance from equilibrium in terms 

of (1/T). If we transform all the other terms correspondingly, this transformation yields an 

entropic measure, and it has the advantage that entropy does not appear. 

 ...
11

0
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


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
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
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




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
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TT
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T

p
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TT
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
 . (3) 

In the present paper we derive an entropic-like measure for the extent of non-equilibrium. Now 

we return to Carnot principle, and we show that Clausius made some (allowed) but not needed 

simplification, that is why he introduced entropy as the only measure for non-equilibrium. 

EXTROPY AS A MEASURE OF THE DISTANCE FROM EQUILIBRIUM 

We want to consider whether extropy is a monotonous decreasing function of time for 

equilibration processes. We already had shown that extropy can be written as 

 iii XY .  

where Xi is for the extensive, X1 = U, X2 = N, …… Xn = V, and Yi for the related intensive 

Y1 = 1/T0 – 1/T, …, Yn = p0/T0 – p/T, variables. Now we show that the properties of extropy 

flows from the zeroth and the first law. 

The Zeroth Law constraint tells that  is a homogeneous linear function of U, V, and N. 

Doubling the system leads to double its extropy. 

Proof: Let us make the following transformation: U  kU, V  kV, N  kN, where k > 0. 

Variables T, p, and do not depend on the size of the system, 

 

   
   

   .,,,,

,,,,,

,,,,,

kNkVkUNVU

kNkVkUpNVUp

kNkVkUTNVUT

 





  

That is, 

    NVUYkNkVkUY ,,,,  ,  

telling that they are homogeneous zeroth order function of U, V, N, in agreement with the 

Zeroth law of thermodynamics. 

The effect of transformation k for  is 

         kΠXYkkXYkXkYkΠ
i

ii

i

ii

i

ii   . (4) 

Now, differentiating both sides by k, 
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 
ij

ii XY
k

Π

d

d
. (5) 

But considering  as the function of k, then 

 
 

 
  i

i

i

i

X
kX

Π
kkX

kX

Π

k

Π










 dd

d

d
. (6) 

Comparing (5) and (6) for k = 1, we get 

i

i

Y
X

Π





, 

so 

 
i

ii XYΠ dd . (7) 

The extropy change of the system is, from eq. (7), 

 ...d
11

d
0









 U

TT
Π   

Extropy is additive function, so in case of non-equilibrium systems, when the intensives can 

depend on the spatial coordinates r, then extropy is the sum of the local extropies defined as 

densities that can vary in space, and so we can work with extropy as a variable depending on 

variables r, Y = Y(r) and i (r) = Xi/V. With this notation, 


i

ii VYΠ d , 

and from eq. (7) 

 
i

ii VYΠ ddd  , (8) 

now we have a balance equation for the densities and so we can determine the time dependence 

of extropy. 

TIME DEPENDENCE OF EXTROPY 

The time derivative is (it follows from eq. 8) 

 
i

i
i V

t
Y

t

Π
d

d

d

d

d 
. (9) 

The first law of thermodynamics expresses the conservation of energy. Now the continuity 

equation for the energy density i tells that 

 0div 



i

i j
t


,  

and for the mole numbers j if there is no chemical reaction, in case of chemical reactions 

 jj

j
sj

t





div


,  

where sj is the source/sink of the mole numbers. Inserting these continuity equations into eq. 

(9), after straightforward manipulations (see Appendix) we obtain for the change of extropy 

the relation 

   VJYfJY
t

Π
i

i

i

i

ii dgradd
d

d
  ,  
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where the first integral is for the surface of the system. We split the flows into to parts: flows 

to the environment, these are always equilibrating flows, Ji0, and Jie flows going to/or coming 

from other systems being in the environment. We obtain 

   
i

ii

i

ioi

i

iei VJYfJYfJY
t

Π
dgraddd

d

d
  

Formally, 

 ΣJ
t

Π
 

d

d
,  

where 



i

iei fJYJ d . 

Now 

  







  

i

ii

i

i VJYfJYΣ dgraddio , 

where J is the extropy carried to the system, and  contains the effect all the other 

processes. It contains the effect of processes within the system and processes between the 

system and its reservoir. 

We will prove the following Thesis: The Carnot –Principle ensures that in real processes  is 

always positive. In a complete cycle the extropy does not change, so 

   0ddd
d

d
  ttΣtJt

t

Π
ie .  

This equation tells that for a complete cycle  

   eie ItJttΣ   dd . (10) 

Lemma : In a real cycle, the following requirement will be always fulfilled: 

 0eI . (11) 

Actually, for any part of the cycle, the relevant part of Ie can be negative for a certain period. 

The point is that, for the complete cycle, Ie in (11) is always positive. It can be zero for the 

imaginary reversible process, and never can be negative in a complete cycle. 

Now we will show the proof of the above formulated Thesis. Classical thermodynamics was 

built from Carnot on the concept of cycle. First, let us calculate the extropy flow in a cyclic 

process to the system. Now our system is a heat engine that runs cyclically. It makes contact 

successively with n reservoirs at temperatures Ti, exchanging from them dUi energies, and it 

has contact with pressure reservoirs with pi pressures, and the relevant volume changes are dVi. 

Then 

 






















i

i

i

i

icyclie
T

p

T

p
V

TT
UJ

0

0

0

d
11

d . (12) 

The Second Law states (see the Appendix) that Q(1 – T2/T1) – W ≥ 0. Now we show that 

Q(1 – T2/T1) – W is just the extropy flow. Then utilising again the First Law, dQ = dU + pdV, 

and the relation telling that the useful work is 

 W = (p2 – p1)dV, (13) 

where p2 is the pressure of the environment, we obtain 

 0d
11

1

1

2

2

12




















T

p

T

p
V

TT
U . (14) 
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A simple generalization is then obvious; we may consider a more complicated heat engine 

that runs cyclically, making contact successively with n reservoirs at temperatures Ti. Then 

the first law is W = iWi, and Carnot’s principle becomes 

 0d1d 0 


















 i

i

icycl W
T

T
Q  (15)

Utilizing the First Law and substituting (13) into (15), it yields 

0d
11

dd1d
0

0

01

0 











































i

i

i

i

icycliicycl
T

p

T

p
V

TT
UW

T

T
Q  (16)

It is easy to see that 

eie

i

i

i

i

icycl ItJ
T

p

T

p
V

TT
U 





















  dd
11

d
0

0

0



is the total extropy flow to the system during the cycle that must be positive for every cyclic 

process, and so we proved our Lemma telling that Ie > 0 is always valid for real processes. 

Our Lemma implies that in real circumstances a process is always present which consumes 

the extropy. As it is valid for any type (imaginary or real) cycle, it implies that 

   0 t . (16) 

The result we obtained tells that in any real cycle extropy  is consumed. 

We utilized the Carnot principle for showing that  has a special property: in real processes it 

is always decreasing. Therefore we proved that extropy fulfils our requirement (iii). Only extropy 

inflow can increase the amount of extropy and to realize a complete cycle in which every state 

variable regains its original value. The production of extropy from nothing is not allowed. 

Simple manipulations yield, that 

   idXYY = Π iio

Y

Yi

io

i

   

or introducing the entropy matrix: 

 
ki

2

ik
XX

S
  =  g




  

and sik = gik
-1

, we can write dXi = - sikdYk, so 

   kdYsYY= Π ikiio

Y

Yi

io

i

  

Extropy is zero in the equilibrium state with the environment. Expression Π = 0 means that 

the system is not distinguishable from its environment. There is no way to get energy from it. 

There is no order. 

Extropy is a function of the parameters of the reservoir, and the parameters of the system being 

this reservoir. 

We note that  is a non-equilibrium potential function measuring the thermodynamic 

distance from thermodynamic equilibrium in entropic units. It is a thermodynamic distance, 

and it is not symmetric, at variance with geometric distance. 
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The geometric distance d between two point A and B d(A,B) has the properties: 

1. d(A, B) ≥ 0 

2. d(A, A) = 0 

3. symmetry: d(A, B) = d(B, A) 

4. triangle inequality d(A, B) + d(A, C) ≤ d(A, C) 

In contrast, extropy as a thermodynamic distance is asymmetric, since it is measured from the 

equilibrium state E to the actual state A or B. Its properties are 

d(E, A) ≥ 0, 

d(E, E) = 0. 

Instead of the triangle inequality it is subadditive 

d(E, A) + d(E, B)  d(E, A + B) 

where A + B is the symbol of the unified A and B systems. Subadditivity follows from the 

superaddivity of entropy. 

Now let us estimate the thermodynamic distance  from the equilibrium state in the case of 

the human body. In a simplest approach, we can keep the dominant term in eq. (16), and so 

we can approximate the value of extropy of the human body as 

 









0

0d
TT

NΠ


. (25) 

Equation (25) is similar to the Gibbs potential G = N. In chemistry, the chemical potential is 

not calculated relatively to the environment of the system. Nevertheless, if someone regards G 

as measured relative to the environment (e.g. [18]), and redefine the chemical potential in a 

way that 0 = 0, than a simple relation will be found between the Gibbs potential and the 

extropy: 

 
T

G
Π  . (26) 

Now a simple method to determine the value of extropy is available through estimating G. To 

determine the Gibbs free energy, we can use the formula G = H – TS. In human organisms, 

the processes are isothermal at T ~ 310 K. The fuel content of a 70 kg person is given as 

triacylglycerols (fat), 15,6 kg; proteins, 9,5.kg; carbohydrates, 0,5 kg. The combustion heat of 

fat is 38,9 kJ/g, therefore the chemical entropy of fat of the human body is 606,8 MJ. The 

combustion heat of protein and carbohydrate is 17,2 kJ/g, all together 172 MJ. The enthalpy 

present in the chemical bonds of the 70 kg human body H = 778,8 MJ. The entropy of 

glucose is 212,13 JK
-1
mol

-1
 = 1,18 JK

-1
g

-1
 and that of liquid water 69,94 JK

-1
mol

-1
 = 

3,88 JK
-1
g

-1
. Approximating the entropy content of living matter with that of glucose, the 

9,5 kg protein will give 11,21 kJK
-1

, the 15,6 kg fat 18,4 kJK
-1

, and the 0,5 kg carbohydrates 

0,59 kJK
-1

, all together 30,20 kJK
-1

. The 44,4 kg water has an entropy of 172,25 kJK
-1

. In 

this way, the estimated entropy of the material of the 70 kg human body is found to be 

Sh ≈ 202,4 kJK
-1

. With T ≈ 310 K, TS ≈ 62,6 MJ, and so G ≈ 716,2 MJ. Therefore extropy, or 

thermodynamic distance from equilibrium, will be ≈ G/T ≈ 2,31 MJK
-1

, an order of 

magnitude higher than entropy, Sh ≈ 0,20 MJK
-1

. In this way, we obtained that 

 (human organism) ≈ 2,31 MJK
-1

 >> S(human organism) ≈ 0,20 MJK
-1

 (27) 

The fact that the extropy of the human organism is much larger than its entropy corresponds 

to the general experience of the ultimate easy to move our fingers, hands or foots. 
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FORMULATION OF THE SECOND LAW WITH THE HELP OF EXTROPY 

The second law of thermodynamics, in a concise form, states that any thermodynamically 

isolated system tends to equilibrate with its environment: 

 “Isolated systems seek the dead level” (I) 

But this formulation seems to be clearly restricted. Attempting to obtain a formulation of the 

Second Law as a general law of Nature, it is highly desirable to expand its range of application. 

Now it is easy to expand the range of this law to more general type of systems by regarding 

the system plus its equilibrium environment together as representing an isolated system. 

The Second Law of Thermodynamics can be formulated in a precise form telling: 

“In cases when the considered material system A is governed by its 

equilibrating interactions with its equilibrium environment B, i, the 

thermodynamic parameters of A, will tend toward i, the thermodynamic 

parameters of its environment B.” 

We can observe that (II) does not apply in cases when friction, sparkling or other spontaneous 

energy focusing processes are present. For example, in the case of a braking car the temperature 

of the car can increase, heat goes from a colder to a hotter place, and so the thermodynamic 

parameter of the system TA does not tend toward the temperature of the environment TB 

during the process of braking. At the same time, we may observe that the kinetic energy 

decreases drastically in the process of braking; therefore, if a thermodynamic parameter could 

be construed that involves somehow the sum of thermal, kinetic, chemical, electric etc. 

processes, in a way that this new thermodynamic parameter measures the distance from the 

equilibrium, this new parameter could work well characterizing the direction of changes. 

A simple formulation of the Second Law is available formulated with extropy: 

In cases when the considered material system A is governed by its 

equilibrating interactions with its equilibrium environment B, the decrease 

of extropy of the system A ≤ 0 determines the direction of changes relative 

to thermodynamic equilibrium. 

Certainly, our formulation (III) surpasses previous formulations of the Second Law like (I) 

and (II) in the sense that it can be applied to a wider set of phenomena, and so it may be 

regarded as a better and as a more general formulation of the Second Law. 

The biosphere – or the biological organisms are embedded in the environment, but they 

interact with each other (and with the Sun). In the present (extropic approach) first we 

characterize the systems with the extropy – that is they are in the equilibrium environment, 

and after we describe their interaction. As in the interactions material and energy may go 

from one system to the other, extropy flow also appears. 

Living system can maintain themselves, because they acquire extropy from their environment. 

THE DIFFERENCES AND SIMILARITIES OF EXTROPY WITH ITS 
PREDECESSORS: ENTROPY, GIBBS FREE ENERGY, NEGENTROPY 
AND EXERGY 

Entropy is measured from zero degree (0 K) instead from the equilibrium with the actual 

environment, and this circumstance leads to hardly tractable complications. One point is that 

entropy in general cannot be simply calculated, since heat capacity variations with 

temperature influences its value when obtaining by extrapolations from zero degree, and 

variations of heat capacities around zero degree involve complicated quantum processes. 

(II) 

(III) 
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Therefore, in general, it is simply not possible to determine the exact value of entropy 

theoretically. Moreover, it is not easy to obtain empirical determination of such complex 

materials that exist in our environment and in biological organisms. Another point is that 

entropy does not have any convenient interpretation. 

Unfortunately, there are many problems with the interpretation of entropy, and therefore it is 

not always easy to obtain quantitative insights on the relation of these two quantities of 

overall importance. 

Let us take two examples. We have two piles of apples, and you have to tell which pile you 

prefer: the pile with higher or lower entropy. If you select the pile with lower entropy, in the 

hope that the apples of this pile will be not rotten, and this is why their entropy is lower, you 

can receive less number of apples, but they can be all rotten. Now if you select the pile of 

higher entropy, it can contain more apples; but you cannot know in advance if they are rotten 

or not. Therefore, entropy is not a good measure in itself for a selection of apples if you are 

hungry. The situation became confused because the apples can change their entropy content, 

depending on their state. We can assume that a fresh apple has smaller entropy than the old 

one. On the other hand two apples have twice as much entropy as one apple has. 

Another quantity closely related to extropy is the Gibbs free energy. Haynie [18: pp.85-86] 

defines the free energy through the change of the chemical potential A – A
0
 relative to the 

standard state corresponding to T = 298,16 K and p = 1 bar. At the same time, Haynie 

claims [18: p.74] that the Gibbs free energy measures the maximum amount of work that can 

be done by a process going from a non-equilibrium state to an equilibrium state (at constant 

temperature and pressure). We point out that there is a hidden awkwardness or ambiguity in 

the different uses of the term Gibbs energy. The introduction of the concept of extropy sheds 

light to this awkwardness and, at the same time, it resolves the problem lying in the 

background. Work can be made only relatively to the environment. The same compressed gas 

can make different amount of work in different environment. Therefore, if one wants to 

interpret G as the maximum amount of work that can be done by a process going from a 

non-equilibrium state to an equilibrium state (at constant temperature and pressure), one has 

to define the zero point of chemical potential to the environment. Extropy is a concept that 

rules out such awkwardness, it is a precise and exact thermodynamic state potential, and it 

can be applied generally. 

Another closely related concept to the concept of extropy is Brillouin’s negentropy N = S0 – S, 

where S0 is the entropy of the system in the corresponding equilibrium and S is its entropy 

content in its actual state. In many cases, the concept of negentropy is very useful in 

describing and understanding nonequilibrium system’s behaviour. But from a thermodynamic 

viewpoint negentropy does not have the property frequently attributed to it, namely, 

measuring the distance from the equilibrium, since equilibrium is always referring to the 

actual environment, and mass and energy exchange with this environment always introduces 

conditions not taken into account by the system’s parameters only. For example, the Brillouin 

negentropy N does not change when the same system is in different environment, like room 

once in a summertime, once in a wintertime environment; N(wintertime) = N(summertime). 

Certainly, the same room with the same degree of temperature 20 C is farther from 

thermodynamic equilibrium in winter (T = 0 
o
C) than in summer (T = 15 

o
C). Extropy 

performs better in this respect, too, since it is equivalent with 

    envsystenvsyst SSSS 
0

. (28) 

This equations shows that for an isolated system extropy is equal with Brillouin’s negentropy, 

but in the case of closed and open systems the two entropic measure is different; Brillouin’s 

negentropy does not measure the distance from equilibrium while extropy does. 
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SUMMARY AND CONCLUSIONS 

We found that extropy as an indicator of direction of changes performs better, since it is 

simpler, more general and elegant than entropy. Simplicity and universality are one of the 

most fundamental aspects of scientific theories. The Second Law of thermodynamics is one 

of the most fundamental laws of Nature. Therefore, extropy has an even more fundamental 

role in physics than entropy. 

The fact that extropy as a driver of processes is based on differences presents an unexpected 

and fundamental challenge for us physicists accustomed to the preconceptions based on 

Newtonian physics. In modern physics, it is generally regarded that the basic drivers of 

physical processes are forces. The four fundamental forces of physics, gravitation and 

electromagnetism, weak and strong nuclear forces are forces corresponding to the properties 

of the objects themselves. In contrast, our finding is that the basic driver of thermodynamic 

processes is not a physical factor corresponding to the properties of the objects themselves, 

but to the relation between the objects and their environments. Modern physics regards as 

Aristotelian the view that the factor driving natural processes depends on the relation between 

the objects and their environments. The force beyond thermodynamic changes is not of a 

Newtonian type, because it is based on differences and not the material properties of the 

objects themselves. We learned that this thermodynamic force is originated from the fact that 

the system is not in thermodynamic equilibrium. This thermodynamic force is not symmetric, 

not fulfilling Newton’s third law. It seems that we have to change our basic preconceptions 

regarding the nature of physical world and learn to be accustomed to a new worldview based 

on the extropic aspects of thermodynamic. 
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SAŽETAK 

Jedan od temeljnih zakona prirode iskazan je kao drugi zakon termodinamike. U današnje vrijeme, u njegovom 

uobičajenom iskazu središnji pojam je entropija određena putem varijabli ravnotežnog stanja. Ističemo da je, 

zbog toga što termodinamičke promjene nastupaju kad je sustav van ravnoteže i zbog toga što entropija nije 

prirodna varijabla za opis neravnotežnih stanja, potreban novi iskaz drugog zakona termodinamike. U ovom 

radu uvodimo novu, općenitiju mjeru, i dalje entropijsku, prikladnu za neravnotežen uvjete – ekstropiju. 

Uvođenje ekstropije omogućava nam iskzivanje drugog zakona termodinamike u prikladnijem i preciznijem 

obliku te razriješava neke konceptualne nejasnoće povezane s interpretacijom entropije. Ističemo fundamentalno 

značenje ekstropije u fizici, biologiji i znanstvenom pogledu na svijet. 
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