Genitourinary Cancer: The Potential Role of Imaging

Tvrtko Hudolin¹ and Hedvig Hricak²

¹Departments of Radiology and Urology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
²Department of Urology, KBC Zagreb, Zagreb, Croatia

Summary

Imaging is an essential part of the management of patients with genitourinary cancers. Imaging is necessary for diagnosis, treatment selection and planning, applying minimally invasive image-guided techniques, assessment of response to treatment, and post-treatment follow-up. With advances in technology, imaging now comprises far more than descriptive anatomy. In the next decade anatomic, functional and molecular imaging information will increasingly be combined to achieve more accurate disease characterization and better patient care. In this review we present standard as well as some new imaging methods used in patients with kidney and prostate cancer.

Keywords: imaging, prostate cancer, kidney cancer, computed tomography, magnetic resonance imaging, ultrasonography, scintigraphy

Genitourinarni karcinomi: potencijalna uloga oslikavanja

Sažetak

Oslikavanje je sastavni dio liječenja bolesnika s genitourinarnim karcinomima. Oslikavanje je nužno za dijagnozu bolesti, izbor i planiranje terapije, te vođenje minimalno invazivnih tehnika liječenja, procjenu odgovora na terapiju, te praćenje bolesnika nakon liječenja. S napretkom tehnologije oslikavanje je danas puno više od deskriptivne anatomije. U sljedećoj dekadi kombinirat će se informacije anatomske, funkcionalne i molekularne anatomije s ciljem postizanja što bolje karakterizacije bolesti, a samim time i boljeg liječenja bolesnika. U ovom članku prikazat ćemo standardne i neke nove metode oslikavanja koje se primjenjuju kod bolesnika s karcinomom bubrega i karcinomom prostate.

Ključne riječi: oslikavanje, karcinom prostate, karcinom bubrega, kompjutorizirana tomografija, nuklearna magnetna rezonančija, ultrazvuk, scintigrafija

Imaging of Kidney Cancers

Kidney cancers represent 2-3% of all cancer cases. The disease is nearly twice as common in men as in women and occurs most frequently in individuals between 60 and 70 years of age (1). The etiology of the disease is not clear, and although studies have identified a number of factors that may be related to kidney cancer, cigarette smoking is the only established risk factor (2). Since the introduction of ultrasonography and computerized tomography (CT), the rate of detection of kidney tumors has increased substantially. The percentage of kidney cancers diagnosed incidentally has increased from 17% three decades ago to 58% in recent years (3).

In some patients, the tumors detected are malignant and demand surgical treatment. However, in other patients with benign tumors, surgery may represent over-treatment. Furthermore, malignant renal tumors with different histological subtypes have different prognoses. The most common renal
Clear cell carcinoma (RCC) subtypes are clear cell (accounting for approximately 60%), papillary (accounting for 7-14%), chromophobe (accounting for 6-11%), oncocytoma (accounting for 7-10%) and collecting duct and medullary (accounting for <1%) (4). The most aggressive tumors are collecting duct (Bellini duct) and medullary carcinoma, followed by the clear-cell type. Papillary and chromophobe cell types have favorable prognoses compared with the clear-cell type and oncocytoma is considered to be a benign neoplasm (4, 5).

The main role of imaging in patients with kidney cancer is to define the location and extent of the kidney mass. Although imaging modalities can differentiate solid from cystic masses, it is much more challenging to predict the nature of solid renal tumors. Although studies have suggested that certain imaging features may be associated with specific renal cortical tumor subtypes, there are no well-established imaging criteria for differentiating between these subtypes.

Ultrasoundography

Ultrasound is often a first-line approach for differentiating between solid and cystic kidney lesions (Figure 1). If a solid lesion is found on ultrasound, CT should be used for local staging and to search for metastatic disease. If a cystic lesion is not simple (avascular and completely anechoic, with a thin, imperceptible wall, posterior enhancement, and a round or oval shape) further evaluation with CT and/or magnetic resonance imaging (MRI) is recommended (6). Although ultrasound is insufficient for differentiating the histological subtype of the tumor, a recent study showed that vascular flow detected by color Doppler ultrasonography was strongly associated with conventional clear cell histology (Figure 1, 2) (7). Compared to unenhanced color Doppler imaging, ultrasound with microbubble-based contrast agents that enhance blood vessels enables better discrimination between benign and malignant small renal masses (8).

CT

For differentiating between solid renal tumors types, the most consistent and useful imaging characteristic is probably the degree of enhancement. Clear cell RCCs have complex findings on CT, often demonstrating a mixed enhancement pattern of both hypervascular soft-tissue components and low-attenuation areas that repre-

Figure 1. Patient with a renal mass that proved to be clear cell carcinoma at surgery. Color Doppler US image shows marked intratumoral vascularity, indicating the solid nature of the tumor.

Figure 2. A patient with renal cell carcinoma of the clear cell type. (A): Grayscale ultrasound image shows a homogeneous solid lesion (arrows). (B): Color Doppler ultrasound image shows marked tumor vascularity (arrows).
sent necrotic or cystic changes (9). Some CT findings that are found in clear cell carcinoma can also be seen in oncocytoma (10). The papillary renal cell carcinomas are typically less vascular, and most commonly show either homogeneous or peripheral enhancement (Figure 3) (11). Chromophobe renal cell carcinomas are more variable in their degrees and patterns of enhancement (9).

The accuracy of CT in defining the extent of tumor preoperatively (i.e., in staging) has been reported to be as high as 90%, making it the imaging modality of choice for most patients (12). CT has some limitations, mainly in the evaluation of lymph node involvement, which is assessed based on lymph node size. The enlargement of lymph nodes to a diameter greater than 2 cm is almost always a sign of metastasis, but lymph nodes between 1 and 2 cm in diameter may also be caused by reactive hyperplasia (13). Multislice CT, with its excellent temporal resolution, has been found to be useful for detecting the presence and extent of inferior vena cava invasion (14).

MRI

MRI has a few advantages in the imaging of kidney cancers compared to CT and is, therefore, the method of choice in selected patients. The accuracy of detection and differentiation of cystic and solid renal lesions on MRI is comparable and at times superior to that on CT (15). MRI can also be used in patients with renal failure or reduced nephrons, or in patients who are allergic to iodine-based contrast agents used with CT. Because of its superior soft tissue contrast, MRI is also reliable for evaluating small renal masses (16).

On T1-weighted images solid renal tumors are typically isointense or slightly hypointense. Rarely, if they contain a lipid component or hemorrhage, they may demonstrate hyperintensity (17, 18). Renal cortical tumors tend to be mildly hyperintense on T2-weighted images and show variable enhancement on dynamic contrast-enhanced images (17, 19). A recent study showed that clear cell carcinomas are hyperintense and heterogenous on T2-weighted images and that on dynamic contrast-enhanced images, papillary cell carcinomas demonstrate less and delayed enhancement compared with the clear cell type (20).

In some cases MRI allows a more detailed assessment of cystic masses than is possible with CT and may show additional septa, thickening of the wall and/or septa, or enhancement - findings that may affect patient management (21).

Nuclear Scintigraphy

Positron emission tomography (PET) is advancing the imaging of many primary and metastatic cancers. Most malignant tumors demonstrate enhanced glucose uptake, which makes them suitable for PET imaging using the glucose analog fluorodeoxyglucose (18F-FDG). However, the use of 18F-FDG PET in the imaging of urological tumors is hampered by the urinary excretion of the tracer and, in some urological cancers, variable uptake of the tracer. Thus, although 18F-FDG PET has a limited role in the initial diagnosis of renal tumors, it can be useful for the detection of local recurrence and distant metastases (e.g., visceral, lymph node and bony metastases) (22).

18F-Fluoromisonidazole (18F-FMISO) is a hypoxia marker and $^{3'}$-Deoxy-$^{3'}$-18F-fluorothymidine (18F-FLT) is a marker of cellular proliferation. Studies have shown that uptake of both of these tracers is higher in tumors than in normal tissue, but more data are needed to validate the roles of these tracers in the imaging of kidney cancer. A recent study found that radiolabeled G250, a monoclonal antibody to carbonic anhydrase IX antigen, targeted clear cell carcinoma with high sensitivity and specificity (23). Further studies are needed to verify these new and exciting results.

Conclusion

CT is generally the imaging modality of choice for the evaluation of renal tumors, while ultrasound and MRI function as valuable problem-solving tools. The role of PET in the imaging of kidney cancer is expected to increase as new tracers are developed and validated.

IMAGING OF PROSTATE CANCER

Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer death among men in industrialized countries. The incidence of prostate cancer increases with advancing age, reaching approximately 60% in 60-year-old men (24). The biological behavior of prostate cancer varies widely. In many patients the disease is indolent, while in many others it poses a substantial threat to health and life. A wide array of treatment options is available, and determining which treatment is best for an individual patient is not easy. Accurate characterization of the cancer is essential for appropriate treatment selection. The major objective of prostate cancer imaging is to supplement clinical and pathological data (e.g., the clinical or pathological stage, the Gleason score and the serum PSA level) (25,26) to achieve more precise disease characterization before and after treatment. In addition, with advances in technology, imaging is becoming a tool for guiding local therapies such as radiofrequency ablation, cryotherapy and high-intensity focused ultrasound (27).

Transrectal Ultrasound and CT

Transrectal ultrasound alone has limited utility for identifying prostate cancer, and therefore it has been used mainly to guide needle biopsy and brachytherapy seed implant (28). Real-time contrast-enhanced color Doppler ultrasound for visualization of focal lesions (Figure 4) and elastography for the assessment of tissue elasticity are new techniques which may improve prostate cancer detection, grading and staging (29-31). However, further clinical trials are needed to determine the promise of these new ultrasound techniques. CT has relatively poor soft-tissue resolution in the pelvis and therefore is not a modality of choice for primary prostate cancer. It is recommended that CT should be used only in patients with PSA >20 ng/mL, Gleason sum >7 and/or clinical stage T3 or higher (32). CT can be useful as a baseline examination in high-risk patients with clinically apparent, grossly advanced local disease (gross extracapsular disease, gross seminal vesicle invasion, or invasion of surrounding structure including bladder, rectum, levator ani muscles, or pelvic floor (33). For diagnosis of bone metastases CT is inferior to MRI and bone scans (34).

MRI

Due to its superb soft-tissue resolution, MRI can show the zonal anatomy of the prostate as well as the broader pelvic anatomy in detail. It is therefore the modality of choice for the detection and staging of local prostate cancer (Figure 5). MRI can be used to detect extracapsular extension (Figure 6), seminal vesicle invasion, and adjacent organ invasion. Many technological advances have
been developed recently in the field of MRI, such as MR spectroscopic imaging (MRSI), dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI). These new techniques enable anatomic and functional evaluation of the prostate and prostate cancer. Each technique has advantages and disadvantages. In the future, optimal use of MRI will most likely involve the combination of all or some of the various techniques.

Conventional MRI of the prostate typically includes axial T1-weighted imaging of the pelvis for evaluation of pelvic adenopathy, osseous lesions and post-biopsy artifacts in the prostate, as well as small-field, thin-section, high-resolution T2-weighted imaging of the prostate in three orthogonal planes for the detection and localization of prostate tumors. Prostate cancer typically manifests as focal decreased signal on T2-weighted imaging (Figure 5-6), but these changes are not specific for prostate cancer and may also be caused by certain benign conditions, such as prostatitis, or by post-biopsy changes. Nonetheless, conventional MRI has been shown to contribute significant incremental value to both digital rectal examination and transrectal ultrasound-guided biopsy in cancer detection and localization in the prostate (35). In addition, conventional MRI is capable of demonstrating local prostate recurrence after surgery (Figure 7) (36).

MRSI is an established advanced imaging technique for metabolic evaluation of the prostate gland. The addition of MRSI to conventional MRI can significantly improve the accuracy of prostate cancer localization and decrease interobserver variability (37,38). This technique displays concentrations of metabolites in prostatic tissue. The normal prostate contains high levels of citrate and low levels of choline. When cancer is present the citrate level is diminished due to increased energy consumption, and the choline level is elevated owing to a high phospholipid cell membrane turnover in the proliferating malignant tissue. In addition, the level of polyamines, another secretory product of the prostate, decreases in the presence of prostate cancer. In practice, an increased (choline+polyamines+creatine) to citrate ratio is used to distinguish

Figure 5. Clinical T1c non-palpable lesion. Endorectal MR images from a patient with non-palpable, clinical stage T1c prostate cancer. Axial (A) and coronal (B) images show a large lesion in the left peripheral zone (arrows); coronal image (B) also shows a second lesion (arrowhead) in the right apex.

Figure 6. Axial endorectal MR image in a patient with prostate cancer shows a large lesion in the left peripheral zone (arrow) with asymmetry of the neurovascular bundles that is suggestive of early extracapsular extension.
prostate cancer from healthy tissue on MRSI (39). (Previously, the polyamine peak could not be resolved, and so the [choline+creatine]/citrate ratio was used.) MRSI may provide an indication of tumor aggressiveness, as one study showed that the (choline + creatine)/citrate ratio tended to increase with increasing Gleason scores (40).

DWI is an MRI technique that measures the Brownian motion of water molecules in biologic tissues. Mean apparent diffusion coefficient values for prostate cancer are lower than those for benign prostate tissue, although they overlap substantially (41,42). The combination of T2-weighted imaging and DWI has been found to perform better than T2-weighted imaging alone in the detection of significant prostate cancer (i.e., cancer with a Gleason score of at least 6 and a diameter > 4 mm) within the peripheral zone (43). In addition, it has been shown that the combination of MRSI and DWI has significantly higher accuracy than does MRSI alone in differentiating benign from malignant voxels in the peripheral zone (44). DWI appears to be particularly effective in detecting recurrent disease after radiation therapy or surgery.

DCE-MRI is a technique that uses small molecular weight gadolinium chelates for imaging tissue vascularity. Depending on the technique used, data reflecting tissue perfusion, microvessel permeability and extracellular leakage space can be obtained. Cancer often demonstrates nodular enhancement before the rest of the parenchyma and early washout of signal. This pattern is highly predictive of prostate cancer but not pathognomonic. Some prostate cancers are mildly or moderately hypervascular and are therefore not detectable with this method. Furthermore, angiogenesis is also present in benign prostatic hyperplasia and can be associated with prostateitis and premalignant changes, such as prostatic intraepithelial neoplasia (PIN) (45). Despite these limitations, DCE-MRI has been shown to have sensitivity of 73% and specificity of 81% in detecting prostate cancers (46). The addition of DCE-MRI to MRI or combined MRI/MRSI may further improve intraprostatic tumor localization. In a study of 34 patients, the accuracy levels (as measured by areas under receiver operating characteristic curves) for MRI, MRSI and DCE-MRI in prostate cancer localization were 0.68, 0.80, and 0.91, respectively (47).

MR lymphography with superparamagnetic nanoparticles has high sensitivity and specificity in depicting lymph node metastases (48). The inability of malignant nodal tissue to take up the agent provides tissue contrast within the lymph nodes. The technique has been used to detect small metastases (< 5 mm) as well as to differentiate between benign reactive and malignant enlarged nodes (48, 49). Although the technique appears promising, it is still restricted to the research setting in the United States.

Bone Scan and Positron Emission Tomography (PET)

The radionuclide bone scan continues to be the mainstay for diagnosing the initial spread of
prostate cancer to the bone (Figure 8). It is generally reserved for patients with PSA > 10 ng/ml. Bone scanning can also be used to assess treatment response, as uptake usually decreases following radiotherapy, hormone therapy or chemotherapy. Single photon emission computed tomography (SPECT) studies of the skeleton have been shown to be more sensitive in the detection of metastatic disease than planar imaging (50, 51). A new technique, SPECT/CT, combines metabolic and anatomic information, though its incremental value has yet to be assessed.

PET imaging with the glucose analogue \(^{18}F \) 2-fluoro-D-deoxy-glucose (18F-FDG) in prostate cancer is challenging because glucose utilization in well-differentiated prostate cancer is often low and there is considerable overlap of uptake between prostate cancer, benign prostatic hyperplasia and inflammation. Generally, \(^{18}F \) FDG PET has been found to have low sensitivity for detecting primary prostate cancer (33) except in patients with advanced-stage and more aggressive disease (52). Limited data suggest that \(^{18}F \) FDG-PET/CT may have utility in the search for prostate cancer metastases after treatment, especially in aggressive and/or castration-resistant disease. In a study of 91 patients with PSA relapse after radical prostatectomy, \(^{18}F \) FDG PET detected disease in 28 patients (31%); it appeared to be useful in patients with PSA > 2.4 ng/mL or PSA doubling time > 1.3 ng/mL/y. Nearly all sites of disease detected by CT and bone scanning were detected with a single whole-body \(^{18}F \) FDG PET scan (53).

New tracers that have shown promise for the detection of prostate cancer include carbon 11 (\(^{11}C \)) choline, uptake of which is increased in malignant tissue due to increased synthesis of membranal
phosphatidylcholine in tumor cells (54); 11C acetate, which assesses oxidative metabolism in the tissue; and 11C methionine, which differentiates tumor from normal tissue due to elevated protein synthesis (55). Other molecules in prostate cancer that can be detected using PET include androgen receptor, which can be targeted with 18F-fluorodihydrotestosterone (FDHT), and prostate-specific membrane antigen (PSMA), which can be targeted with several different radiolabeled antibodies. The use of multiple tracer studies on the same patient often displays the heterogeneity of tumor biology. For example, patients who receive 11C-methionine and 18F-FDG PET scans on the same day may display metastases that are positive by both tracers, or that are positive by 11C-methionine only or 18F-FDG only (56). Similarly, findings from 18F-FDG-PET and 18F-FDHT-PET may not match, suggesting variations in the androgen dependence of different disease sites (Figure 9).

The use of hybrid PET/CT helps identify the exact location of tracer uptake. With further research in molecular imaging, the number of targets for prostate cancer imaging is likely to increase.

Conclusion

At present, MR imaging is the modality of choice for the localization of primary prostate cancer. MRI, CT, bone scanning and PET have applications in the search for advanced or metastatic disease. Different imaging modalities have specific advantages and disadvantages, and thus the selection of an imaging modality should be based on the questions that need to be answered for a particular patient. Approaches that combine anatomical, functional and molecular data enable better disease characterization and are likely to play an increasingly important role in prostate cancer management.

REFERENCES

20. Roy C, Sauer B, Lindner V et al. MR Imaging of papillary renal neoplasms: potential application for charac-

Author’s address: Hedvig Hricak, MD, PhD, Dr hc, Chairman, Department of Radiology Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, room C-278, New York, NY 10065, USA; E-mail: hricakh@mskcc.org