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FINITE W-ALGEBRAS ASSOCIATED TO TRUNCATED

CURRENT LIE ALGEBRAS

Xiao He

Beijing University of Chemical Technology, P. R. China

Abstract. Finite W-algebras associated to truncated current Lie
algebras are studied in this paper. We show that some properties of finite
W-algebras in the semisimple case hold in the truncated current case. In
particular, Kostant’s theorem and Skryabin equivalence hold in our case.
As an application, we give a classification of simple Whittaker modules for
truncated current Lie algebras in the sℓ2 case.

1. Introduction

Finite W-algebras appeared firstly in B. Kostant’s paper [10], where the
author considered finite W-algebras (thought at that time, not this name) as-
sociated to principal nilpotent elements of semisimple Lie algebras, and proved
that the result algebra is in fact isomorphic to the center of the universal en-
veloping algebra. Then Kostant’s student Lynch generalized the construction
to even grading nilpotent elements in his thesis paper [11]. After more than
twenty years later, A. Premet’s gave the general definition of finite W-algebras
associated to an arbitrary nilpotent element in [16], and in the appendix of
Premet’s paper, S. Skryabin proved an equivalence between a category of W-
algebra modules and a subcategory of Lie algebra modules, hence established
a close relation between the representation theory of Lie algebras and that of
finite W-algebras. More related research on finite W-algebras can be found
in [2, 7, 16].

Truncated current Lie algebras are quotients of current algebras, they
are also called generalized Takiff algebras or polynomial algebras. They have
important applications in physics [1, 3], and are interesting research objects
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in mathematics too [14, 20]. In the definition of finite W-algebras, a non-
degenerate invariant bilinear form and a good Z-grading are essential. We
show that these two essential ingredients exist on truncated current Lie alge-
bras hence allow us to define finite W-algebras. Moreover, we show that finite
W-algebras associated to truncated current Lie algebras can also be realized
a quantization of Slodowy slices, and both Kostant’s theorem and Skryabin
equivalence hold for them.

The organization of the paper is as follows. In Section 2, we show that
non-degenerate invariant bilinear forms exist on truncated current Lie alge-
bras. In Section 3, we define finite W-algebras associated to truncated current
Lie algebras via Whittaker model and show that they are quantizations of
Slodowy slices. Finally, in Section 4, we show that Kostant’s theorem and
Skryabin equivalence hold in the truncated current case. As an example, we
classify irreducible Whittaker modules for truncated current Lie algebra in
the sℓ2 case.

All vector spaces and algebras are considered over complex numbers C,
except when we mention explicitly.

2. Truncated current Lie algebra and good Z-grading

2.1. Truncated current Lie algebra. Given a finite-dimensional Lie algebra
a, the current algebra associated to a is the Lie algebra a ⊗ C[t] with Lie
bracket:

[a⊗ tm, b⊗ tn] := [a, b]⊗ tm+n, for all a, b ∈ a,m, n ∈ Z≥0.

The subspace a⊗ tpC[t] is an ideal of a⊗ C[t] for any nonnegative integer p.

Definition 2.1. The level p truncated current Lie algebra associated to
a is the quotient

ap :=
a⊗ C[t]

a⊗ tp+1C[t]
∼= a⊗

C[t]

tp+1C[t]
.

The Lie bracket of ap is

[a⊗ ti, b⊗ tj ] = [a, b]⊗ ti+j , where ti+j ≡ 0 when i+ j > p.

Remark 2.2. Truncated current Lie algebras are also called generalized
Takiff algebras or polynomial Lie algebras.

For convenience, we write xti for x⊗ ti. An element of ap can be uniquely
expressed as a sum

∑p

i=0 xit
i with xi ∈ a. Let (· | ·) be a symmetric bilinear

form on a. Let c̄ := (c0, · · · , cp) with ci ∈ C. Define a symmetric bilinear
form on ap by the formula

(2.1) (x | y)p :=

p
∑

k=0

ck
∑

i+j=k

(xi | yj),
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where x =
∑p

i=0 xit
i and y =

∑p

i=0 yit
i with xi, yi ∈ a.

Lemma 2.3 ([3]). Assume that (· | ·) is non-degenerate and invariant
on a, then bilinear form (· | ·)p defined by (2.1) is invariant on ap. It is
non-degenerate if and only if cp 6= 0.

Proof. Let x =
∑

i xit
i, y =

∑

i yit
i, z =

∑

i zit
i with xi, yi, zi ∈ a, then

([x, y] | z)p =
∑

i,j,k

ck([xi, yj ] | zk−i−j)

=
∑

i,j,k

ck(xi | [yj, zk−i−j ])

=
∑

i′,j,k

ck(xk−j−i′ | [yj , zi′ ])

= (x | [y, z])p.

If cp = 0, then (· | ·)p is degenerate as a ⊗ tp lies in its kernel. When cp 6= 0,
assume that a =

∑

i≥i0
ait

i, with ai0 6= 0. By the non-degenerancy of (· | ·),

there exists an element b ∈ a, such that (ai0 | b) 6= 0. Then (a | btp−i0)p =
cp(ai0 | b) 6= 0, i.e., (· | ·)p is non-degenerate.

2.2. Good Z-grading of finite-dimensional Lie algebras. A Z-grading of a
Lie algebra a is a Z-gradation a =

⊕

i∈Z
a(i) with [a(i), a(j)] ⊆ a(i+ j) for all

i, j ∈ Z.

Definition 2.4. Let Γ :
⊕

i∈Z
a(i) be a Z-grading of a finite-dimensional

Lie algebra a. An element e ∈ a(2) is called a good element with respect to Γ
if

ad e : a(i) → a(i+ 2) is injective for i ≤ −1 and surjective for i ≥ −1.

A Z-grading of a is called good if it admits a good element.

Given a good Z-grading Γ and a good element e, the following properties
are immediate:

(i) the element e is nilpotent and its centralizer ae lies in
⊕

i≥0 a(i);

(ii) ad e : a(−1) → a(1) is bijective.

Example 2.5. A standard sℓ2-triple of a Lie algebra a is a triple of el-
ements {e, f, h} ⊆ a with [e, f ] = h, [h, e] = 2e and [h, f ] = −2f . It follows
from the representation theory of sℓ2 that the eigenspace decomposition of
a with respect to adh is a good Z-grading with a good element e. Good
Z-gradings thus obtained are called Dynkin Z-gradings.

Theorem 2.6 (Jacobson-Morozov). Let g be a finite-dimensional semi-
simple Lie algebra and e ∈ g a non-zero nilpotent element. Then e can be
embedded into a standard sℓ2-triple {e, f, h} of g. If h′ ∈ [e, g] satisfies that



20 X. HE

[h′, e] = 2e, then {e, h′} can be embedded into a standard sℓ2-triple {e, h′, f ′}
of g.

Lemma 2.7. Let Γ :
⊕

i∈Z
g(i) be a Z-grading of a semisimple Lie algebra

g and e ∈ g(2). Then there exist h ∈ g(0) and f ∈ g(−2), such that {e, h, f}
form a standard sℓ2-triple.

Proof. By Theorem 2.6, we can embed e into an sℓ2-triple {e, h, f}.
Write h =

∑

i hi, f =
∑

i fi with hi, fi ∈ g(i). Then [hi, e] = δi,02e and
[e, fi] = hi+2. In particular, we have [e, f−2] = h0. Therefore, by Theorem 2.6
again, we can embed {e, h0} into an sℓ2-triple {e, h0, f

′}. Write f ′ =
∑

i f
′
i

with f ′
i ∈ g(i), then {e, h0, f

′
−2} is a standard sℓ2-triple that we are looking

for.

Lemma 2.8. Let Γ :
⊕

i∈Z
g(i) be a Z-grading of a semisimple Lie algebra

g. Then there exists an element hΓ ∈ g, such that [hΓ, x] = ix, ∀x ∈ g(i).

Proof. It is clear that the linear operator δ : g → g defined by δ(x) = ix
for x ∈ g(i) is a derivation of g. Since all derivations of a semisimple Lie
algebra are inner, there exists an element hΓ ∈ g such that [hΓ, x] = δ(x) = ix
for x ∈ g(i).

Remark 2.9. A complete classification of good Z-gradings of finite-di-
mensional simple Lie algebras over C was given in [6].

3. Finite W-algebras associated to truncated current Lie

algebras

3.1. Finite W-algebras via Whittaker model definition. In the sequel, we
assume that g is a finite-dimensional semisimple Lie algebra.

Lemma 3.1. Let Γ :
⊕

i∈Z
g(i) be a good Z-grading of g with good element

e, and hΓ ∈ g such that [hΓ, x] = ix, ∀x ∈ g(i). Let gp(i) := {x ∈ gp | [hΓ, x] =
ix }. Then Γp :

⊕

i gp(i) is a good Z-grading of gp with good element e.

Proof. For a subspace b of g, denote by bp := b⊗ C[t]
tp+1C[t] , then gp(i) =

g(i)p. For the map ad e : gp(i) → gp(i + 2), we have ker ad e = (g(i)e)p and
imad e = ([g(i), e])p, so it is injective for i ≤ −1 and surjective for i ≥ −1 as
e is good with respect to Γ.

We call Γp in Lemma 3.1 a good Z-grading of gp induced from that of
g. Let (· | ·) be a non-degenerate invariant bilinear form on g. By choosing
c̄ = (c0, · · · , cp) with ci = δi,p for 0 ≤ i ≤ p in Lemma 2.3, we fix a non-
degenerate invariant bilinear form (· | ·)p on gp.

Lemma 3.2. Let Γ be a good Z-grading of g, and Γp :
⊕

i gp(i) the good
Z-grading of gp induced from Γ. Then (gp(i) | gp(j))p = 0 if i+ j 6= 0.
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Proof. Let hΓ ∈ g be such that [hΓ, x] = ix, ∀x ∈ gp(i) as in Lemma 2.8.
Let x ∈ gp(i), y ∈ gp(j) and i + j 6= 0. Then ([hΓ, x] | y)p = −(x | [hΓ, y])p,
i.e., (i+ j)(x | y)p = 0. Since i+ j 6= 0, that implies (x | y)p = 0.

Let χp = (e | ·)p ∈ g∗p. Define a skew-symmetric bilinear form on gp(−1)
by

〈·, ·〉p :gp(−1)× gp(−1) → C, (x, y) 7→ 〈x, y〉p := χp([x, y]).(3.1)

Lemma 3.3. The bilinear form on gp(−1) defined by (3.1) is non-degene-
rate.

Proof. It follows from the surjectivity of ad e : gp(−1) → gp(1), the
invariance of (· | ·)p and the pairing property (gp(i) | gp(j))p = 0 if i+ j 6= 0.

Let lp be an isotropic subspace of gp(−1) with respect to (3.1), i.e.,
〈lp, lp〉p = 0, and l⊥p := {x ∈ gp(−1) | (e | [x, y])p = 0, ∀y ∈ lp} be its
orthogonal complement. Set

mp :=
⊕

i≤−2

gp(i), ml,p := mp ⊕ lp,nl,p := mp ⊕ l⊥p , np :=
⊕

i≤−1

gp(i),(3.2)

which are all nilpotent subalgebras of gp. As (e | [ml,p, nl,p])p = 0, the char-
acter χp defines a one-dimensional representation of ml,p, which we denote by
Cχp

. Let
Qχp

:= U(gp)⊗U(ml,p) Cχp
∼= U(gp)/Iχp

,

where Iχp
is the left ideal of U(gp) generated by {a− χp(a) | a ∈ ml,p}.

Lemma 3.4. The adjoint action of nl,p on U(gp) preserves the subspace
Iχp

.

Proof. Let x ∈ nl,p, y =
∑

i ui(ai − χp(ai)) ∈ Iχp
with ui ∈ U(gp) and

ai ∈ ml,p. Then

[x, y] =
∑

i

([x, ui](ai − χp(ai)) + ui[x, ai − χp(ai)]) .

As χp([nl,p,ml,p]) = 0, we have [x, ai − χp(ai)] = [x, ai] ∈ Iχp
, hence [x, y] ∈

Iχp
.

Since adnl,p preserves Iχp
, it induces a well-defined adjoint action on Qχp

,
such that

[x, ū] = [x, u] for x ∈ nl,p, u ∈ U(gp),

where we denote by ū := u+ Iχp
for the image of u ∈ U(gp) in Qχp

. Let

Hχp
:= Q

ad nl,p
χp = {ū ∈ Qχp

| [x, u] ∈ Iχp
for all x ∈ nl,p}.

Lemma 3.5. There is a well-defined multiplication on Hχp
by

ū · v̄ := uv for ū, v̄ ∈ Hχp
.
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Proof. First, we show that the multiplication ū·v̄ does not depend on the
representatives. It is obvious that it does not depend on the representatives
of v. For that of u, we need to show that yv ∈ Iχp

for all y ∈ Iχp
, v̄ ∈ Hχp

.
Assume that y =

∑

i ui(ai − χp(ai)), then

yv = [y, v] + vy =
∑

i

ui[ai − χp(ai), v] +
∑

i

[ui, v](ai − χp(ai)) + vy.(3.3)

We have [ai−χp(ai), v] = [ai, v] ∈ Iχp
by the definition ofHχp

hence yv ∈ Iχp
.

Next we show that Hχp
is closed under the multiplication. Let ū1, ū2 ∈ Hχp

,
we need to show that u1u2 ∈ Hχp

, i.e., [x, u1u2] ∈ Iχp
, ∀x ∈ nl,p. By Leibniz’s

rule, we have

[x, u1u2] = [x, u1]u2 + u1[x, u2].

By the definition of Hχp
, [x, u1], [x, u2] ∈ Iχp

hence [x, u1]u2 ∈ Iχp
by (3.3).

The spaceHχp
inherits an associative algebra structure from that of U(gp)

by Lemma 3.5.

Definition 3.6. The finite W-algebra associated to the pair (gp, e) is
defined to be Hχp

.

Remark 3.7. When p = 0, we recover the finite W-algebra defined in
[16].

When lp is Lagrangian, i.e., lp = l⊥p hence ml,p = nl,p, we can realize Hχp

as the opposite endomorphism algebra (EndU(gp)Qχp
)op in the following way.

As Qχp
∼= U(gp)/Iχp

is a cyclic gp-module, its endomorphism ϕ is determined
by ϕ(1̄). As 1̄ is killed by Iχp

, ϕ(1̄) = ȳ gives an endormorphism of Qχp
if

and only if ȳ is killed by Iχp
, so

Hχp
= {ȳ ∈ Qχp

| [a, y] ∈ Iχp
for all a ∈ nl,p}

= {ȳ ∈ Qχp
| (a− χp(a))y ∈ Iχp

for all a ∈ ml,p}

= (EndU(gp)Qχp
)op.

3.2. Poisson structure on Slodowy slice. Let Γp :
⊕

i gp(i) be a good Z-
grading of gp induced from that of g, with good element e. Let f ∈ gp(−2), h ∈
gp(0) and {e, f, h} forms a standard sℓ2-triple of gp ensured by Lemma 2.7.
The non-degenerate form (· | ·)p defines a bijection κp : gp → g∗p through

x 7→ (x | ·)p. Let g
f
p be the centralizer of f in gp. Set

Sep := e+ gfp and Sχp
:= κp(Sep) = χp + ker ad∗f.

Call Sep and Sχp
the Slodowy slice through e in gp and through χp in g∗p,

respectively.

Remark 3.8. When p = 0, Se := Se0 is the Slodowy slice through e in g.
In the language of jet schemes [15], Sep is the p-th jet scheme of Se.
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By the representation theory of sℓ2, we have gp = gep⊕[gp, f ] = gfp⊕[gp, e],
which implies that ad e : [f, gp] −→ [e, gp] and ad f : [e, gp] −→ [f, gp] are both
bijective.

Lemma 3.9 ([5, 8]). Let r ∈
⊕

i≤1 gp(i).

(a) Let a ∈ gp, then [e+ r, [f, a]] = 0 only if [f, a] = 0.
(b) We have [e+ r, [f, gp]] ∩ gfp = 0 and [e+ r, [f, gp]]⊕ gfp = gp.

(c) Let a ∈ gp. If [e + r, a] ∈ gfp and (a | [e + r, gp] ∩ gfp)p = 0, then
[e+ r, a] = 0.

Proof. (a) Let a =
∑

i ai with ai ∈ gp(i) and [f, a] 6= 0. Let i0 be such
that [f, ai0 ] 6= 0 but [f, ai] = 0, ∀i > i0. Then the i0-th component (which
lies in gp(i0)) of [e + r, [f, a]] is [e, [f, ai0 ]] as r ∈

⊕

i≤1 gp(i) and e ∈ gp(2).

Now the bijectivity of ad e : [f, gp] −→ [e, gp] ensures that [e, [f, ai0 ]] 6= 0, in
particular, [e + r, [f, a]] 6= 0.

(b) Assume that a =
∑

i ai with ai ∈ gp(i) satisfies [e + r, [f, a]] 6= 0.
Then [f, a] 6= 0. Let i0 be as in (a), then the i0-th component of [e+ r, [f, a]]
is [e, [f, ai0 ]] 6= 0, and the (i0 − 2)-th component of [f, [e + r, [f, a]]] is
[f, [e, [f, ai0 ]]], which is also nonzero by the bijectivity of ad f : [e, gp] → [f, gp].
For the second part, let us count dimensions. We have dim[e + r, [f, gp]] =
dim[f, gp] by (a). Note that dim[f, gp] = dim gp − dim gfp , so dim gp =

dim gfp + dim[e+ r, [f, gp]]], and (b) is proved.

(c) For a subspace V of gp, denote by V ⊥ its orthogonal complement with
respect to (· | ·)p. Then ([e + r, gp] ∩ gfp)

⊥ = [e + r, gp]
⊥ + (gfp)

⊥. Note that

(gfp)
⊥ = [f, gp] and [e + r, gp]

⊥ = ker ad (e + r) as (· | ·)p is non-degenerate
and invariant. Therefore, (c) is equivalent to saying that if a = u + v with
u ∈ (gfp)

⊥ = [f, gp], v ∈ [e+r, gp]
⊥ and [e+r, a] ∈ gfp , then [e+r, a] = 0. Since

u ∈ [f, gp] and v ∈ ker ad (e+r), we have [e+r, a] = [e+r, u] ∈ gfp∩[e+r, [f, gp]],
which must be zero by (b).

It is well-known that there is a Poisson structure on the dual g∗ of a
Lie algebra g, with the coadjoint orbits as the symplectic leaves. Given a
non-degenerate invariant bilinear form (· | ·) on g, one can identify g with
g∗ through (· | ·), hence equip g itself with a Poisson structure, and the
symplectic foliation of g is given by the adjoint orbits. Let O be an adjoint
orbit and x ∈ O. The tangent space TxO can be identified with [g, x], and the
symplectic form on TxO is

(3.4) ωx([a, x], [b, x]) = ([a, b] | x) for a, b ∈ g.

Theorem 3.10 ([18]). Let M be a Poisson manifold with the symplectic
foliation ⊔αSα. Let N be a submanifold of M such that for all α,

(i) N is transversal to Sα, i.e., TxN + TxSα = TxM for all x ∈ N ∩ Sα.
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(ii) the subspace TxN ∩ TxSα is a symplectic subspace of TxSα, i.e., the
symplectic form on TxSα is non-degenerate when restricted to TxN ∩
TxSα for all x ∈ N ∩ Sα.

Then there is an induced Poisson structure on N . The symplectic foliation
of N is given by ⊔α(N ∩ Sα) and the symplectic form on Tx(N ∩ Sα) for all
x ∈ N ∩ Sα is the restriction of the symplectic form on TxSα.

Proposition 3.11. The slice Sep has a Poisson structure.

Proof. We show that the conditions in Theorem 3.10 are satisfied for
the submanifold Sep . Let x = e+ r ∈ Sep ∩Ox, where Ox is the adjoint orbit

of gp through x. As r ∈ gfp ⊆
⊕

i≤0 gp(i), Lemma 3.9 applies. Note that

TxSep = gfp and TxOx = [gp, x]. Part (b) of Lemma 3.9 shows that Sep is
transversal to Ox at x. Next we show that the restriction of the symplectic
form ωx defined by (3.4) on the subspace TxOx ∩ TxSep = [gp, x] ∩ gfp is non-

degenerate. Assume that there exists an element [a, x] ∈ [gp, x]∩gfp such that

for all [b, x] ∈ [gp, x] ∩ gfp , we have

ωx([a, x], [b, x]) = (x | [a, b])p = (a | [b, x])p = 0.

Part (c) of Lemma 3.9 shows that [a, x] = 0. Therefore, ωx is non-degenerate
when restricted to [gp, x] ∩ gfp . So Sep inherits a Poisson structure from that
of gp.

Corollary 3.12. The Slodowy slice Sχp
has a Poisson structure.

The Poisson algebra C[Sχp
] is called the classical finite W-algebra associ-

ated to (gp, e).

3.3. An isomorphism of affine varieties. Keep the notation in Section 3.1.
Let Gp be the adjoint group of gp and Nl,p the unipotent subgroup of Gp with
Lie algebra nl,p. Let

(3.5) m⊥
l,p := {x ∈ gp | (x | y)p = 0, ∀y ∈ ml,p} =





⊕

i≤0

gp(i)



⊕ [l⊥p , e].

As nl,p is nilpotent, elements of Nl,p can be expressed as exp(adx) for x ∈ nl,p.
Consider the adjoint action of Nl,p on Sep . Let x ∈ nl,p, y ∈ gfp ⊆

⊕

i≤0 gp(i).
Then

exp(adx)(e + y) = (1 + adx+ · · ·+
adn x

n!
+ · · · )(e + y) ∈ e+m⊥

l,p.

Therefore, the image of the adjoint action map Nl,p × Sep lies in e+m⊥
l,p.

Lemma 3.13. The adjoint action map β : Nl,p × Sep → e + m⊥
l,p is an

isomorphism of affine varieties.
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Proof. The adjoint action map is obviously a morphism of varieties, we
only need to show the bijectivity. We show that given z ∈ m⊥

l,p, there is a

unique x ∈ nl,p and a unique y ∈ gfp , such that exp(adx)(e + y) = e + z.

Recall the expressions of m⊥
l,p and nl,p in (3.5) and (3.2), respectively, and

note that gfp ⊆
⊕

i≤0 gp(i). For x ∈ nl,p, y ∈ gfp , z ∈ m⊥
l,p, we can assume that

x =
∑

i≤−1 xi, y =
∑

j≤0 yj and z =
∑

i≤1 zi with xi, yi, zi ∈ gp(i), x−1 ∈

l⊥p and z1 ∈ [l⊥p , e]. Note that

exp(adx)(e + y) = e+ y + [x, e] + [x, y] +
∑

n≥2

(adx)n

n!
(e+ y).

The equation exp(adx)(e + y) = e+ z means that

∑

k

zk =
∑

j

yj +
∑

i

[xi, e] +
∑

i,j

[xi, yj] +
∑

n≥2

(
∑

i adxi)
n

n!
(e +

∑

j

yj),(3.6)

which is equivalent to a series of equations, namely, for k ≤ 1,

zk − yk − [xk−2, e] =
∑

i+j=k

adxi(yj) +
∑

n≥2

∑

i1+···+in=k−2 adxi1 · · · adxin(e)

n!

+
∑

n≥2

∑

i1+···+in+j=k adxi1 · · · adxin(yj)

n!
.(3.7)

Given k, note that adxi, yj appear on the right hand side of (3.7) only when
i > k − 2 and j > k. So if {xi, yj}i≥k0−2,j≥k0

satisfy (3.7) for all k ≥ k0, and
if we only change the values of {xi, yj}i<k0−2,j<k0

, then (3.7) is still valid for
k ≥ k0.

Now we use a decreasing induction on k to show that given z, there is
a unique solution (x, y) for (3.6). When k = 1, (3.7) reads [x−1, e] = z1,
there is a unique solution x−1 ∈ l⊥p as z1 ∈ [l⊥p , e] and ad e : l⊥p → [l⊥p , e]
is injective. For k = k0 ≤ 0, we assume that we have uniquely determined
{xi, yj}i≥k0−1,j≥k0+1 such that (3.7) is satisfied for k ≥ k0 +1. We show that
we can uniquely determine (xk0−2, yk0

), such that (3.7) is satisfied for k ≥ k0.
Set k = k0 in (3.7), since {xi, yj}i≥k0−1,j≥k0+1 are already determined, the
right hand side of (3.7) is determined, which we denote by wk0

, is an element
of gp(k0). Then (3.7) becomes

[e, xk0−2] = wk0
+ yk0

− zk0
.

This equation has a unique solution for (xk0−2, yk0
) when zk0

and wk0
are

given, as gp(k0) = gfp(k0) ⊕ [gp(k0 − 2), e] and ad e is injective on gp(k0 − 2).

More precisely, write wk0
− zk0

= a+ b with a ∈ gfp(k0) and b ∈ [gp(k0− 2), e],
then yk0

= −a and xk0−2 is the unique element satisfying [e, xk0−2] = b.
By induction, we can find a unique solution (x, y) for (3.6) when z is

given.
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Remark 3.14. Lemma 3.13 was proved in [10] when e is a principal
nilpotent element, and then generalized by W. Gan and V. Ginzburg in [7] for
Dynkin good Z-gradings. Their proof involves a C∗-action on both varieties
and then applies a general theorem in algebraic geometry. Our proof here is
purely algebraic and works for all good Z-gradings.

Corollary 3.15. The coadjoint action map α : Nl,p ×Sχp
→ χp +m

⊥,∗
l,p

is an isomorphism of affine varieties, where m
⊥,∗
l,p := κp(m

⊥
l,p).

3.4. Quantization of Slodowy slices. Keep the notation of Section 3.1.
Denote the canonical PBW-filtration on U(gp) by {Un(gp) | n ≥ 0}, and let

Un(gp)(i) := {x ∈ Un(gp) | [hΓ, x] = ix}.

The Kazhdan filtration on U(gp) is defined by KnU(gp) =
∑

i+2j≤n Uj(gp)(i)
for n ∈ Z, which is separated and exhaustive, i.e.,

⋂

n∈Z

KnU(gp) = {0} and U(gp) =
⋃

n∈Z

KnU(gp).

The Kazhdan filtration on U(gp) induces filtrations on Iχp
, Qχp

and Hχp
,

which we also denote by Kn. Note that KnQχp
= 0 for n < 0 as {a −

χp(a) | a ∈ ml,p} contains all the negative-degree generators of U(gp) with
respect to the Kazhdan filtration. Let grK be the associated graded with
respect to the Kazhdan filtration, then grKIχp

is exactly the ideal of C[g∗p]

defining the affine subvariety χp +m
⊥,∗
l,p , i.e.,

grKU(gp)/Iχp
= grKQχp

∼= C[χp +m
⊥,∗
l,p ].

Since Hχp
⊆ Qχp

, we have a natural inclusion map

ν1 : grKHχp
→ grKQχp

.

On the other hand, as Sχp
⊆ χp +m

⊥,∗
l,p , we have a restriction map

ν2 : C[χp +m
⊥,∗
l,p ] → C[Sχp

].

Composing these two maps, we get a homomorphism,

ν = ν2 ◦ ν1 : grKHχp
→ C[Sχp

].(3.8)

We are going to prove that ν is an isomorphism.
The module Qχp

is a filtered U(nl,p)-module, where the filtration on
U(nl,p) is the Kazhdan filtration induced from that of U(gp). This filtration
induces filtrations on the cohomologies Hi(nl,p, Qχp

), and there are canonical
homomorphisms

(3.9) φi : grKHi(nl,p, Qχp
) → Hi(nl,p, grKQχp

).

Theorem 3.16. The homomorphism ν defined in (3.8) is an isomor-
phism.
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Proof. First, we show that Hi(nl,p, grKQχp
) = δi,0C[Sχp

]. Recall the
isomorphism of affine varieties in Lemma 3.13, which is Nlp-equivariant (the
action onNl,p×Sep is left multiplication on the first component, and the action

on e+m⊥
l,p is the adjoint action.). Thus we have an nl,p-module isomorphism

C[χp +m
⊥,∗
l,p ] ∼= C[Nlp ]⊗ C[Sχp

]. Hence

Hi(nl,p, grKQχp
) = Hi(nl,p,C[χp +m

⊥,∗
l,p ]) = Hi(nl,p,C[Nlp ])⊗ C[Sχp

].

The cohomology Hi(nl,p,C[Nlp ]) is equal to the algebraic de Rham cohomol-
ogy of Nlp , which is C for i = 0 and trivial for i > 0 as Nlp is isomorphic to
an affine space [4].

Next we show that the homomorphisms φi in (3.9) are all isomorphisms.
The standard cochain complex for computing the cohomology of nl,p with
coefficients in Qχp

is

(3.10) 0 → Qχp
→ n∗l,p ⊗Qχp

→ · · · → Λnn∗l,p ⊗Qχp
→ · · · .

The good Z-grading of gp induces a Z-grading on g∗p, and the subspace n∗l,p
is positively graded as nl,p is negatively graded in gp. We write the grada-
tion as n∗l,p =

⊕

i≥1 n
∗
l,p(i). Define a filtration of Λnn∗l,p ⊗ Qχp

by setting

Fs(Λ
nn∗l,p ⊗ Qχp

) to be the subspace spanned by (x1 ∧ · · · ∧ xn) ⊗ v for all

xi ∈ n∗l,p(ni), v ∈ KjQχp
such that j +

∑

ni ≤ s, where Kj is the Kazhdan

filtration on Qχp
. This defines a filtered complex on (3.10) whose associated

graded complex gives us the standard cochain complex for the cohomology of
nl,p with coefficients in grKQχp

. Consider the spectral sequence with

Es,t
0 =

Fs(Λ
s+tn∗l,p ⊗Qχp

)

Fs−1(Λs+tn∗l,p ⊗Qχp
)
.

Then Es,t
1 = Hs+t(nl,p,

KsQχp

Ks−1Qχp

) and the spectral sequence converges to

Es,t
∞ =

FsH
s+t(nl,p, Qχp

)

Fs−1Hs+t(nl,p, Qχp
)
,

i.e., the maps φi : grKHi(nl,p, Qχp
) → Hi(nl,p, grKQχp

) are isomorphisms
hence

grKHχp
= grKH0(nl,p, Qχp

) ∼= H0(nl,p, grKQχp
) ∼= C[Sχp

].

Remark 3.17. For p = 0, the isomorphism in Theorem 3.16 was proved
by A. Premet [16] when l is a Lagrangian subspace and then generalized by
W. Gan and V. Ginzburg [7] for general isotropic subspaces l. Our method
here follows [19].

Corollary 3.18. The algebra Hχp
does not depend on the choice of lp.
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Proof. It is enough to prove that if lp ⊆ l′p are two isotropic sub-
spaces of gp(−1), then the corresponding finite W-algebras Hχp

and H ′
χp

are isomorphic. We have an inclusion π : Hχp
→֒ H ′

χp
hence a map

grπ : grKHχp
→֒ grKH ′

χp
. By Theorem 3.16, the map grπ is an isomor-

phism as they are both isomorphic to C[Sχp
], so π is itself an isomorphism.

4. Kostant’s theorem and Skryabin equivalence

4.1. Kostant’s theorem. A nilpotent element x ∈ g is called regular (or
principal nilpotent) if its centralizer gx has minimal dimension, i.e., dim gx ≤

dim gx
′

for all x′ ∈ g. We show in this section that the finite W-algebra Hχp

associated to (gp, e), when e is regular, is isomorphic to Z(gp), the center of
the universal enveloping algebra U(gp).

Let S(gp) be the symmetric algebra of gp. It is well known that there is an
isomorphism of gp-modules ϕ : S(gp) → grU(gp), where gr is the associated
graded of the PBW filtration of U(gp). Let I(gp) := {g ∈ S(gp) | [x, g] =
0, ∀x ∈ gp} be the gp-invariants in S(gp) and Z(gp) be the center of U(gp).
Then the restriction of ϕ to I(gp) yields an isomorphism of vector spaces

ϕ : I(gp) → grZ(gp).

Recall that Sep = e + gfp and Sχp
= κp(Sep). Since Sχp

⊆ g∗p, we have a
canonical restriction ιp : C[g∗p] → C[Sχp

]. Identifying C[g∗p] with S(gp) and
restricting ιp to I(gp), we get a natural map from I(gp) to C[Sχp

], which we
still denote by ιp.

Lemma 4.1 ([12, 17]). Let g be a finite-dimensional semisimple Lie algebra
and e be a regular nilpotent element of g. Then the following statements hold.

(1) Every element of Sep is regular. Moreover, the adjoint orbit of every
regular element intersects Sep in a unique point.

(2) The map ιp : I(gp) → C[Sχp
] is an isomorphism of vector spaces.

Theorem 4.2. Let e be a regular nilpotent element of g. Then the finite
W-algebra Hχp

associated to the pair (gp, e) is isomorphic to the center of
U(gp).

Proof. Since Z(gp) ⊆ U(gp) is obviously invariant under the adjoint
action of nl,p, we have a natural map jp : Z(gp) → Hχp

, which preserves the
Kazhdan filtrations on Z(gp) and Hχp

. Passing to their associated graded, we
have gr jp : grZ(gp) → grHχp

, which is the isomorphism ι : I(gp) → C[Sχp
].

Since the associated graded of jp is an isomorphism, jp itself is an isomorphism
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of algebras.

Z(gp)
jp

//

gr

��

Hχp

gr

��

I(gp)
gr jp

∼=
// C[Sχp

]

Remark 4.3. When p = 0, Lemma 4.1 and Theorem 4.2 were proved
by B. Kostant [10]. Moreover, T. Macedo and A. Savage [12] generalized
Lemma 4.1 to truncated multicurrent Lie algebras. In fact, finite W-algebras
associated to truncated multicurrent Lie algebras can be defined and Kostant’s
theorem holds there.

4.2. Skryabin equivalence. Keep the notation of Section 3.1.

Definition 4.4. A gp-module M is called a Whittaker module if a−χp(a)
acts locally nilpotently on M for all a ∈ ml,p, an element m ∈ M is called
a Whittaker vector if (a − χp(a)) · m = 0 for all a ∈ ml,p. For a Whittaker
module M , denote by Wh(M) the collection of the Whittaker vectors of M .

The gp-module Qχp
is a Whittaker module and Wh(Qχp

) = Hχp
.

Denote by gp-Wmodχp the category of finitely generated Whittaker gp-
modules, and Hχp

-Mod the category of finitely generated left Hχp
-modules.

Note that Qχp
admits a right Hχp

-module structure as we have Hχp
∼=

(Endgp
Qχp

)op.

Lemma 4.5. Let M ∈ gp-Wmodχp and N ∈ Hχp
-Mod, then

(1) Wh(M) = 0 implies that M = 0.
(2) Wh(M) admits an Hχp

-module structure, with

(y + Iχp
) · v = y · v for y + Iχp

∈ Hχp
, v ∈ Wh(M).

(3) Qχp
⊗Hχp

N ∈ gp-Wmodχp .

Proof. By definition, a Whittaker gp-module M is locally U(ml,p)-finite
as U(ml,p) is generated by 1 and {a − χp(a) | a ∈ ml,p}. Given a nonzero
vector v ∈ M , we have dimU(ml,p) · v < ∞. Since a − χp(a) are nilpotent
operators on U(ml,p) · v, by Engel’s theorem, we can find a nonzero common
eigenvector for them, which is a Whittaker vector, so Wh(M) 6= 0 if M 6= 0.
This proves part (1).

For (2), we need to show y · v ∈ Wh(M), ∀y + Iχp
∈ Hχp

, v ∈ Wh(M).
We have

(a− χp(a))y · v = [a− χp(a), y] · v + y(a− χp(a)) · v = [a− χp(a), y] · v.

By Lemma 3.4, we have [a, y] ∈ Iχp
, so (a−χp(a))y ·v = 0, i.e., y ·v ∈ Wh(M).
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For (3), asQχp
is a Whittaker gp-module, a−χp(a) acts locally nilpotently

on it. But the U(gp)-action on the tensor product is from the left side, so a−
χp(a) acts automatically locally nilpotently on the tensor product Qχp

⊗Hχp

N, ∀a ∈ ml,p.

By Lemma 4.5, we have two functors,

Wh : gp-Wmodχp −→ Hχp
-Mod, M 7−→ Wh(M),

Qχp
⊗Hχp

− : Hχp
-Mod −→ gp-Wmodχp , N 7−→ Qχp

⊗Hχp
N.

The functor Wh(−) is left exact and the functor Qχp
⊗Hχp

− is right exact.

Theorem 4.6. The two functors Wh(−) and Qχp
⊗Hχp

− give an equiv-

alence of categories between gp-Wmodχp and Hχp
-Mod.

Proof. Let lp be a Lagrangian subspace of gp(−1), so we have ml,p =
nl,p. First of all, we show Wh(Qχp

⊗Hχp
N) ∼= N for all N ∈ Hχp

-Mod.
Assume that N is generated by a finite-dimensional subspace N0. Setting
KnN := (KnHχp

)N0 gives a filtration on N and it becomes a filtered Hχp
-

module. Twist the ml,p-action on Qχp
⊗Hχp

N by −χp, i.e., for a ∈ ml,p, u ∈
Qχp

, v ∈ N , define a new action

a · (u⊗ v) = (a− χp(a))u ⊗ v = ad(a− χp(a))(u)⊗ v.

Then Wh(Qχp
⊗Hχp

N) = H0(ml,p, Qχp
⊗Hχp

N) with respect to this new
action. The Kazhdan filtrations on Qχp

and N induce a Kazhdan filtration
on Qχp

⊗Hχp
N , with

Kn(Qχp
⊗Hχp

N) =
∑

i+j=n

KiQχp
⊗Hχp

KjN.

Since both KnQχp
= 0 and KnN = 0 for n < 0 as we noted in Section 3.4,

the filtration gives us homomorphisms for i ≥ 0,

φi : grKHi(ml,p, Qχp
⊗Hχp

N) → Hi(ml,p, grK(Qχp
⊗Hχp

N)).(4.1)

Remember that grKQχp
∼= C[χp + m

⊥,∗
l,p ] and grKHχp

∼= C[χp + ker ad∗ f ].

Since χp + ker ad∗ f is an affine subspace of χp + m
⊥,∗
l,p , grKQχp

is free over
grKHχp

, and we have an isomorphism

grK(Qχp
⊗Hχp

N) ∼= grKQχp
⊗grKHχp

grKN.

By Corollary 3.15, we have ml,p-module (precisely, nl,p-module) isomorphisms

grKQχp
∼= C[Nlp ]⊗ C[Sχp

] ∼= C[Nlp ]⊗ grKHχp
.
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Therefore,

Hi(ml,p, grK(Qχp
⊗Hχp

N)) ∼= Hi(ml,p, grKQχp
⊗grKHχp

grKN)

∼= Hi(ml,p,C[Nlp ]⊗ grKN)

∼= Hi(ml,p,C[Nlp ])⊗ grKN

= δi,0grKN.

There is a spectral sequence as that in the proof of Theorem 3.16, which
asserts that those φi in (4.1) are all isomorphisms. Therefore, we have (note
that grKN = N)

Hi(ml,p, Qχp
⊗Hχp

N) ∼=

{

N for i = 0,

0 for i ≥ 1.
(4.2)

In particular, we have Wh(Qχp
⊗Hχp

N) = H0(ml,p, Qχp
⊗Hχp

N) ∼= N . Next

we show that Qχp
⊗Hχp

Wh(M) ∼= M for all M ∈ gp-Wmodχp . Define a map

ϕ : Qχp
⊗Hχp

Wh(M) → M, (y + Iχp
)⊗ v 7→ y · v,

which is a gp-module homomorphism. Then we have the following exact
sequence,

0 → kerϕ → Qχp
⊗Hχp

Wh(M) → M → cokerϕ → 0.(4.3)

Applying Wh(−) to (4.3), the identity Wh(Qχp
⊗Hχp

Wh(M)) = Wh(M) and

the left exactness of Wh(−) imply that Wh(kerϕ) = 0, hence kerϕ = 0 by
Lemma 4.5. The long exact sequence of the cohomology of ml,p associated to
(4.3) gives

(4.4)
0 → H0(ml,p, Qχp

⊗Hχp
Wh(M))

→ H0(ml,p,M) → H0(ml,p, cokerϕ) → 0.

We stop at H0(ml,p, cokerϕ) because H1(ml,p, Qχp
⊗Hχp

Wh(M)) = 0 by

(4.2). Note that H0(ml,p,−) = Wh(−) and we have Wh(Qχp
⊗Hχp

Wh(M))

= Wh(M), so (4.4) implies that Wh(cokerϕ) = 0 hence cokerϕ = 0, i.e., the
map ϕ is an isomorphism.

Corollary 4.7. There is a one-to-one correspondence between simple
Whittaker modules of gp and simple modules of the finite W-algebra.

4.3. Whittaker modules for truncated current Lie algebras in the sℓ2 case.
Consider the case when g = sℓ2. Let {e, f, h} be the canonical basis of sℓ2
such that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Denote by xi := x⊗ ti for x ∈ g (the notation is different from what we used
before). We allow to use ei, hi, fi for all non-negative integers i in gp, but will



32 X. HE

consider them as zero when i > p. It is obvious that {ei, fi, hi | 0 ≤ i ≤ p}
form a basis of gp. Fix a non-degenerate invariant bilinear form (· | ·)p on gp.

There is a natural good Z-grading for the nilpotent element f0 on gp given
by ad(−h0). Explicitly, the Z-grading is

gp(−2) = span{ei}0≤i≤p, gp(0) = span{hi}0≤i≤p, gp(2) = span{fi}0≤i≤p.

Keep the notation of Section 3.1. We have mp = gp(−2). Let χp := (f0 | ·)p
and Iχp

be the left ideal of U(gp) generated by {ei−χp(ei)}0≤i≤p. AWhittaker
module for gp is a module on which ei − χp(ei) acts locally nilpotently for
all i. Consider the gp-module Qχp

= U(gp)/Iχp
. As f0 is regular nilpotent,

by Kostant’s Theorem 4.2, the finite W-algebra is isomorphic to the center of
U(gp), i.e.,

Hχp
∼= Z(gp).

Following the idea of A. Molev [13, 14], for 0 ≤ k ≤ p, define

Ck =
∑

0≤j≤k

(hp−k+j

2
(
hp−j

2
+ (p+ 1)δp,j) + fp−k+jep−j

)

∈ U(gp).

Proposition 4.8 ([9, 14]). The center of U(gp) is Z(gp) = C[C0, · · · , Cp].

It is well known that simple modules of C[C0, · · · , Cp] are all one-dimen-
sional and one-to-one correspond to its maximal ideals. Let Cε be such a
module, while Ck acts on it as εk for 0 ≤ k ≤ p, and ε1, · · · , εp ∈ C are
arbitrary constants. By Skryabin equivalence (Theorem 4.6), we have the
following result.

Theorem 4.9. Simple Whittaker modules of gp are of the form Qχp
⊗Z(gp)

Cε.
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