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Abstract 
Principal components analysis (PCA) is often used as a dimensionality reduction 

technique. A small number of principal components is selected to be used in a 

classification or a regression model to boost accuracy. A central issue in the PCA is 

how to select the number of principal components. Existing algorithms often result in 

contradictions and the researcher needs to manually select the final number of 

principal components to be used. In this research the author proposes a novel 

algorithm that automatically selects the number of principal components. This is 

achieved based on a combination of ANOVA ranking of principal components, the 

bootstrap and classification models. Unlike the classical approach, the algorithm we 

propose improves the accuracy of the logistic regression and selects the best 

combination of principal components that may not necessarily be ordered. The 

ANOVA bootstrapped PCA classification we propose is novel as it automatically 

selects the number of principal components that would maximise the accuracy of 

the classification model. 
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Introduction 
Dimensionality reduction techniques are widely used in big datasets to decrease the 

size of the dataset. Dimensionality reduction can be achieved using two 

approaches. The first one is by decreasing the number of variables. This is feature 

selection. The second one is by transforming the original dataset into another 

dimension and then choosing a smaller set of transformed variables (James et al., 

2013). This is called feature extraction (Maleki et al., 2020). This paper focuses on 

principal components analysis as a feature extraction technique. There are two main 

issues with principal components analysis – first, the criterion for choosing principal 

components is the percentage of variance explained, which can be misleading in 
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cases with similar percentage of variance explained (James et al., 2013). Second, 

the selection of principal components is not automated, which can lead to time-

consuming manual selection of principal components (James et al., 2013). The aim 

of this paper is to propose an automatic algorithm for selection of principal 

components based on the accuracy of the model. 

Principal components analysis (PCA) is a feature extraction technique that 

transforms independent variables into principal components. Each principal 

component is a linear combination of independent variables. The aim is to select 

smaller number of principal components than the original number of variables to 

perform dimensionality reduction (James et al., 2013, Maleki et al., 2020). Selection of 

principal components is done by using the eigenvalues and eigenvectors to 

calculate the percentage of variance explained. The combination of principal 

components (principal components) that explains the highest percentage of 

variance in data is then selected (James et al., 2013, Maleki et al., 2020). 

A central issue with this approach is how to select the number of principal 

components when the percentage of variance explained is similar for two or more 

principal components combinations (James et al., 2013). In this case manual 

selection based on prior knowledge or empirical results is the criterion for selecting 

the number of principal components (James et al., 2013, Maleki et al., 2020). The 

disadvantage is that manual selection may not result in the best accuracy and can 

introduce bias in the model. Also, it may be computationally exhaustive to produce 

many experiments to empirically select the number of principal components. The 

standard approach answers the questions: “What number of principal components 

should be selected to explain the highest percentage of variance in data?”. 

The aim of this research is to propose an automatic algorithm to select the 

number of principal components in the case of logistic regression. The paper 

answers the question: “What number of principal components to be selected to 

achieve the highest accuracy using the logistic regression?”. The proposed algorithm 

is called the ANOVA-Bootstrapped Principal Components Analysis. It combines 

widely used models like the bootstrap and ANOVA with the principal components 

analysis. The novelty in the proposed algorithm is that it automatically selects the 

number of principal components that results in the highest accuracy. The 

advantages of the ANOVA-Bootstrapped PCA include fast automatic selection of 

the numbers of principal components, reduction of bias as no manual selection of 

the number of principal components is performed and selection of the combination 

of principal components that would result in the highest accuracy. 

Next section provides overview of current modifications of the PCA to select the 

number of principal components more efficiently. Section 3 details the proposed 

methodology. Section 4 concludes. 

 

Literature review 
Feature selection methods keep the most informative features. They can be divided 

into three groups – embedded feature selection, filter methods and wrapper 

methods (Maleki et al., 2020). Embedded feature selection methods include lasso 

(Tibshirani, 1996), adaptive lasso (Zou, 2006), nonnegative garrotte (Breiman, 1995), 

etc. They perform feature selection as part of the classification/regression model. 

Filter methods select variables based on a criterion, for example, feature 

importance, correlation, etc. Such are ANOVA and correlation analysis (Maleki et al., 

2020). A third group are wrapper methods, where a combination of feature selection 

technique with classification/regression model is used to select the important 
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features. For example, recursive feature elimination with decision trees (Maleki et al., 

2020). 

Feature extraction models, on the other hand, transform the original space into 

another dimension, where smaller number of features are selected (Maleki et al., 

2020). The two most common feature extraction techniques are the principal 

components analysis (PCA) and the linear discriminant analysis (LDA) (Maleki et al., 

2020). The principal components analysis (PCA) is an unsupervised learning model, 

while the LDA is supervised learning (James et al., 2013). The principal components 

analysis can be used as a feature extraction technique and as a data exploratory 

technique (James et al., 2013). As a feature extraction technique, the PCA finds 

variables that are correlated and transforms them into principal components. Each 

principal component is a linear combination of the original variables in the dataset. 

Often the criterion to perform dimensionality reduction is by keeping the number of 

principal components that explain biggest percentage of the variance in data. 

Usually the first, second or third principal component are enough to build a model 

(James et al., 2013). 

A central topic in PCA is how to identify the number of principal components that 

needs to be used for classification/ prediction (James et al., 2013, Maleki et al., 

2020). A standard approach has been widely used by researchers and academia 

(James et al., 2013, Maleki et al., 2020). It involves exploring the percentage of 

variance in data that each principal component explains alone and when 

combined with the previous ones. For example, explore what percentage of the 

variance in data the first two, three, four, etc. principal components explain (James 

et al., 2013, Maleki et al., 2020). The issue with the standard approach is that the 

researcher should select among two or three options for the number of principal 

components in cases when the percentage of variance explained by several 

principal components is similar. As James et al. (2013) outline, in some cases the 

researcher may need to select between the first three and the first four principal 

components and the selection is made based on researcher’s experience and 

many other subjective factors. This is because the first three or four principal 

components may be enough to explain bigger percentage of the variance in Y. 

The standard approach (James et al., 2013) has been applied in many research 

papers, including recent ones (Salata et al., 2021). Some researchers, however, 

propose updated PCA algorithms in order to solve this issue. For example, Pacheco 

et al. (2013) proposes exact methods for variable selection in principal component 

analysis. Kim and Rattakorn (2011) use weighted principal components to perform 

unsupervised feature selection. Prieto-Moreno et al. (2015) use discriminant 

information to select principal components. Sharifzadeh et al. (2017) proposes SSPCA 

- Sparse supervised principal component analysis. Gajjar et al. (2017) uses a novel 

algorithm to select non-zero loadings to select number of principal components. 

Rahoma et al. (2021) uses the bootstrap to perform sparce principal components 

analysis. Although all these examples are a new way to find the number of principal 

components, none of them offers an automatic algorithm for principal components 

selection. 

Like Rahoma et al. (2021) this research examines the bootstrap procedure and its 

use in the principal component analysis. Unlike Rahoma et al. (2021) and existing 

academic literature, the author uses the bootstrap procedure to split data into 

training and test set. She proposes a novel PCA method called the ANOVA-

bootstrapped PCA. Using ANOVA and PCA transformation, the number of principal 

components necessary for building a classification model can be identified 

immediately. Eigenvectors and eigenvalues are not necessary to extract the 
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important principal components as principal components are combined based on 

accuracy. Therefore, this research extends (Vrigazova, 2021) by providing more 

experiments with the ANOVA-bootstrapped PCA for logistic regression. 

 

Research methodology 
This section introduces the classical PCA approach that is often used in academic 

literature (Classical PCA). It is compared with the ANOVA-bootstrapped PCA 

proposed in this paper. The logistic regression is used to compare two models in 

terms of accuracy. The author uses Python 3.6 to conduct her experiments. Figure 1 

compares the two algorithms.  

 

Classical principal component analysis 
The general approach for choosing the number of principal components consists of 

several steps. It is described in (James et al., 2013), (Mitchel et al., 1997). To run the 

classical PCA the built-in functions in scikitlearn in Python are used. These include 

LogisticRegression(), sklearm.decomposition.PCA() and 

sklearn.model_selection.kFold(). Left part of figure 1 illustrates the classical approach 

for selecting the number of principal components (James et al., 2013). 

 

 
Figure 1 Comparison between the classical approach for selecting the number of 

principal components and the proposed new algorithm 

Classical Principal Components 
Analysis

Standardzing input data

Inspection of covariance matrix

Principal components 
transformation of input data

Computing eigenvalues and 
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variance explained
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Split into training and test set 
using tenfold cross validation

Fit and evaluate logistic 
regression
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Normalization of principal 
components

divide the input space into 
percentiles – 10,20,30, 40, 

50,60,70,80,90 and 100

Splitting the dataset into training 
and test set using the tenfold 
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Fit and evaluate logistic 
regression for each percentile

Selecting the set of principal 
components that produced the 

highest accuracy
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First, the input variables should be standardized to avoid bias resulting from the 

measurement unit of the independent variables. Then the covariance matrix should 

be inspected to identify and remove highly correlated variables that contain noise. 

The input variables can further be transformed into principal components. Each 

principal component is a linear combination of input variables (James et al., 2013). 

The transformed dataset contains as many principal components as the number of 

the input variables. Identifying the most informative principal components leads to 

dimensionality reduction as only the important principal components participate in 

the final model. 

To select the important principal components, eigenvectors and eigenvalues are 

computed. They provide information about the percentage of variance explained 

by each principal component. The combination of principal components that 

explain the highest percentage of variance in data is then selected. These steps 

summarize the process of selecting the number of principal components according 

to textbooks. They are the same regardless of the type of model and resampling 

method used. The next steps involve splitting the dataset into training and test set 

and fitting the logistic regression with the selected principal components. Tenfold 

cross validation can be used to divide the input data into training and test set to 

evaluate logistic regression using the principal components selected. 

However, an issue occurs in the classical approach: ”In case two or more 

combinations of principal components result in similar accuracy, which one should 

be selected?”. Textbooks provide several solutions to this issue. For example, select 

the number of principal components based on prior knowledge, the highest 

accuracy or the combination that provides the smallest number of principal 

components (James et al., 2013). Therefore, in case two or more combinations of 

principal components are appropriate, steps 6 and 7 are repeated with each 

combination of principal components to select the number of principal components 

that results in the highest accuracy and high percentage of variance explained. 

The disadvantage of this approach is that it involves manual operations when 

several combinations of principal components are possible. Often, the researcher 

lacks a criterion to select among combinations. Therefore, bias can be introduced to 

the model. To overcome these disadvantages of the classical approach, a novel 

algorithm called the ANOVA-BOOTSTRAPPED PCA is proposed in this paper. 

 

New approach - the ANOVA bootstrapped PCA 
The Throughout the paper, the ANOVA-BOOTSTRAPPED PCA algorithm will be 

denoted as ANOVA-Boot-PCA-LR. For running ANOVA, PCA and the logistic 

regression, existing functions in Python (LogisticRegression(), 

sklearm.decomposition.PCA() and sklearn.Pipeline (ANOVA)) are used, while a script 

for running the tenfold bootstrap is created by the author. The tenfold bootstrap 

used in step 5 and its software realization in Python 3.6 can be found in author’s 

previous study (Vrigazova, 2020). Right part of figure 1 illustrates the proposed 

algorithm. 

Like in the classical approach, the input data are first standardized. Then, PCA 

transformation is applied to the standardized data. Then, the principal components 

are normalized between 0 and 1 to avoid negative values in the principal 

components. The input space is divided into percentiles – 10,20,30, 40, 50,60,70,80,90 

and 100. This is necessary to run the proposed algorithm for each percentile of 

principal components and compare the output. At each percentile the dataset with 

principal components is split into training and test set in proportion 70/30 using the 

tenfold bootstrap described in (Vrigazova, Ivanova, 2020). ANOVA is performed to 
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rank the importance of principal components. For each percentile of principal 

components and iterations of the bootstrap, the accuracy of the logistic regression is 

averaged. The percentile of principal components that results in the highest 

accuracy is selected. Then, the number of principal components selected and the 

accuracy from the ANOVA-Boot-PCA-LR and the classical approach are compared. 

The ANOVA ranks the principal components by importance. The ANOVA tests 

principal components for equality of means with respect to the dependent variable 

by using the f-statistics. If a set of principal components have equality of means, they 

are not related to the dependent variable, so they are ranked lower at the table. 

Principal components that are ranked highest in the table are the ones that have 

greater inequality of means with respect to the dependent variable. Each percentile 

contains combination of the most importance principal components as ranked by 

the ANOVA. For instance, if the 10th percentile corresponds to 3 principal 

components, then the accuracy is based on the three most important principal 

components selected by the ANOVA. If the 20th percentile corresponds to 15 

principal components, then logistic regression is fitted using the first fifteen principal 

components as ranked by the ANOVA. Note that the first n most important principal 

components ranked by the ANOVA are not the first n principal components ranked 

by index as it is with the classical approach. 

In the standard approach the selected number of principal components follows 

the index of the components, e.g. first two, first three as the first components have 

bigger variance than the last ones. However, in the ANOVA-BOOTSTRAPPED PCA 

selecting 3 principal components means the three principal components with the 

highest ANOVA rank. Therefore, the three identified principal components can be 

the fifth, seventh and second, for example. This is an important difference between 

the proposed approach and the classic approach as the interpretation of selected 

principal components is not the same.  

 

Results and discussion 
In (Vrigazova, 2021) the output of three datasets using the ANOVA-bootstrapped 

PCA is presented. This study extends previous experiments by providing results on 

three additional datasets. The datasets are public. 

 

The adult income dataset 
The adult income dataset is also known as the Census income dataset (Kaggle, 

2021a). It contains data about the income of adults exceeding or not $50K/yr (the 

dependent variable) and 13 independent variables. The classic PCA approach 

requires calculating the percentage of variance that each principal component 

(PC), and the components together contribute to explain the variance in the 

dataset. Table 1 shows the results from the classical approach on the adult income 

dataset. 

The second column in table 1 shows the percentage of variance explained of 

each principal component. For example, the first principal component alone 

explains 15.8% of data variance. The second – 9.9%, etc. However, the goal is to find 

that combination of principal components that explains bigger part of the variance 

in data. For this purpose, the cumulative percentage of variance explained is 

necessary. This percentage is calculated in the fourth column. For example, if the first 

five components are taken, they explain 51% of data variance. If the first 11 principal 

components are used, then 92% of data variance is explained. The task is to decide 
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what combination of principal components is necessary to fit logistic regression and 

get the best accuracy. 

 

Table 1 Number of principal components selected in the adult income dataset 

(textbook approach) 

Principal component 
% of var 

explain. 

Principal components 

combination 

Cum. var. 

expla. (%) 
Accuracy 

Principal component 1 15.8%       

Principal component 2 9.9% First 2 principal components 26% - 

Principal component 3 8.8% First 3 principal components 35% - 

Principal component 4 8.0% First 4 principal components 43% - 

Principal component 5 7.9% First 5 principal components 51% - 

Principal component 6 7.8% First 6 principal components 58% - 

Principal component 7 7.4% First 7 principal components 66% - 

Principal component 8 7.2% First 8 principal components 73% - 

Principal component 9 7.0% First 9 principal components 80% - 

Principal component 10 6.5% First 10 principal components 86% - 

Principal component 11 5.5% First 11 principal components 92% 82.0% 

Principal component 12 5.2% First 12 principal components 97% 81.9% 

Principal component 13 3.0% First 13s principal components 100% 82.1% 

 

The classic approach (James et al., 2013) advises to select the combination of 

principal components that explains the highest percentage of variance. At the 

same time, as the task is a dimensionality reduction task, the aim is to select a smaller 

number of principal components that are originally contained in the dataset. In the 

case of table 1 – to select smaller number of 13 principal components. Looking at 

table 1, several possible combinations of principal components exist. For example, 

the first 11 and 12 principal components explain respectively, 92% and 97% of the 

variance in data. On the other hand, the first 10 explain 86%, which can be 

considered low or high depending on the purpose of the research. In the presented 

case, the first 11 and 12 principal components explain more than 90% of the 

variance in data, so one of the two combinations should be chosen. 

The last column of table 1 shows the accuracy of the logistic regression using the 

first 11, 12 and 13 principal components. Although the first 12 principal components 

account for 97% of the variance in data, their accuracy (81.9%) is very close to that 

of the first 11 (82%). In this case, the first 11 principal components can be selected. 

Choosing the first eleven principal components will not lead to loss of accuracy, 

however, it will lead to a smaller dataset to use for the logistic regression. In 

comparison, table 2 shows the results of the proposed ANOVA-bootstrapped PCA. 

 

Table 2 Number of principal components: the ANOVA-Bootstrapped PCA logistic 

regression in the adult income dataset 
Percentile Number of principal components Accuracy 

10% 1 75.8% 

20% 3 78.9% 

30% 4 79.7% 

40% 5 80.5% 

50% 7 81.2% 

60% 8 81.9% 

70% 9 81.9% 

80% 10 82.0% 

90% 12 82.0% 

100% 13 81.9% 
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Unlike table 1, where the researcher manually needs to select the number of 

principal components to use in the logistic regression, the ANOVA-Bootstrapped PCA 

Logistic regression provides automatic solution. Table 2 results directly from the 

proposed algorithm. Column one shows the percentile of principal components, 

column two – the corresponding number of principal components and column 3 – 

the corresponding accuracy of the logistic regression. The criterion for choosing the 

number of principal components is to select the smallest number of principal 

components without loss of accuracy. 

For instance, choosing 5 principal components is not the optimal choice as the 

resulting accuracy of 80.5% is not the highest one in the table. On the other hand, 

choosing 10 principal components is not the best solution although the resulting 

accuracy is the highest – 82%. Based on table 2, 60% of the principal components (8 

principal components) can be selected. Eight principal components are the smallest 

number of principal components that does not lead to loss of accuracy if the logistic 

regression is fitted. Eight principal components would result in 81.9% accuracy, which 

is almost the same as 82% accuracy when 10 principal components are used. Table 

2 leads to an automatic decision what number of principal components to use only 

by looking at the table and applying the criterion: ”Select the smallest number of 

principal components without loss of accuracy”. 

An important note should be made that choosing 8 principal components does 

not mean the first eight as it is in the classical approach. The ANOVA provides 

ranking of the importance of the principal components, so choosing 8 principal 

components means choosing the first eight principal components that are the most 

important according to the ANOVA ranking. Table 3 shows the ANOVA ranking of 

the principal components in the adult income dataset. The first eight principal 

components in table 3 are selected. Those are the first eight most important 

according to the ANOVA ranking. 

 

Table 3 Ranking of the importance of principal components in the adult income 

dataset 
Index of principal component Importance 

4 2333.3 

8 1736.6 

2 1515.8 

9 723.9 

3 714.1 

7 673.6 

5 325.2 

13 273.7 

6 124.6 

11 56.3 

12 25.6 

10 4.9 

1 0.8 

 

Another note should be made that the ANOVA ranking of the principal 

components remains the same regardless of the classification model used. Running 

a different classification model, for example – decision tree, would not change the 

ranking of principal components. Rather it will change the accuracy of the model 

and the combination of principal components to take so that the highest possible 

accuracy using the decision tree might be achieved. So, the ANOVA-Bootstrapped 
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PCA selects the number of principal components that would achieve the best 

performance given the classification model applied. 

 

The EPICA Dome C Ice Core 800KYr Temperature Estimates (ED) 

dataset 
Similar experiments are conducted on the EPICA Dome C Ice Core 800KYr 

Temperature Estimates (ED) dataset (Vincentarelbundock, 2021). The dataset 

contains temperature record from the EPICA (European Project for Ice Coring in 

Antarctica) Dome C ice core covering 0 to 800 kyr BP. It has 5 independent 

variables/ principal components respectively. Table 4 shows the output from the 

classical approach. 

As table 4 shows the first two principal components explain 97.4% of the variance 

in the data. The contribution of the other three components is very small. The author 

runs the logistic regression with the first 2 principal components and the first 3 

principal components. The resulting accuracy is respectively 99% and 98%. In this 

case, she selects the first two components as they explain high percentage of the 

variance in data (97.4%) and results in the best accuracy - 99%. Choosing the 

number of principal components in table 4 can be confusing. Selecting the 

combination of principal components that explains the highest percentage in the 

variance, would be inefficient as this combination may not result in the best 

accuracy. Therefore, the researcher manually should decide which number of 

principal components should be selected.  

 

Table 4 Number of principal components in the ed dataset: classical approach 

Principal component 

% of 

var., 

expl. 

Principal component combination 

Cum. 

var., expl. 

(%) 

Accuracy 

Principal component 1 57.5%       

Principal component 2 39.9% Principal components 1+2 97.4% 99% 

Principal component 3 2.5% Principal components 1+2 + 3 99.9% 98% 

Principal component 4 0.1% Principal components 1+2+3+4 100.0%   

Principal component 5 0.0% Principal component 1+2+3+4+5 100.0%   

 

That is not the case with the ANOVA-Bootstrapped PCA, which provides 

automatic selection of the number of principal components. Table 5 shows the 

output in the ED dataset. 

 

Table 5 The ANOVA-Bootstrapped PCA logistic regression in the ED dataset 
Percentile Number of principal components Accuracy 

10% 1 96.6% 

20% 1 96.6% 

30% 2 97.5% 

40% 2 97.5% 

50% 3 97.5% 

60% 3 98.0% 

70% 4 98.0% 

80% 4 98.0% 

90% 5 98.0% 

100% 5 97.4% 

 

By following the rule to select the smallest number of principal components 

resulting to the best accuracy, table 5 identifies 3 principal components to be 



  

 

 

27 

Croatian Review of Economic, Business and Social Statistics (CREBSS) 

UDK: 33;519,2; DOI: 10.1515/crebss; ISSN 1849-8531 (Print); ISSN 2459-5616 (Online) 

 

 

Vol. 8, No. 1, 2022, pp. 18-31 

 

selected. They result in accuracy of 98%. Table 6 shows the index of the principal 

components selected based on the ANOVA ranking. 

 

Table 6 Ranking of the principal components in the ED dataset 
Principal component index Importance 

3 3045.4 

4 41.1 

1 30.3 

5 8.1 

2 2.2 

 

To achieve the result in table 5, the first, third and fourth principal components are 

selected, unlike the classical approach, where the first two PCs are selected. 

 

The Monica dataset 
This dataset is also called the ‘MONICA WHO’ dataset (Kaggle, 2021b) and it was 

created in 1980 to record data in cardiovascular disease in 21 countries for 10 years. 

It contains 11 principal components. Table 7 shows the output from the classical 

approach. 

 

Table 7 Classical approach for choosing the number of principal components in the 

Monica dataset 

Principal component 

% of 

var. 

expl. 

Principal component 

combination 

Cum. 

var. expl. 

(%) 

Accur. 

Principal component 1 40.4%       

Principal component 2 11.0% First two principal components 51% 69.1% 

Principal component 3 9.5% First three principal components 61% 73.1% 

Principal component 4 8.7% First four principal components 70% 75.1% 

Principal component 5 7.6% First five principal components 77% 87.3% 

Principal component 6 6.2% First six principal components 83% 87.5% 

Principal component 7 5.2% First seven principal components 89% 87.5% 

Principal component 8 3.7% First eight principal components 92% 87.6% 

Principal component 9 3.3% First nine principal components 96% 87.6% 

Principal component 10 2.7% First ten principal components 98% 87.5% 

Principal component 11 1.7% First eleven principal components 100% 87.5% 

 

Table 7 shows that using only the cumulative percentage of variance explained 

may be misleading. The first six principal components account for 83% of the 

variance in data. As the end of the table comes, the cumulative percentage of 

variance explained increases so that the first nine principal components account for 

96% of variance explained. Should the first six, seven, eight, nine or ten principal 

components be selected? Based only on the cumulative variance explained, the 

researcher can select the first ten principal components as they account for 98% of 

the variation of the data. But this number would not reduce the size of the dataset.  

On the other hand, when the accuracies achieved in table 7 are considered, it 

turns out that whether 6,7,8,9,10 or 11 principal components are selected, the 

accuracy remains almost unchanged (87.6%, 87.5%). Therefore, the researcher 

should decide whether to select bigger number of principal components or a 

smaller number. As the author’s purpose is to perform dimensionality reduction, the 

first six principal components are selected, which account for 83% of the variance in 

data but the resulting accuracy is similar to that of a bigger number of principal 
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components. However, another researcher may select, for example the first nine 

components as they explain 96% of the variance in data and the accuracy 

achieved is higher – 87.6%. As table 7 shows, the highest variance explained may not 

guarantee the best accuracy. Also, table 7 shows that the seventh, eighth, nineth, 

tenth, eleventh and twelfth principal components may be redundant as the 

accuracy remains unchanged, despite them explaining higher percentage of the 

variance in data. As in the previous case, the researcher should manually decide 

what number of principal components to take. 

 

Table 8 Automatic selection of principal components in the Monica dataset 
Percentile Number of principal components Accuracy 

10% 1  65.9% 

20% 2  77.5% 

30% 3  82.9% 

40% 4  84.9% 

50% 6  88.3% 

60% 7  86.7% 

70% 8  87.8% 

80% 9  88.2% 

90% 10  86.8% 

100% 11  87.0% 

  

Table 9 Principal components automatically selected in the Monica dataset 
Principal component index Importance 

3 1056 

10 790 

6 431 

7 299 

9 216 

1 113 

5 94 

2 28 

8 26 

11 1 

4 0 

 

As table 8 shows the proposed algorithm gives a straightforward answer: the 

researcher needs to select six principal components to achieve accuracy of 88.3%. 

Using table 8, the manual application of criteria as it was in table 7 can be avoided. 

Also, the researcher should not decide whether to take smaller or bigger number of 

principal components when the accuracy remains similar. Instead, table 8 provides 

an automatic answer to the question:” How many principal components should be 

used for classification?”. Table 8 shows the output of the automatic algorithm 

proposed. Table 9 shows the indices of the principal components used to achieve 

accuracy of 88.2%. 

 

Discussion 
Machine learning textbooks and many authors recommend detecting the number 

of principal components based on the percentage of variance explained (James et 

al., 2013) but this algorithm is not automatic. It is an issue when the percentage of 

variance explained identifies two possible numbers of principal components and 

their accuracy is close. The classic approach recommends manually deciding which 

number is most appropriate. Many authors try to solve this problem by modifying 
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parts of the equation of the PCA (for instance, eigenvectors, eigenvalues, etc.) or by 

using variable selection with PCA (Salata, Grillenzoni, 2021; Pacheco et al., 2013; Kim, 

Rattakorn, 2011). However, none of the algorithms provides automatic selection of 

principal components. The algorithm proposed in this paper, however, fixes this issue 

by conducting automatic principal component selection. It performs automatic 

selection of the number of principal components to be used in the logistic regression. 

This advantage of the author’s algorithm is important in big datasets where the 

number of principal components can be big. The traditional manual selection of 

principal components can result in several alternatives and the choice between 

them can be hard and time consuming. For instance, if the traditional theory outlines 

the first five, six, seven or eight principal components as possible options, the 

researcher needs a criterion to choose among them. In many cases, the criteria are 

subjective. On the other hand, the ANOVA-Boot-PCA-LR algorithm proposed in this 

paper removes the subjectiveness coming from manually choosing the number of 

principal components. This makes the choice of principal components faster. 

The author’s approach has several limitations that need to be further researched, 

though. First, experiments with other classification methods are necessary to test the 

feasibility of the ANOVA-Boot-PCA-LR to other classification models. This would 

expand the practical applications of the model proposed and show its universal 

nature, outlining in what cases it can and cannot be applied to other classification 

methods. Second, the resulting selection of principal components depends on the 

accuracy of the model. The accuracy would change when either the classification 

model type changes or when its parameters change. 

Despite this, the proposed algorithm provides the first step to an efficient and fast 

automatic algorithm for principal components selection in classification problems. 

Thus, the manual selection of principal components can be avoided, and better 

accuracy achieved, which is a novel approach in academic literature. 

As a conclusion, the author develops a simple algorithm for automatic detection 

of the number of principal components to be used in the logistic regression. The 

advantages of this algorithm include simplicity as it is based on existing algorithms, 

easiness to interpret and providing more efficient results in terms of accuracy.  

The ANOVA-BOOT-PCA algorithm can be viewed as an extension of the textbook 

approach for finding the number of principal components. However, instead of 

choosing them manually when several combinations of principal components are 

possible, the ANOVA-bootstrapped PCA decides automatically. 

 

Conclusion 
The classical PCA approach for selecting the number of principal components has a 

set of disadvantages. First, it involves manual selection of principal components in 

cases when the variance explained is similar or the accuracy from several 

combinations of principal components is similar. Therefore, the researcher introduces 

bias into the dataset. Second, in many cases, using the variance explained may not 

be enough to select the number of principal components. Calculation of accuracy 

may help deciding what combination to select. However, calculating the accuracy 

of all possible combinations of principal components may be computationally 

exhaustive. Also, the accuracy and the variance explained may not facilitate the 

researcher to decide the number of principal components. Therefore, an automatic 

way for selection of the number of principal components should be applied. 

In this research the author proposes the ANOVA-Bootstrapped PCA to select the 

number of principal components and then fit a classification model (the logistic 

regression, in the presented example). The advantages of the ANOVA-Bootstrapped 
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PCA algorithm are automatic identification of the number of principal components, 

automatic overview of how the accuracy varies across different principal 

components combinations. This advantage can be used for data exploratory 

purposes. 

The proposed algorithm also provides ranking of the importance of the principal 

components and gives the right combination to achieve the best accuracy. The 

right combination of principal components may not be the first several components 

but rather principal components with different indices. However, the number of 

principal components selected according to the ANOVA-Bootstrapped PCA 

depends on the classification model selected. So, different classification models 

would lead to different accuracy and number of principal components selected. 

However, the importance of the principal components as identified by the ANOVA 

model would not change. 
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