FINITE W-ALGEBRAS ASSOCIATED TO TRUNCATED CURRENT LIE ALGEBRAS

Xiao He
Beijing University of Chemical Technology, P. R. China

Abstract

Finite W-algebras associated to truncated current Lie algebras are studied in this paper. We show that some properties of finite W-algebras in the semisimple case hold in the truncated current case. In particular, Kostant's theorem and Skryabin equivalence hold in our case. As an application, we give a classification of simple Whittaker modules for truncated current Lie algebras in the $s \ell_{2}$ case.

1. Introduction

Finite W-algebras appeared firstly in B. Kostant's paper [10], where the author considered finite W-algebras (thought at that time, not this name) associated to principal nilpotent elements of semisimple Lie algebras, and proved that the result algebra is in fact isomorphic to the center of the universal enveloping algebra. Then Kostant's student Lynch generalized the construction to even grading nilpotent elements in his thesis paper [11]. After more than twenty years later, A. Premet's gave the general definition of finite W-algebras associated to an arbitrary nilpotent element in [16], and in the appendix of Premet's paper, S. Skryabin proved an equivalence between a category of Walgebra modules and a subcategory of Lie algebra modules, hence established a close relation between the representation theory of Lie algebras and that of finite W -algebras. More related research on finite W -algebras can be found in $[2,7,16]$.

Truncated current Lie algebras are quotients of current algebras, they are also called generalized Takiff algebras or polynomial algebras. They have important applications in physics [1, 3], and are interesting research objects

[^0]in mathematics too [14, 20]. In the definition of finite W -algebras, a nondegenerate invariant bilinear form and a good \mathbb{Z}-grading are essential. We show that these two essential ingredients exist on truncated current Lie algebras hence allow us to define finite W-algebras. Moreover, we show that finite W-algebras associated to truncated current Lie algebras can also be realized a quantization of Slodowy slices, and both Kostant's theorem and Skryabin equivalence hold for them.

The organization of the paper is as follows. In Section 2, we show that non-degenerate invariant bilinear forms exist on truncated current Lie algebras. In Section 3, we define finite W-algebras associated to truncated current Lie algebras via Whittaker model and show that they are quantizations of Slodowy slices. Finally, in Section 4, we show that Kostant's theorem and Skryabin equivalence hold in the truncated current case. As an example, we classify irreducible Whittaker modules for truncated current Lie algebra in the $s \ell_{2}$ case.

All vector spaces and algebras are considered over complex numbers \mathbb{C}, except when we mention explicitly.

2. Truncated current Lie algebra and good \mathbb{Z}-Grading

2.1. Truncated current Lie algebra. Given a finite-dimensional Lie algebra \mathfrak{a}, the current algebra associated to \mathfrak{a} is the Lie algebra $\mathfrak{a} \otimes \mathbb{C}[t]$ with Lie bracket:

$$
\left[a \otimes t^{m}, b \otimes t^{n}\right]:=[a, b] \otimes t^{m+n}, \text { for all } a, b \in \mathfrak{a}, m, n \in \mathbb{Z}_{\geq 0}
$$

The subspace $\mathfrak{a} \otimes t^{p} \mathbb{C}[t]$ is an ideal of $\mathfrak{a} \otimes \mathbb{C}[t]$ for any nonnegative integer p.
Definition 2.1. The level p truncated current Lie algebra associated to \mathfrak{a} is the quotient

$$
\mathfrak{a}_{p}:=\frac{\mathfrak{a} \otimes \mathbb{C}[t]}{\mathfrak{a} \otimes t^{p+1} \mathbb{C}[t]} \cong \mathfrak{a} \otimes \frac{\mathbb{C}[t]}{t^{p+1} \mathbb{C}[t]}
$$

The Lie bracket of \mathfrak{a}_{p} is

$$
\left[a \otimes t^{i}, b \otimes t^{j}\right]=[a, b] \otimes t^{i+j}, \text { where } t^{i+j} \equiv 0 \text { when } i+j>p
$$

REmark 2.2. Truncated current Lie algebras are also called generalized Takiff algebras or polynomial Lie algebras.

For convenience, we write $x t^{i}$ for $x \otimes t^{i}$. An element of \mathfrak{a}_{p} can be uniquely expressed as a sum $\sum_{i=0}^{p} x_{i} t^{i}$ with $x_{i} \in \mathfrak{a}$. Let $(\cdot \mid \cdot)$ be a symmetric bilinear form on \mathfrak{a}. Let $\bar{c}:=\left(c_{0}, \cdots, c_{p}\right)$ with $c_{i} \in \mathbb{C}$. Define a symmetric bilinear form on \mathfrak{a}_{p} by the formula

$$
\begin{equation*}
(x \mid y)_{p}:=\sum_{k=0}^{p} c_{k} \sum_{i+j=k}\left(x_{i} \mid y_{j}\right) \tag{2.1}
\end{equation*}
$$

where $x=\sum_{i=0}^{p} x_{i} t^{i}$ and $y=\sum_{i=0}^{p} y_{i} t^{i}$ with $x_{i}, y_{i} \in \mathfrak{a}$.
Lemma $2.3([3])$. Assume that $(\cdot \mid \cdot)$ is non-degenerate and invariant on \mathfrak{a}, then bilinear form $(\cdot \mid \cdot)_{p}$ defined by (2.1) is invariant on \mathfrak{a}_{p}. It is non-degenerate if and only if $c_{p} \neq 0$.

Proof. Let $x=\sum_{i} x_{i} t^{i}, y=\sum_{i} y_{i} t^{i}, z=\sum_{i} z_{i} t^{i}$ with $x_{i}, y_{i}, z_{i} \in \mathfrak{a}$, then

$$
\begin{aligned}
([x, y] \mid z)_{p} & =\sum_{i, j, k} c_{k}\left(\left[x_{i}, y_{j}\right] \mid z_{k-i-j}\right) \\
& =\sum_{i, j, k} c_{k}\left(x_{i} \mid\left[y_{j}, z_{k-i-j}\right]\right) \\
& =\sum_{i^{\prime}, j, k} c_{k}\left(x_{k-j-i^{\prime}} \mid\left[y_{j}, z_{i^{\prime}}\right]\right) \\
& =(x \mid[y, z])_{p} .
\end{aligned}
$$

If $c_{p}=0$, then $(\cdot \mid \cdot)_{p}$ is degenerate as $\mathfrak{a} \otimes t^{p}$ lies in its kernel. When $c_{p} \neq 0$, assume that $a=\sum_{i \geq i_{0}} a_{i} t^{i}$, with $a_{i_{0}} \neq 0$. By the non-degenerancy of $(\cdot \mid \cdot)$, there exists an element $b \in \mathfrak{a}$, such that $\left(a_{i_{0}} \mid b\right) \neq 0$. Then $\left(a \mid b t^{p-i_{0}}\right)_{p}=$ $c_{p}\left(a_{i_{0}} \mid b\right) \neq 0$, i.e., $(\cdot \mid \cdot)_{p}$ is non-degenerate.
2.2. Good \mathbb{Z}-grading of finite-dimensional Lie algebras. A \mathbb{Z}-grading of a Lie algebra \mathfrak{a} is a \mathbb{Z}-gradation $\mathfrak{a}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{a}(i)$ with $[\mathfrak{a}(i), \mathfrak{a}(j)] \subseteq \mathfrak{a}(i+j)$ for all $i, j \in \mathbb{Z}$.

Definition 2.4. Let $\Gamma: \bigoplus_{i \in \mathbb{Z}} \mathfrak{a}(i)$ be a \mathbb{Z}-grading of a finite-dimensional Lie algebra \mathfrak{a}. An element $e \in \mathfrak{a}(2)$ is called a good element with respect to Γ if
ad $e: \mathfrak{a}(i) \rightarrow \mathfrak{a}(i+2)$ is injective for $i \leq-1$ and surjective for $i \geq-1$.
A \mathbb{Z}-grading of \mathfrak{a} is called good if it admits a good element.
Given a good \mathbb{Z}-grading Γ and a good element e, the following properties are immediate:
(i) the element e is nilpotent and its centralizer \mathfrak{a}^{e} lies in $\bigoplus_{i \geq 0} \mathfrak{a}(i)$;
(ii) ad $e: \mathfrak{a}(-1) \rightarrow \mathfrak{a}(1)$ is bijective.

Example 2.5. A standard $s \ell_{2}$-triple of a Lie algebra \mathfrak{a} is a triple of elements $\{e, f, h\} \subseteq \mathfrak{a}$ with $[e, f]=h,[h, e]=2 e$ and $[h, f]=-2 f$. It follows from the representation theory of $s \ell_{2}$ that the eigenspace decomposition of \mathfrak{a} with respect to ad h is a good \mathbb{Z}-grading with a good element e. Good \mathbb{Z}-gradings thus obtained are called Dynkin \mathbb{Z}-gradings.

Theorem 2.6 (Jacobson-Morozov). Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra and $e \in \mathfrak{g}$ a non-zero nilpotent element. Then e can be embedded into a standard s ℓ_{2}-triple $\{e, f, h\}$ of \mathfrak{g}. If $h^{\prime} \in[e, \mathfrak{g}]$ satisfies that
$\left[h^{\prime}, e\right]=2 e$, then $\left\{e, h^{\prime}\right\}$ can be embedded into a standard sl${ }_{2}$-triple $\left\{e, h^{\prime}, f^{\prime}\right\}$ of \mathfrak{g}.

Lemma 2.7. Let $\Gamma: \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)$ be a \mathbb{Z}-grading of a semisimple Lie algebra \mathfrak{g} and $e \in \mathfrak{g}(2)$. Then there exist $h \in \mathfrak{g}(0)$ and $f \in \mathfrak{g}(-2)$, such that $\{e, h, f\}$ form a standard s敖-triple.

Proof. By Theorem 2.6, we can embed e into an $s \ell_{2}$-triple $\{e, h, f\}$. Write $h=\sum_{i} h_{i}, f=\sum_{i} f_{i}$ with $h_{i}, f_{i} \in \mathfrak{g}(i)$. Then $\left[h_{i}, e\right]=\delta_{i, 0} 2 e$ and $\left[e, f_{i}\right]=h_{i+2}$. In particular, we have $\left[e, f_{-2}\right]=h_{0}$. Therefore, by Theorem 2.6 again, we can embed $\left\{e, h_{0}\right\}$ into an $s \ell_{2}$-triple $\left\{e, h_{0}, f^{\prime}\right\}$. Write $f^{\prime}=\sum_{i} f_{i}^{\prime}$ with $f_{i}^{\prime} \in \mathfrak{g}(i)$, then $\left\{e, h_{0}, f_{-2}^{\prime}\right\}$ is a standard $s \ell_{2}$-triple that we are looking for.

Lemma 2.8. Let $\Gamma: \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)$ be a \mathbb{Z}-grading of a semisimple Lie algebra \mathfrak{g}. Then there exists an element $h_{\Gamma} \in \mathfrak{g}$, such that $\left[h_{\Gamma}, x\right]=i x, \forall x \in \mathfrak{g}(i)$.

Proof. It is clear that the linear operator $\delta: \mathfrak{g} \rightarrow \mathfrak{g}$ defined by $\delta(x)=i x$ for $x \in \mathfrak{g}(i)$ is a derivation of \mathfrak{g}. Since all derivations of a semisimple Lie algebra are inner, there exists an element $h_{\Gamma} \in \mathfrak{g}$ such that $\left[h_{\Gamma}, x\right]=\delta(x)=i x$ for $x \in \mathfrak{g}(i)$.

REmARK 2.9. A complete classification of good \mathbb{Z}-gradings of finite-dimensional simple Lie algebras over \mathbb{C} was given in [6].

3. Finite W-algebras associated to truncated current Lie ALGEBRAS

3.1. Finite W-algebras via Whittaker model definition. In the sequel, we assume that \mathfrak{g} is a finite-dimensional semisimple Lie algebra.

Lemma 3.1. Let $\Gamma: \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)$ be a good \mathbb{Z}-grading of \mathfrak{g} with good element e, and $h_{\Gamma} \in \mathfrak{g}$ such that $\left[h_{\Gamma}, x\right]=i x, \forall x \in \mathfrak{g}(i)$. Let $\mathfrak{g}_{p}(i):=\left\{x \in \mathfrak{g}_{p} \mid\left[h_{\Gamma}, x\right]=\right.$ $i x\}$. Then $\Gamma_{p}: \bigoplus_{i} \mathfrak{g}_{p}(i)$ is a good \mathbb{Z}-grading of \mathfrak{g}_{p} with good element e.

Proof. For a subspace \mathfrak{b} of \mathfrak{g}, denote by $\mathfrak{b}_{p}:=\mathfrak{b} \otimes \frac{\mathbb{C}[t]}{t^{p+1} \mathbb{C}[t]}$, then $\mathfrak{g}_{p}(i)=$ $\mathfrak{g}(i)_{p}$. For the map ad $e: \mathfrak{g}_{p}(i) \rightarrow \mathfrak{g}_{p}(i+2)$, we have ker ad $e=\left(\mathfrak{g}(i)^{e}\right)_{p}$ and $\operatorname{im} \operatorname{ad} e=([\mathfrak{g}(i), e])_{p}$, so it is injective for $i \leq-1$ and surjective for $i \geq-1$ as e is good with respect to Γ.

We call Γ_{p} in Lemma 3.1 a good \mathbb{Z}-grading of \mathfrak{g}_{p} induced from that of \mathfrak{g}. Let $(\cdot \mid \cdot)$ be a non-degenerate invariant bilinear form on \mathfrak{g}. By choosing $\bar{c}=\left(c_{0}, \cdots, c_{p}\right)$ with $c_{i}=\delta_{i, p}$ for $0 \leq i \leq p$ in Lemma 2.3, we fix a nondegenerate invariant bilinear form $(\cdot \mid \cdot)_{p}$ on \mathfrak{g}_{p}.

Lemma 3.2. Let Γ be a good \mathbb{Z}-grading of \mathfrak{g}, and $\Gamma_{p}: \bigoplus_{i} \mathfrak{g}_{p}(i)$ the good \mathbb{Z}-grading of \mathfrak{g}_{p} induced from Γ. Then $\left(\mathfrak{g}_{p}(i) \mid \mathfrak{g}_{p}(j)\right)_{p}=0$ if $i+j \neq 0$.

Proof. Let $h_{\Gamma} \in \mathfrak{g}$ be such that $\left[h_{\Gamma}, x\right]=i x, \forall x \in \mathfrak{g}_{p}(i)$ as in Lemma 2.8. Let $x \in \mathfrak{g}_{p}(i), y \in \mathfrak{g}_{p}(j)$ and $i+j \neq 0$. Then $\left(\left[h_{\Gamma}, x\right] \mid y\right)_{p}=-\left(x \mid\left[h_{\Gamma}, y\right]\right)_{p}$, i.e., $(i+j)(x \mid y)_{p}=0$. Since $i+j \neq 0$, that implies $(x \mid y)_{p}=0$.

Let $\chi_{p}=(e \mid \cdot)_{p} \in \mathfrak{g}_{p}^{*}$. Define a skew-symmetric bilinear form on $\mathfrak{g}_{p}(-1)$ by

$$
\begin{equation*}
\langle\cdot, \cdot\rangle_{p}: \mathfrak{g}_{p}(-1) \times \mathfrak{g}_{p}(-1) \rightarrow \mathbb{C}, \quad(x, y) \mapsto\langle x, y\rangle_{p}:=\chi_{p}([x, y]) \tag{3.1}
\end{equation*}
$$

Lemma 3.3. The bilinear form on $\mathfrak{g}_{p}(-1)$ defined by (3.1) is non-degenerate.

Proof. It follows from the surjectivity of ade $e \mathfrak{g}_{p}(-1) \rightarrow \mathfrak{g}_{p}(1)$, the invariance of $(\cdot \mid \cdot)_{p}$ and the pairing property $\left(\mathfrak{g}_{p}(i) \mid \mathfrak{g}_{p}(j)\right)_{p}=0$ if $i+j \neq 0$.

Let \mathfrak{l}_{p} be an isotropic subspace of $\mathfrak{g}_{p}(-1)$ with respect to (3.1), i.e., $\left\langle\mathfrak{l}_{p}, \mathfrak{l}_{p}\right\rangle_{p}=0$, and $\mathfrak{l}_{p}^{\perp}:=\left\{x \in \mathfrak{g}_{p}(-1) \mid(e \mid[x, y])_{p}=0, \forall y \in \mathfrak{l}_{p}\right\}$ be its orthogonal complement. Set

$$
\begin{equation*}
\mathfrak{m}_{p}:=\bigoplus_{i \leq-2} \mathfrak{g}_{p}(i), \quad \mathfrak{m}_{\mathfrak{l}, p}:=\mathfrak{m}_{p} \oplus \mathfrak{l}_{p}, \mathfrak{n}_{\mathfrak{l}, p}:=\mathfrak{m}_{p} \oplus \mathfrak{r}_{p}^{\perp}, \quad \mathfrak{n}_{p}:=\bigoplus_{i \leq-1} \mathfrak{g}_{p}(i), \tag{3.2}
\end{equation*}
$$

which are all nilpotent subalgebras of \mathfrak{g}_{p}. As $\left(e \mid\left[\mathfrak{m}_{\mathfrak{l}, p}, \mathfrak{n}_{\mathfrak{l}, p}\right]_{p}=0\right.$, the character χ_{p} defines a one-dimensional representation of $\mathfrak{m}_{l, p}$, which we denote by $\mathbb{C}_{\chi_{p}}$. Let

$$
Q_{\chi_{p}}:=U\left(\mathfrak{g}_{p}\right) \otimes_{U\left(\mathfrak{m}_{1, p}\right)} \mathbb{C}_{\chi_{p}} \cong U\left(\mathfrak{g}_{p}\right) / I_{\chi_{p}},
$$

where $I_{\chi_{p}}$ is the left ideal of $U\left(\mathfrak{g}_{p}\right)$ generated by $\left\{a-\chi_{p}(a) \mid a \in \mathfrak{m}_{\mathfrak{l}, p}\right\}$.
Lemma 3.4. The adjoint action of $\mathfrak{n}_{\mathfrak{l}, p}$ on $U\left(\mathfrak{g}_{p}\right)$ preserves the subspace $I_{\chi_{p}}$.

Proof. Let $x \in \mathfrak{n}_{\mathfrak{l}, p}, y=\sum_{i} u_{i}\left(a_{i}-\chi_{p}\left(a_{i}\right)\right) \in I_{\chi_{p}}$ with $u_{i} \in U\left(\mathfrak{g}_{p}\right)$ and $a_{i} \in \mathfrak{m}_{\mathfrak{l}, p}$. Then

$$
[x, y]=\sum_{i}\left(\left[x, u_{i}\right]\left(a_{i}-\chi_{p}\left(a_{i}\right)\right)+u_{i}\left[x, a_{i}-\chi_{p}\left(a_{i}\right)\right]\right) .
$$

As $\chi_{p}\left(\left[\mathfrak{n}_{\mathfrak{l}, p}, \mathfrak{m}_{\mathfrak{l}, p}\right]\right)=0$, we have $\left[x, a_{i}-\chi_{p}\left(a_{i}\right)\right]=\left[x, a_{i}\right] \in I_{\chi_{p}}$, hence $[x, y] \in$ $I_{\chi_{p}}$.

Since ad $\mathfrak{n}_{l, p}$ preserves $I_{\chi_{p}}$, it induces a well-defined adjoint action on $Q_{\chi_{p}}$, such that

$$
[x, \bar{u}]=\overline{[x, u]} \text { for } x \in \mathfrak{n}_{\mathfrak{l}, p}, u \in U\left(\mathfrak{g}_{p}\right),
$$

where we denote by $\bar{u}:=u+I_{\chi_{p}}$ for the image of $u \in U\left(\mathfrak{g}_{p}\right)$ in $Q_{\chi_{p}}$. Let

$$
H_{\chi_{p}}:=Q_{\chi_{p}}^{\text {ad } \mathfrak{n}_{l, p}}=\left\{\bar{u} \in Q_{\chi_{p}} \mid[x, u] \in I_{\chi_{p}} \text { for all } x \in \mathfrak{n}_{\mathfrak{l}, p}\right\} .
$$

Lemma 3.5. There is a well-defined multiplication on $H_{\chi_{p}}$ by

$$
\bar{u} \cdot \bar{v}:=\overline{u v} \text { for } \bar{u}, \bar{v} \in H_{\chi_{p}} .
$$

Proof. First, we show that the multiplication $\bar{u} \cdot \bar{v}$ does not depend on the representatives. It is obvious that it does not depend on the representatives of v. For that of u, we need to show that $y v \in I_{\chi_{p}}$ for all $y \in I_{\chi_{p}}, \bar{v} \in H_{\chi_{p}}$. Assume that $y=\sum_{i} u_{i}\left(a_{i}-\chi_{p}\left(a_{i}\right)\right)$, then

$$
\begin{equation*}
y v=[y, v]+v y=\sum_{i} u_{i}\left[a_{i}-\chi_{p}\left(a_{i}\right), v\right]+\sum_{i}\left[u_{i}, v\right]\left(a_{i}-\chi_{p}\left(a_{i}\right)\right)+v y . \tag{3.3}
\end{equation*}
$$

We have $\left[a_{i}-\chi_{p}\left(a_{i}\right), v\right]=\left[a_{i}, v\right] \in I_{\chi_{p}}$ by the definition of $H_{\chi_{p}}$ hence $y v \in I_{\chi_{p}}$. Next we show that $H_{\chi_{p}}$ is closed under the multiplication. Let $\bar{u}_{1}, \bar{u}_{2} \in H_{\chi_{p}}$, we need to show that $\overline{u_{1} u_{2}} \in H_{\chi_{p}}$, i.e., $\left[x, u_{1} u_{2}\right] \in I_{\chi_{p}}, \forall x \in \mathfrak{n}_{l, p}$. By Leibniz's rule, we have

$$
\left[x, u_{1} u_{2}\right]=\left[x, u_{1}\right] u_{2}+u_{1}\left[x, u_{2}\right] .
$$

By the definition of $H_{\chi_{p}},\left[x, u_{1}\right],\left[x, u_{2}\right] \in I_{\chi_{p}}$ hence $\left[x, u_{1}\right] u_{2} \in I_{\chi_{p}}$ by (3.3).
The space $H_{\chi_{p}}$ inherits an associative algebra structure from that of $U\left(\mathfrak{g}_{p}\right)$ by Lemma 3.5.

Definition 3.6. The finite W-algebra associated to the pair $\left(\mathfrak{g}_{p}, e\right)$ is defined to be $H_{\chi_{p}}$.

Remark 3.7. When $p=0$, we recover the finite W -algebra defined in [16].

When \mathfrak{l}_{p} is Lagrangian, i.e., $\mathfrak{l}_{p}=\mathfrak{l}_{p}^{\perp}$ hence $\mathfrak{m}_{\mathfrak{l}, p}=\mathfrak{n}_{\mathfrak{l}, p}$, we can realize $H_{\chi_{p}}$ as the opposite endomorphism algebra $\left(\operatorname{End}_{U\left(\mathfrak{g}_{p}\right)} Q_{\chi_{p}}\right)^{o p}$ in the following way. As $Q_{\chi_{p}} \cong U\left(\mathfrak{g}_{p}\right) / I_{\chi_{p}}$ is a cyclic \mathfrak{g}_{p}-module, its endomorphism φ is determined by $\varphi(\overline{1})$. As $\overline{1}$ is killed by $I_{\chi_{p}}, \varphi(\overline{1})=\bar{y}$ gives an endormorphism of $Q_{\chi_{p}}$ if and only if \bar{y} is killed by $I_{\chi_{p}}$, so

$$
\begin{aligned}
H_{\chi_{p}} & =\left\{\bar{y} \in Q_{\chi_{p}} \mid[a, y] \in I_{\chi_{p}} \text { for all } a \in \mathfrak{n}_{l, p}\right\} \\
& =\left\{\bar{y} \in Q_{\chi_{p}} \mid\left(a-\chi_{p}(a)\right) y \in I_{\chi_{p}} \text { for all } a \in \mathfrak{m}_{\mathfrak{l}, p}\right\} \\
& =\left(\operatorname{End}_{U\left(\mathfrak{g}_{p}\right)} Q_{\chi_{p}}\right)^{o p} .
\end{aligned}
$$

3.2. Poisson structure on Slodowy slice. Let $\Gamma_{p}: \bigoplus_{i} \mathfrak{g}_{p}(i)$ be a good \mathbb{Z} grading of \mathfrak{g}_{p} induced from that of \mathfrak{g}, with good element e. Let $f \in \mathfrak{g}_{p}(-2), h \in$ $\mathfrak{g}_{p}(0)$ and $\{e, f, h\}$ forms a standard $s \ell_{2}$-triple of \mathfrak{g}_{p} ensured by Lemma 2.7. The non-degenerate form $(\cdot \mid \cdot)_{p}$ defines a bijection $\kappa_{p}: \mathfrak{g}_{p} \rightarrow \mathfrak{g}_{p}^{*}$ through $x \mapsto(x \mid \cdot)_{p}$. Let \mathfrak{g}_{p}^{f} be the centralizer of f in \mathfrak{g}_{p}. Set

$$
\mathcal{S}_{e_{p}}:=e+\mathfrak{g}_{p}^{f} \quad \text { and } \quad \mathcal{S}_{\chi_{p}}:=\kappa_{p}\left(\mathcal{S}_{e_{p}}\right)=\chi_{p}+\operatorname{ker} \operatorname{ad}^{*} f .
$$

Call $S_{e_{p}}$ and $S_{\chi_{p}}$ the Slodowy slice through e in \mathfrak{g}_{p} and through χ_{p} in \mathfrak{g}_{p}^{*}, respectively.

Remark 3.8. When $p=0, \mathcal{S}_{e}:=\mathcal{S}_{e_{0}}$ is the Slodowy slice through e in \mathfrak{g}. In the language of jet schemes [15], $\mathcal{S}_{e_{p}}$ is the p-th jet scheme of \mathcal{S}_{e}.

By the representation theory of $s \ell_{2}$, we have $\mathfrak{g}_{p}=\mathfrak{g}_{p}^{e} \oplus\left[\mathfrak{g}_{p}, f\right]=\mathfrak{g}_{p}^{f} \oplus\left[\mathfrak{g}_{p}, e\right]$, which implies that ad $e:\left[f, \mathfrak{g}_{p}\right] \rightarrow\left[e, \mathfrak{g}_{p}\right]$ and ad $f:\left[e, \mathfrak{g}_{p}\right] \rightarrow\left[f, \mathfrak{g}_{p}\right]$ are both bijective.

Lemma 3.9 ($[5,8]$). Let $r \in \bigoplus_{i \leq 1} \mathfrak{g}_{p}(i)$.
(a) Let $a \in \mathfrak{g}_{p}$, then $[e+r,[f, a]]=0$ only if $[f, a]=0$.
(b) We have $\left[e+r,\left[f, \mathfrak{g}_{p}\right]\right] \cap \mathfrak{g}_{p}^{f}=0$ and $\left[e+r,\left[f, \mathfrak{g}_{p}\right]\right] \oplus \mathfrak{g}_{p}^{f}=\mathfrak{g}_{p}$.
(c) Let $a \in \mathfrak{g}_{p}$. If $[e+r, a] \in \mathfrak{g}_{p}^{f}$ and $\left(a \mid\left[e+r, \mathfrak{g}_{p}\right] \cap \mathfrak{g}_{p}^{f}\right)_{p}=0$, then $[e+r, a]=0$.

Proof. (a) Let $a=\sum_{i} a_{i}$ with $a_{i} \in \mathfrak{g}_{p}(i)$ and $[f, a] \neq 0$. Let i_{0} be such that $\left[f, a_{i_{0}}\right] \neq 0$ but $\left[f, a_{i}\right]=0, \forall i>i_{0}$. Then the i_{0}-th component (which lies in $\left.\mathfrak{g}_{p}\left(i_{0}\right)\right)$ of $[e+r,[f, a]]$ is $\left[e,\left[f, a_{i_{0}}\right]\right]$ as $r \in \bigoplus_{i \leq 1} \mathfrak{g}_{p}(i)$ and $e \in \mathfrak{g}_{p}(2)$. Now the bijectivity of ad $e:\left[f, \mathfrak{g}_{p}\right] \rightarrow\left[e, \mathfrak{g}_{p}\right]$ ensures that $\left[e,\left[f, a_{i_{0}}\right]\right] \neq 0$, in particular, $[e+r,[f, a]] \neq 0$.
(b) Assume that $a=\sum_{i} a_{i}$ with $a_{i} \in \mathfrak{g}_{p}(i)$ satisfies $[e+r,[f, a]] \neq 0$. Then $[f, a] \neq 0$. Let i_{0} be as in (a), then the i_{0}-th component of $[e+r,[f, a]]$ is $\left[e,\left[f, a_{i_{0}}\right]\right] \neq 0$, and the $\left(i_{0}-2\right)$-th component of $[f,[e+r,[f, a]]]$ is $\left[f,\left[e,\left[f, a_{i_{0}}\right]\right]\right]$, which is also nonzero by the bijectivity of ad $f:\left[e, \mathfrak{g}_{p}\right] \rightarrow\left[f, \mathfrak{g}_{p}\right]$. For the second part, let us count dimensions. We have $\operatorname{dim}\left[e+r,\left[f, \mathfrak{g}_{p}\right]\right]=$ $\operatorname{dim}\left[f, \mathfrak{g}_{p}\right]$ by (a). Note that $\operatorname{dim}\left[f, \mathfrak{g}_{p}\right]=\operatorname{dim} \mathfrak{g}_{p}-\operatorname{dim} \mathfrak{g}_{p}^{f}$, so $\operatorname{dim} \mathfrak{g}_{p}=$ $\left.\operatorname{dim} \mathfrak{g}_{p}^{f}+\operatorname{dim}\left[e+r,\left[f, \mathfrak{g}_{p}\right]\right]\right]$, and (b) is proved.
(c) For a subspace V of \mathfrak{g}_{p}, denote by V^{\perp} its orthogonal complement with respect to $(\cdot \mid \cdot)_{p}$. Then $\left(\left[e+r, \mathfrak{g}_{p}\right] \cap \mathfrak{g}_{p}^{f}\right)^{\perp}=\left[e+r, \mathfrak{g}_{p}\right]^{\perp}+\left(\mathfrak{g}_{p}^{f}\right)^{\perp}$. Note that $\left(\mathfrak{g}_{p}^{f}\right)^{\perp}=\left[f, \mathfrak{g}_{p}\right]$ and $\left[e+r, \mathfrak{g}_{p}\right]^{\perp}=\operatorname{ker} \operatorname{ad}(e+r)$ as $(\cdot \mid \cdot)_{p}$ is non-degenerate and invariant. Therefore, (c) is equivalent to saying that if $a=u+v$ with $u \in\left(\mathfrak{g}_{p}^{f}\right)^{\perp}=\left[f, \mathfrak{g}_{p}\right], v \in\left[e+r, \mathfrak{g}_{p}\right]^{\perp}$ and $[e+r, a] \in \mathfrak{g}_{p}^{f}$, then $[e+r, a]=0$. Since $u \in\left[f, \mathfrak{g}_{p}\right]$ and $v \in \operatorname{ker} \operatorname{ad}(e+r)$, we have $[e+r, a]=[e+r, u] \in \mathfrak{g}_{p}^{f} \cap\left[e+r,\left[f, \mathfrak{g}_{p}\right]\right]$, which must be zero by (b).

It is well-known that there is a Poisson structure on the dual \mathfrak{g}^{*} of a Lie algebra \mathfrak{g}, with the coadjoint orbits as the symplectic leaves. Given a non-degenerate invariant bilinear form $(\cdot \mid \cdot)$ on \mathfrak{g}, one can identify \mathfrak{g} with \mathfrak{g}^{*} through (•| $)$, hence equip \mathfrak{g} itself with a Poisson structure, and the symplectic foliation of \mathfrak{g} is given by the adjoint orbits. Let \mathbb{O} be an adjoint orbit and $x \in \mathbb{O}$. The tangent space $T_{x} \mathbb{O}$ can be identified with $[\mathfrak{g}, x]$, and the symplectic form on $T_{x} \mathbb{O}$ is

$$
\begin{equation*}
\omega_{x}([a, x],[b, x])=([a, b] \mid x) \text { for } a, b \in \mathfrak{g} \tag{3.4}
\end{equation*}
$$

Theorem 3.10 ([18]). Let M be a Poisson manifold with the symplectic foliation $\sqcup_{\alpha} S_{\alpha}$. Let N be a submanifold of M such that for all α,
(i) N is transversal to S_{α}, i.e., $T_{x} N+T_{x} S_{\alpha}=T_{x} M$ for all $x \in N \cap S_{\alpha}$.
(ii) the subspace $T_{x} N \cap T_{x} S_{\alpha}$ is a symplectic subspace of $T_{x} S_{\alpha}$, i.e., the symplectic form on $T_{x} S_{\alpha}$ is non-degenerate when restricted to $T_{x} N \cap$ $T_{x} S_{\alpha}$ for all $x \in N \cap S_{\alpha}$.
Then there is an induced Poisson structure on N. The symplectic foliation of N is given by $\sqcup_{\alpha}\left(N \cap S_{\alpha}\right)$ and the symplectic form on $T_{x}\left(N \cap S_{\alpha}\right)$ for all $x \in N \cap S_{\alpha}$ is the restriction of the symplectic form on $T_{x} S_{\alpha}$.

Proposition 3.11. The slice $S_{e_{p}}$ has a Poisson structure.
Proof. We show that the conditions in Theorem 3.10 are satisfied for the submanifold $S_{e_{p}}$. Let $x=e+r \in S_{e_{p}} \cap \mathbb{O}_{x}$, where \mathbb{O}_{x} is the adjoint orbit of \mathfrak{g}_{p} through x. As $r \in \mathfrak{g}_{p}^{f} \subseteq \bigoplus_{i \leq 0} \mathfrak{g}_{p}(i)$, Lemma 3.9 applies. Note that $T_{x} S_{e_{p}}=\mathfrak{g}_{p}^{f}$ and $T_{x} \mathbb{O}_{x}=\left[\mathfrak{g}_{p}, x\right]$. Part (b) of Lemma 3.9 shows that $S_{e_{p}}$ is transversal to \mathbb{O}_{x} at x. Next we show that the restriction of the symplectic form ω_{x} defined by (3.4) on the subspace $T_{x} \mathbb{O}_{x} \cap T_{x} S_{e_{p}}=\left[\mathfrak{g}_{p}, x\right] \cap \mathfrak{g}_{p}^{f}$ is nondegenerate. Assume that there exists an element $[a, x] \in\left[\mathfrak{g}_{p}, x\right] \cap \mathfrak{g}_{p}^{f}$ such that for all $[b, x] \in\left[\mathfrak{g}_{p}, x\right] \cap \mathfrak{g}_{p}^{f}$, we have

$$
\omega_{x}([a, x],[b, x])=(x \mid[a, b])_{p}=(a \mid[b, x])_{p}=0 .
$$

Part (c) of Lemma 3.9 shows that $[a, x]=0$. Therefore, ω_{x} is non-degenerate when restricted to $\left[\mathfrak{g}_{p}, x\right] \cap \mathfrak{g}_{p}^{f}$. So $S_{e_{p}}$ inherits a Poisson structure from that of \mathfrak{g}_{p}.

Corollary 3.12. The Slodowy slice $\mathcal{S}_{\chi_{p}}$ has a Poisson structure.
The Poisson algebra $\mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right]$ is called the classical finite W-algebra associated to $\left(\mathfrak{g}_{p}, e\right)$.
3.3. An isomorphism of affine varieties. Keep the notation in Section 3.1. Let G_{p} be the adjoint group of \mathfrak{g}_{p} and $N_{\mathfrak{l}, p}$ the unipotent subgroup of G_{p} with Lie algebra $\mathfrak{n}_{\mathfrak{l}, p}$. Let

$$
\begin{equation*}
\mathfrak{m}_{\mathfrak{l}, p}^{\perp}:=\left\{x \in \mathfrak{g}_{p} \mid(x \mid y)_{p}=0, \forall y \in \mathfrak{m}_{\mathfrak{l}, p}\right\}=\left(\bigoplus_{i \leq 0} \mathfrak{g}_{p}(i)\right) \oplus\left[\left[\Gamma_{p}^{\perp}, e\right] .\right. \tag{3.5}
\end{equation*}
$$

As $\mathfrak{n}_{\mathfrak{l}, p}$ is nilpotent, elements of $N_{\mathfrak{l}, p}$ can be expressed as $\exp (\operatorname{ad} x)$ for $x \in \mathfrak{n}_{\mathfrak{l}, p}$. Consider the adjoint action of $N_{\mathfrak{l}, p}$ on $S_{e_{p}}$. Let $x \in \mathfrak{n}_{\mathfrak{l}, p}, y \in \mathfrak{g}_{p}^{f} \subseteq \bigoplus_{i \leq 0} \mathfrak{g}_{p}(i)$. Then

$$
\exp (\operatorname{ad} x)(e+y)=\left(1+\operatorname{ad} x+\cdots+\frac{\operatorname{ad}^{n} x}{n!}+\cdots\right)(e+y) \in e+\mathfrak{m}_{\mathfrak{l}, p}^{\perp}
$$

Therefore, the image of the adjoint action map $N_{\mathfrak{l}, p} \times S_{e_{p}}$ lies in $e+\mathfrak{m}_{\iota, p}^{\perp}$.
Lemma 3.13. The adjoint action $\operatorname{map} \beta: N_{\mathfrak{l}, p} \times S_{e_{p}} \rightarrow e+\mathfrak{m}_{\mathfrak{\imath}, p}^{\perp}$ is an isomorphism of affine varieties.

Proof. The adjoint action map is obviously a morphism of varieties, we only need to show the bijectivity. We show that given $z \in \mathfrak{m}_{\downarrow, p}^{\perp}$, there is a unique $x \in \mathfrak{n}_{l, p}$ and a unique $y \in \mathfrak{g}_{p}^{f}$, such that $\exp (\operatorname{ad} x)(e+y)=e+z$. Recall the expressions of $\mathfrak{m}_{\mathfrak{l}, p}^{\perp}$ and $\mathfrak{n}_{\mathfrak{l}, p}$ in (3.5) and (3.2), respectively, and note that $\mathfrak{g}_{p}^{f} \subseteq \bigoplus_{i \leq 0} \mathfrak{g}_{p}(i)$. For $x \in \mathfrak{n}_{\mathfrak{l}, p}, y \in \mathfrak{g}_{p}^{f}$, $z \in \mathfrak{m}_{\mathfrak{l}, p}^{\perp}$, we can assume that $x=\sum_{i \leq-1} x_{i}, y=\sum_{j \leq 0} y_{j}$ and $z=\sum_{i \leq 1} z_{i}$ with $x_{i}, y_{i}, z_{i} \in \mathfrak{g}_{p}(i), x_{-1} \in$ \mathfrak{l}_{p}^{\perp} and $z_{1} \in\left[{ }_{p}^{\perp}, e\right]$. Note that

$$
\exp (\operatorname{ad} x)(e+y)=e+y+[x, e]+[x, y]+\sum_{n \geq 2} \frac{(\operatorname{ad} x)^{n}}{n!}(e+y)
$$

The equation $\exp (\operatorname{ad} x)(e+y)=e+z$ means that

$$
\begin{equation*}
\sum_{k} z_{k}=\sum_{j} y_{j}+\sum_{i}\left[x_{i}, e\right]+\sum_{i, j}\left[x_{i}, y_{j}\right]+\sum_{n \geq 2} \frac{\left(\sum_{i} \operatorname{ad} x_{i}\right)^{n}}{n!}\left(e+\sum_{j} y_{j}\right) \tag{3.6}
\end{equation*}
$$

which is equivalent to a series of equations, namely, for $k \leq 1$,

$$
\begin{align*}
z_{k}-y_{k}-\left[x_{k-2}, e\right]= & \sum_{i+j=k} \operatorname{ad} x_{i}\left(y_{j}\right)+\sum_{n \geq 2} \frac{\sum_{i_{1}+\cdots+i_{n}=k-2} \operatorname{ad} x_{i_{1}} \cdots \operatorname{ad} x_{i_{n}}(e)}{n!} \\
(3.7) & +\sum_{n \geq 2} \frac{\sum_{i_{1}+\cdots+i_{n}+j=k} \operatorname{ad} x_{i_{1}} \cdots \operatorname{ad} x_{i_{n}}\left(y_{j}\right)}{n!} . \tag{3.7}
\end{align*}
$$

Given k, note that ad x_{i}, y_{j} appear on the right hand side of (3.7) only when $i>k-2$ and $j>k$. So if $\left\{x_{i}, y_{j}\right\}_{i \geq k_{0}-2, j \geq k_{0}}$ satisfy (3.7) for all $k \geq k_{0}$, and if we only change the values of $\left\{x_{i}, y_{j}\right\}_{i<k_{0}-2, j<k_{0}}$, then (3.7) is still valid for $k \geq k_{0}$.

Now we use a decreasing induction on k to show that given z, there is a unique solution (x, y) for (3.6). When $k=1$, (3.7) reads $\left[x_{-1}, e\right]=z_{1}$, there is a unique solution $x_{-1} \in \mathfrak{l}_{p}^{\perp}$ as $z_{1} \in\left[\mathfrak{l}_{p}^{\perp}, e\right]$ and ad $e: \mathfrak{l}_{p}^{\perp} \rightarrow\left[\mathfrak{r}_{p}^{\perp}, e\right]$ is injective. For $k=k_{0} \leq 0$, we assume that we have uniquely determined $\left\{x_{i}, y_{j}\right\}_{i \geq k_{0}-1, j \geq k_{0}+1}$ such that (3.7) is satisfied for $k \geq k_{0}+1$. We show that we can uniquely determine $\left(x_{k_{0}-2}, y_{k_{0}}\right)$, such that (3.7) is satisfied for $k \geq k_{0}$. Set $k=k_{0}$ in (3.7), since $\left\{x_{i}, y_{j}\right\}_{i \geq k_{0}-1, j \geq k_{0}+1}$ are already determined, the right hand side of (3.7) is determined, which we denote by $w_{k_{0}}$, is an element of $\mathfrak{g}_{p}\left(k_{0}\right)$. Then (3.7) becomes

$$
\left[e, x_{k_{0}-2}\right]=w_{k_{0}}+y_{k_{0}}-z_{k_{0}}
$$

This equation has a unique solution for $\left(x_{k_{0}-2}, y_{k_{0}}\right)$ when $z_{k_{0}}$ and $w_{k_{0}}$ are given, as $\mathfrak{g}_{p}\left(k_{0}\right)=\mathfrak{g}_{p}^{f}\left(k_{0}\right) \oplus\left[\mathfrak{g}_{p}\left(k_{0}-2\right), e\right]$ and ad e is injective on $\mathfrak{g}_{p}\left(k_{0}-2\right)$. More precisely, write $w_{k_{0}}-z_{k_{0}}=a+b$ with $a \in \mathfrak{g}_{p}^{f}\left(k_{0}\right)$ and $b \in\left[\mathfrak{g}_{p}\left(k_{0}-2\right), e\right]$, then $y_{k_{0}}=-a$ and $x_{k_{0}-2}$ is the unique element satisfying $\left[e, x_{k_{0}-2}\right]=b$.

By induction, we can find a unique solution (x, y) for (3.6) when z is given.

REMARK 3.14. Lemma 3.13 was proved in [10] when e is a principal nilpotent element, and then generalized by W. Gan and V. Ginzburg in [7] for Dynkin good \mathbb{Z}-gradings. Their proof involves a \mathbb{C}^{*}-action on both varieties and then applies a general theorem in algebraic geometry. Our proof here is purely algebraic and works for all good \mathbb{Z}-gradings.

Corollary 3.15. The coadjoint action map $\alpha: N_{\mathfrak{l}, p} \times \mathcal{S}_{\chi_{p}} \rightarrow \chi_{p}+\mathfrak{m}_{\mathfrak{\imath}, p}^{\perp, *}$ is an isomorphism of affine varieties, where $\mathfrak{m}_{\mathfrak{l}, p}^{\perp, *}:=\kappa_{p}\left(\mathfrak{m}_{\iota, p}^{\perp}\right)$.
3.4. Quantization of Slodowy slices. Keep the notation of Section 3.1. Denote the canonical PBW-filtration on $U\left(\mathfrak{g}_{p}\right)$ by $\left\{U_{n}\left(\mathfrak{g}_{p}\right) \mid n \geq 0\right\}$, and let

$$
U_{n}\left(\mathfrak{g}_{p}\right)(i):=\left\{x \in U_{n}\left(\mathfrak{g}_{p}\right) \mid\left[h_{\Gamma}, x\right]=i x\right\}
$$

The Kazhdan filtration on $U\left(\mathfrak{g}_{p}\right)$ is defined by $K_{n} U\left(\mathfrak{g}_{p}\right)=\sum_{i+2 j \leq n} U_{j}\left(\mathfrak{g}_{p}\right)(i)$ for $n \in \mathbb{Z}$, which is separated and exhaustive, i.e.,

$$
\bigcap_{n \in \mathbb{Z}} K_{n} U\left(\mathfrak{g}_{p}\right)=\{0\} \text { and } U\left(\mathfrak{g}_{p}\right)=\bigcup_{n \in \mathbb{Z}} K_{n} U\left(\mathfrak{g}_{p}\right) .
$$

The Kazhdan filtration on $U\left(\mathfrak{g}_{p}\right)$ induces filtrations on $I_{\chi_{p}}, Q_{\chi_{p}}$ and $H_{\chi_{p}}$, which we also denote by K_{n}. Note that $K_{n} Q_{\chi_{p}}=0$ for $n<0$ as $\{a-$ $\left.\chi_{p}(a) \mid a \in \mathfrak{m}_{\mathfrak{l}, p}\right\}$ contains all the negative-degree generators of $U\left(\mathfrak{g}_{p}\right)$ with respect to the Kazhdan filtration. Let gr_{K} be the associated graded with respect to the Kazhdan filtration, then $\operatorname{gr}_{K} I_{\chi_{p}}$ is exactly the ideal of $\mathbb{C}\left[\mathfrak{g}_{p}^{*}\right]$ defining the affine subvariety $\chi_{p}+\mathfrak{m}_{\mathfrak{l}, p}^{\perp, *}$, i.e.,

$$
\operatorname{gr}_{K} U\left(\mathfrak{g}_{p}\right) / I_{\chi_{p}}=\operatorname{gr}_{K} Q_{\chi_{p}} \cong \mathbb{C}\left[\chi_{p}+\mathfrak{m}_{\mathfrak{l}, p}^{\perp, *}\right]
$$

Since $H_{\chi_{p}} \subseteq Q_{\chi_{p}}$, we have a natural inclusion map

$$
\nu_{1}: \operatorname{gr}_{K} H_{\chi_{p}} \rightarrow \operatorname{gr}_{K} Q_{\chi_{p}}
$$

On the other hand, as $\mathcal{S}_{\chi_{p}} \subseteq \chi_{p}+\mathfrak{m}_{\mathfrak{l}, p}^{\perp, *}$, we have a restriction map

$$
\nu_{2}: \mathbb{C}\left[\chi_{p}+\mathfrak{m}_{\mathfrak{\imath}, p}^{\perp, *}\right] \rightarrow \mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right]
$$

Composing these two maps, we get a homomorphism,

$$
\begin{equation*}
\nu=\nu_{2} \circ \nu_{1}: \operatorname{gr}_{K} H_{\chi_{p}} \rightarrow \mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right] . \tag{3.8}
\end{equation*}
$$

We are going to prove that ν is an isomorphism.
The module $Q_{\chi_{p}}$ is a filtered $U\left(\mathfrak{n}_{\mathrm{r}, p}\right)$-module, where the filtration on $U\left(\mathfrak{n}_{\mathfrak{l}, p}\right)$ is the Kazhdan filtration induced from that of $U\left(\mathfrak{g}_{p}\right)$. This filtration induces filtrations on the cohomologies $H^{i}\left(\mathfrak{n}_{\mathfrak{l}, p}, Q_{\chi_{p}}\right)$, and there are canonical homomorphisms

$$
\begin{equation*}
\phi_{i}: \operatorname{gr}_{K} H^{i}\left(\mathfrak{n}_{\mathfrak{l}, p}, Q_{\chi_{p}}\right) \rightarrow H^{i}\left(\mathfrak{n}_{\mathfrak{l}, p}, \operatorname{gr}_{K} Q_{\chi_{p}}\right) . \tag{3.9}
\end{equation*}
$$

ThEOREM 3.16. The homomorphism ν defined in (3.8) is an isomorphism.

Proof. First, we show that $H^{i}\left(\mathfrak{n}_{\mathfrak{l}, p}, \mathrm{gr}_{K} Q_{\chi_{p}}\right)=\delta_{i, 0} \mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right]$. Recall the isomorphism of affine varieties in Lemma 3.13, which is $N_{\mathrm{l}_{p}}$-equivariant (the action on $N_{\mathfrak{l}, p} \times S_{e_{p}}$ is left multiplication on the first component, and the action on $e+\mathfrak{m}_{\mathfrak{l}, p}^{\perp}$ is the adjoint action.). Thus we have an $\mathfrak{n}_{\mathfrak{l}, p}$-module isomorphism $\mathbb{C}\left[\chi_{p}+\mathfrak{m}_{\mathfrak{l}, p}^{\perp, *}\right] \cong \mathbb{C}\left[N_{\mathfrak{r}_{p}}\right] \otimes \mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right]$. Hence

$$
H^{i}\left(\mathfrak{n}_{\mathfrak{l}, p}, \operatorname{gr}_{K} Q_{\chi_{p}}\right)=H^{i}\left(\mathfrak{n}_{\mathfrak{l}, p}, \mathbb{C}\left[\chi_{p}+\mathfrak{m}_{\mathfrak{l}, p}^{\perp, *}\right]\right)=H^{i}\left(\mathfrak{n}_{\mathfrak{l}, p}, \mathbb{C}\left[N_{\mathfrak{r}_{p}}\right]\right) \otimes \mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right]
$$

The cohomology $H^{i}\left(\mathfrak{n}_{\mathfrak{l}, p}, \mathbb{C}\left[N_{\mathfrak{l}_{p}}\right]\right)$ is equal to the algebraic de Rham cohomology of $N_{\mathfrak{l}_{p}}$, which is \mathbb{C} for $i=0$ and trivial for $i>0$ as $N_{\mathfrak{l}_{p}}$ is isomorphic to an affine space [4].

Next we show that the homomorphisms ϕ_{i} in (3.9) are all isomorphisms. The standard cochain complex for computing the cohomology of $\mathfrak{n}_{\mathfrak{l}, p}$ with coefficients in $Q_{\chi_{p}}$ is

$$
\begin{equation*}
0 \rightarrow Q_{\chi_{p}} \rightarrow \mathfrak{n}_{\mathfrak{l}, p}^{*} \otimes Q_{\chi_{p}} \rightarrow \cdots \rightarrow \Lambda^{n} \mathfrak{n}_{\mathfrak{l}, p}^{*} \otimes Q_{\chi_{p}} \rightarrow \cdots \tag{3.10}
\end{equation*}
$$

The good \mathbb{Z}-grading of \mathfrak{g}_{p} induces a \mathbb{Z}-grading on \mathfrak{g}_{p}^{*}, and the subspace $\mathfrak{n}_{\mathfrak{l}, p}^{*}$ is positively graded as $\mathfrak{n}_{\mathfrak{l}, p}$ is negatively graded in \mathfrak{g}_{p}. We write the gradation as $\mathfrak{n}_{\mathfrak{l}, p}^{*}=\bigoplus_{i \geq 1} \mathfrak{n}_{\mathfrak{l}, p}^{*}(i)$. Define a filtration of $\Lambda^{n} \mathfrak{n}_{\mathfrak{l}, p}^{*} \otimes Q_{\chi_{p}}$ by setting $F_{s}\left(\Lambda^{n} \mathfrak{n}_{1, p}^{*} \otimes Q_{\chi_{p}}\right)$ to be the subspace spanned by $\left(x_{1} \wedge \cdots \wedge x_{n}\right) \otimes v$ for all $x_{i} \in \mathfrak{n}_{\mathfrak{l}, p}^{*}\left(n_{i}\right), v \in K_{j} Q_{\chi_{p}}$ such that $j+\sum n_{i} \leq s$, where K_{j} is the Kazhdan filtration on $Q_{\chi_{p}}$. This defines a filtered complex on (3.10) whose associated graded complex gives us the standard cochain complex for the cohomology of $\mathfrak{n}_{\mathfrak{l}, p}$ with coefficients in $\operatorname{gr}_{K} Q_{\chi_{p}}$. Consider the spectral sequence with

$$
E_{0}^{s, t}=\frac{F_{s}\left(\Lambda^{s+t} \mathfrak{n}_{\mathfrak{l}, p}^{*} \otimes Q_{\chi_{p}}\right)}{F_{s-1}\left(\Lambda^{s+t} \mathfrak{n}_{\mathfrak{l}, p}^{*} \otimes Q_{\chi_{p}}\right)}
$$

Then $E_{1}^{s, t}=H^{s+t}\left(\mathfrak{n}_{\mathrm{l}, p}, \frac{K_{s} Q_{\chi_{p}}}{K_{s-1} Q_{\chi_{p}}}\right)$ and the spectral sequence converges to

$$
E_{\infty}^{s, t}=\frac{F_{s} H^{s+t}\left(\mathfrak{n}_{\mathrm{l}, p}, Q_{\chi_{p}}\right)}{F_{s-1} H^{s+t}\left(\mathfrak{n}_{\mathrm{l}, p}, Q_{\chi_{p}}\right)},
$$

i.e., the maps $\phi_{i}: \operatorname{gr}_{K} H^{i}\left(\mathfrak{n}_{\mathfrak{l}, p}, Q_{\chi_{p}}\right) \rightarrow H^{i}\left(\mathfrak{n}_{\mathfrak{l}, p}, \operatorname{gr}_{K} Q_{\chi_{p}}\right)$ are isomorphisms hence

$$
\operatorname{gr}_{K} H_{\chi_{p}}=\operatorname{gr}_{K} H^{0}\left(\mathfrak{n}_{\mathfrak{l}, p}, Q_{\chi_{p}}\right) \cong H^{0}\left(\mathfrak{n}_{\mathrm{l}, p}, \operatorname{gr}_{K} Q_{\chi_{p}}\right) \cong \mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right] .
$$

Remark 3.17. For $p=0$, the isomorphism in Theorem 3.16 was proved by A. Premet [16] when \mathfrak{l} is a Lagrangian subspace and then generalized by W. Gan and V. Ginzburg [7] for general isotropic subspaces l. Our method here follows [19].

Corollary 3.18. The algebra $H_{\chi_{p}}$ does not depend on the choice of \mathfrak{l}_{p}.

Proof. It is enough to prove that if $\mathfrak{l}_{p} \subseteq \mathfrak{l}_{p}^{\prime}$ are two isotropic subspaces of $\mathfrak{g}_{p}(-1)$, then the corresponding finite W -algebras $H_{\chi_{p}}$ and $H_{\chi_{p}}^{\prime}$ are isomorphic. We have an inclusion $\pi: H_{\chi_{p}} \hookrightarrow H_{\chi_{p}}^{\prime}$ hence a map $\operatorname{gr} \pi: \operatorname{gr}_{K} H_{\chi_{p}} \hookrightarrow \operatorname{gr}_{K} H_{\chi_{p}}^{\prime}$. By Theorem 3.16, the map gr π is an isomorphism as they are both isomorphic to $\mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right]$, so π is itself an isomorphism.

4. Kostant's theorem and Skryabin equivalence

4.1. Kostant's theorem. A nilpotent element $x \in \mathfrak{g}$ is called regular (or principal nilpotent) if its centralizer \mathfrak{g}^{x} has minimal dimension, i.e., $\operatorname{dim} \mathfrak{g}^{x} \leq$ $\operatorname{dim} \mathfrak{g}^{x^{\prime}}$ for all $x^{\prime} \in \mathfrak{g}$. We show in this section that the finite W -algebra $H_{\chi_{p}}$ associated to $\left(\mathfrak{g}_{p}, e\right)$, when e is regular, is isomorphic to $Z\left(\mathfrak{g}_{p}\right)$, the center of the universal enveloping algebra $U\left(\mathfrak{g}_{p}\right)$.

Let $S\left(\mathfrak{g}_{p}\right)$ be the symmetric algebra of \mathfrak{g}_{p}. It is well known that there is an isomorphism of \mathfrak{g}_{p}-modules $\varphi: S\left(\mathfrak{g}_{p}\right) \rightarrow \operatorname{gr} U\left(\mathfrak{g}_{p}\right)$, where gr is the associated graded of the PBW filtration of $U\left(\mathfrak{g}_{p}\right)$. Let $I\left(\mathfrak{g}_{p}\right):=\left\{g \in S\left(\mathfrak{g}_{p}\right) \mid[x, g]=\right.$ $\left.0, \forall x \in \mathfrak{g}_{p}\right\}$ be the \mathfrak{g}_{p}-invariants in $S\left(\mathfrak{g}_{p}\right)$ and $Z\left(\mathfrak{g}_{p}\right)$ be the center of $U\left(\mathfrak{g}_{p}\right)$. Then the restriction of φ to $I\left(\mathfrak{g}_{p}\right)$ yields an isomorphism of vector spaces

$$
\varphi: I\left(\mathfrak{g}_{p}\right) \rightarrow \operatorname{gr} Z\left(\mathfrak{g}_{p}\right)
$$

Recall that $S_{e_{p}}=e+\mathfrak{g}_{p}^{f}$ and $\mathcal{S}_{\chi_{p}}=\kappa_{p}\left(S_{e_{p}}\right)$. Since $\mathcal{S}_{\chi_{p}} \subseteq \mathfrak{g}_{p}^{*}$, we have a canonical restriction $\iota_{p}: \mathbb{C}\left[\mathfrak{g}_{p}^{*}\right] \rightarrow \mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right]$. Identifying $\mathbb{C}\left[\mathfrak{g}_{p}^{*}\right]$ with $S\left(\mathfrak{g}_{p}\right)$ and restricting ι_{p} to $I\left(\mathfrak{g}_{p}\right)$, we get a natural map from $I\left(\mathfrak{g}_{p}\right)$ to $\mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right]$, which we still denote by ι_{p}.

Lemma $4.1([12,17])$. Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra and e be a regular nilpotent element of \mathfrak{g}. Then the following statements hold.
(1) Every element of $S_{e_{p}}$ is regular. Moreover, the adjoint orbit of every regular element intersects $S_{e_{p}}$ in a unique point.
(2) The map $\iota_{p}: I\left(\mathfrak{g}_{p}\right) \rightarrow \mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right]$ is an isomorphism of vector spaces.

ThEOREM 4.2. Let e be a regular nilpotent element of \mathfrak{g}. Then the finite W-algebra $H_{\chi_{p}}$ associated to the pair $\left(\mathfrak{g}_{p}, e\right)$ is isomorphic to the center of $U\left(\mathfrak{g}_{p}\right)$.

Proof. Since $Z\left(\mathfrak{g}_{p}\right) \subseteq U\left(\mathfrak{g}_{p}\right)$ is obviously invariant under the adjoint action of $\mathfrak{n}_{\mathrm{l}, p}$, we have a natural map $j_{p}: Z\left(\mathfrak{g}_{p}\right) \rightarrow H_{\chi_{p}}$, which preserves the Kazhdan filtrations on $Z\left(\mathfrak{g}_{p}\right)$ and $H_{\chi_{p}}$. Passing to their associated graded, we have $\operatorname{gr} j_{p}: \operatorname{gr} Z\left(\mathfrak{g}_{p}\right) \rightarrow \operatorname{gr} H_{\chi_{p}}$, which is the isomorphism $\iota: I\left(\mathfrak{g}_{p}\right) \rightarrow \mathbb{C}\left[\mathcal{S}_{\chi_{p}}\right]$. Since the associated graded of j_{p} is an isomorphism, j_{p} itself is an isomorphism
of algebras.

Remark 4.3. When $p=0$, Lemma 4.1 and Theorem 4.2 were proved by B. Kostant [10]. Moreover, T. Macedo and A. Savage [12] generalized Lemma 4.1 to truncated multicurrent Lie algebras. In fact, finite W-algebras associated to truncated multicurrent Lie algebras can be defined and Kostant's theorem holds there.
4.2. Skryabin equivalence. Keep the notation of Section 3.1.

Definition 4.4. $A \mathfrak{g}_{p}$-module M is called a Whittaker module if $a-\chi_{p}(a)$ acts locally nilpotently on M for all $a \in \mathfrak{m}_{\mathfrak{l}, p}$, an element $m \in M$ is called a Whittaker vector if $\left(a-\chi_{p}(a)\right) \cdot m=0$ for all $a \in \mathfrak{m}_{\iota, p}$. For a Whittaker module M, denote by $\mathrm{Wh}(M)$ the collection of the Whittaker vectors of M.

The \mathfrak{g}_{p}-module $Q_{\chi_{p}}$ is a Whittaker module and $\mathrm{Wh}\left(Q_{\chi_{p}}\right)=H_{\chi_{p}}$.
Denote by \mathfrak{g}_{p}-Wmod ${ }^{\chi_{p}}$ the category of finitely generated Whittaker $\mathfrak{g}_{p^{-}}$ modules, and $H_{\chi_{p}}-\operatorname{Mod}$ the category of finitely generated left $H_{\chi_{p}}$-modules. Note that $Q_{\chi_{p}}$ admits a right $H_{\chi_{p}}$-module structure as we have $H_{\chi_{p}} \cong$ $\left(\operatorname{End}_{\mathfrak{g}_{p}} Q_{\chi_{p}}\right)^{o p}$.

Lemma 4.5. Let $M \in \mathfrak{g}_{p}$-Wmod ${ }^{\chi_{p}}$ and $N \in H_{\chi_{p}}$-Mod, then
(1) $\mathrm{Wh}(M)=0$ implies that $M=0$.
(2) $\mathrm{Wh}(M)$ admits an $H_{\chi_{p}}$-module structure, with

$$
\left(y+I_{\chi_{p}}\right) \cdot v=y \cdot v \text { for } y+I_{\chi_{p}} \in H_{\chi_{p}}, v \in \mathrm{~Wh}(M)
$$

(3) $Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N \in \mathfrak{g}_{p}-\operatorname{Wmod}^{\chi_{p}}$.

Proof. By definition, a Whittaker \mathfrak{g}_{p}-module M is locally $U\left(\mathfrak{m}_{\mathfrak{l}, p}\right)$-finite as $U\left(\mathfrak{m}_{\mathfrak{l}, p}\right)$ is generated by 1 and $\left\{a-\chi_{p}(a) \mid a \in \mathfrak{m}_{\mathfrak{l}, p}\right\}$. Given a nonzero vector $v \in M$, we have $\operatorname{dim} U\left(\mathfrak{m}_{\mathfrak{l}, p}\right) \cdot v<\infty$. Since $a-\chi_{p}(a)$ are nilpotent operators on $U\left(\mathfrak{m}_{\mathfrak{l}, p}\right) \cdot v$, by Engel's theorem, we can find a nonzero common eigenvector for them, which is a Whittaker vector, so $\mathrm{Wh}(M) \neq 0$ if $M \neq 0$. This proves part (1).

For (2), we need to show $y \cdot v \in \mathrm{~Wh}(M), \forall y+I_{\chi_{p}} \in H_{\chi_{p}}, v \in \mathrm{~Wh}(M)$. We have

$$
\left(a-\chi_{p}(a)\right) y \cdot v=\left[a-\chi_{p}(a), y\right] \cdot v+y\left(a-\chi_{p}(a)\right) \cdot v=\left[a-\chi_{p}(a), y\right] \cdot v
$$

By Lemma 3.4, we have $[a, y] \in I_{\chi_{p}}$, so $\left(a-\chi_{p}(a)\right) y \cdot v=0$, i.e., $y \cdot v \in \operatorname{Wh}(M)$.

For (3), as $Q_{\chi_{p}}$ is a Whittaker \mathfrak{g}_{p}-module, $a-\chi_{p}(a)$ acts locally nilpotently on it. But the $U\left(\mathfrak{g}_{p}\right)$-action on the tensor product is from the left side, so a $\chi_{p}(a)$ acts automatically locally nilpotently on the tensor product $Q_{\chi_{p}} \otimes_{H_{\chi_{p}}}$ $N, \forall a \in \mathfrak{m}_{\mathfrak{l}, p}$.

By Lemma 4.5, we have two functors,

$$
\begin{aligned}
\mathrm{Wh}: & \mathfrak{g}_{p}-\operatorname{Wmod}^{\chi_{p}} \longrightarrow H_{\chi_{p}}-\operatorname{Mod}, & M \longmapsto \operatorname{Wh}(M) \\
Q_{\chi_{p}} \otimes_{H_{\chi_{p}}}-: & H_{\chi_{p}}-\operatorname{Mod} \longrightarrow \mathfrak{g}_{p}-\operatorname{Wmod}^{\chi_{p}}, & N \longmapsto Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N .
\end{aligned}
$$

The functor $\mathrm{Wh}(-)$ is left exact and the functor $Q_{\chi_{p}} \otimes_{H_{\chi_{p}}}$ - is right exact.
Theorem 4.6. The two functors $\mathrm{Wh}(-)$ and $Q_{\chi_{p}} \otimes_{H_{\chi_{p}}}-$ give an equivalence of categories between \mathfrak{g}_{p}-Wmod ${ }^{\chi_{p}}$ and $H_{\chi_{p}}-M o d$.

Proof. Let \mathfrak{l}_{p} be a Lagrangian subspace of $\mathfrak{g}_{p}(-1)$, so we have $\mathfrak{m}_{\mathfrak{l}, p}=$ $\mathfrak{n}_{l, p}$. First of all, we show $\mathrm{Wh}\left(Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N\right) \cong N$ for all $N \in H_{\chi_{p}}$-Mod. Assume that N is generated by a finite-dimensional subspace N_{0}. Setting $K_{n} N:=\left(K_{n} H_{\chi_{p}}\right) N_{0}$ gives a filtration on N and it becomes a filtered $H_{\chi_{p}}{ }^{-}$ module. Twist the $\mathfrak{m}_{\mathfrak{l}, p^{-}}$action on $Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N$ by $-\chi_{p}$, i.e., for $a \in \mathfrak{m}_{\mathfrak{l}, p}, u \in$ $Q_{\chi_{p}}, v \in N$, define a new action

$$
a \cdot(u \otimes v)=\left(a-\chi_{p}(a)\right) u \otimes v=\operatorname{ad}\left(a-\chi_{p}(a)\right)(u) \otimes v
$$

Then $\operatorname{Wh}\left(Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N\right)=H^{0}\left(\mathfrak{m}_{\imath, p}, Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N\right)$ with respect to this new action. The Kazhdan filtrations on $Q_{\chi_{p}}$ and N induce a Kazhdan filtration on $Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N$, with

$$
K_{n}\left(Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N\right)=\sum_{i+j=n} K_{i} Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} K_{j} N
$$

Since both $K_{n} Q_{\chi_{p}}=0$ and $K_{n} N=0$ for $n<0$ as we noted in Section 3.4, the filtration gives us homomorphisms for $i \geq 0$,

$$
\begin{equation*}
\phi_{i}: \operatorname{gr}_{K} H^{i}\left(\mathfrak{m}_{\mathfrak{l}, p}, Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N\right) \rightarrow H^{i}\left(\mathfrak{m}_{\mathfrak{l}, p}, \operatorname{gr}_{K}\left(Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N\right)\right) \tag{4.1}
\end{equation*}
$$

Remember that $\operatorname{gr}_{K} Q_{\chi_{p}} \cong \mathbb{C}\left[\chi_{p}+\mathfrak{m}_{\mathfrak{\imath}, p}^{\perp, *}\right]$ and $\operatorname{gr}_{K} H_{\chi_{p}} \cong \mathbb{C}\left[\chi_{p}+\right.$ ker ad $\left.{ }^{*} f\right]$. Since $\chi_{p}+$ ker ad f is an affine subspace of $\chi_{p}+\mathfrak{m}_{\mathfrak{\imath}, p}^{\perp, *}, \operatorname{gr}_{K} Q_{\chi_{p}}$ is free over $\operatorname{gr}_{K} H_{\chi_{p}}$, and we have an isomorphism

$$
\operatorname{gr}_{K}\left(Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N\right) \cong \operatorname{gr}_{K} Q_{\chi_{p}} \otimes_{\operatorname{gr}_{K} H_{\chi_{p}}} \operatorname{gr}_{K} N
$$

By Corollary 3.15, we have $\mathfrak{m}_{\mathfrak{l}, p}$-module (precisely, $\mathfrak{n}_{\mathfrak{l}, p}$-module) isomorphisms

$$
\operatorname{gr}_{K} Q_{\chi_{p}} \cong \mathbb{C}\left[N_{\mathfrak{r}_{p}}\right] \otimes \mathbb{C}\left[S_{\chi_{p}}\right] \cong \mathbb{C}\left[N_{\mathfrak{r}_{p}}\right] \otimes \operatorname{gr}_{K} H_{\chi_{p}}
$$

Therefore,

$$
\begin{aligned}
H^{i}\left(\mathfrak{m}_{\mathfrak{l}, p}, \operatorname{gr}_{K}\left(Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N\right)\right) & \cong H^{i}\left(\mathfrak{m}_{\mathfrak{l}, p}, \operatorname{gr}_{K} Q_{\chi_{p}} \otimes_{\operatorname{gr}_{K} H_{\chi_{p}}} \operatorname{gr}_{K} N\right) \\
& \cong H^{i}\left(\mathfrak{m}_{\mathfrak{l}, p}, \mathbb{C}\left[N_{\mathfrak{l}_{p}}\right] \otimes \operatorname{gr}_{K} N\right) \\
& \cong H^{i}\left(\mathfrak{m}_{\mathfrak{l}, p}, \mathbb{C}\left[N_{\mathfrak{l}_{p}}\right]\right) \otimes \operatorname{gr}_{K} N \\
& =\delta_{i, 0} \operatorname{gr}_{K} N .
\end{aligned}
$$

There is a spectral sequence as that in the proof of Theorem 3.16, which asserts that those ϕ_{i} in (4.1) are all isomorphisms. Therefore, we have (note that $\operatorname{gr}_{K} N=N$)

$$
H^{i}\left(\mathfrak{m}_{\mathfrak{l}, p}, Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N\right) \cong \begin{cases}N & \text { for } i=0 \tag{4.2}\\ 0 & \text { for } i \geq 1\end{cases}
$$

In particular, we have $\mathrm{Wh}\left(Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N\right)=H^{0}\left(\mathfrak{m}_{\imath, p}, Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} N\right) \cong N$. Next we show that $Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} \mathrm{~Wh}(M) \cong M$ for all $M \in \mathfrak{g}_{p}-\mathrm{Wmod}^{\chi_{p}}$. Define a map

$$
\varphi: Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} \mathrm{~Wh}(M) \rightarrow M, \quad\left(y+I_{\chi_{p}}\right) \otimes v \mapsto y \cdot v
$$

which is a \mathfrak{g}_{p}-module homomorphism. Then we have the following exact sequence,

$$
\begin{equation*}
0 \rightarrow \operatorname{ker} \varphi \rightarrow Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} \mathrm{~Wh}(M) \rightarrow M \rightarrow \operatorname{coker} \varphi \rightarrow 0 \tag{4.3}
\end{equation*}
$$

Applying $\mathrm{Wh}(-)$ to (4.3), the identity $\mathrm{Wh}\left(Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} \mathrm{~Wh}(M)\right)=\mathrm{Wh}(M)$ and the left exactness of $\mathrm{Wh}(-)$ imply that $\mathrm{Wh}(\operatorname{ker} \varphi)=0$, hence $\operatorname{ker} \varphi=0$ by Lemma 4.5. The long exact sequence of the cohomology of $\mathfrak{m}_{\mathfrak{l}, p}$ associated to (4.3) gives

$$
\begin{align*}
0 & \rightarrow H^{0}\left(\mathfrak{m}_{\mathfrak{l}, p}, Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} \mathrm{~Wh}(M)\right) \\
& \rightarrow H^{0}\left(\mathfrak{m}_{\mathfrak{l}, p}, M\right) \rightarrow H^{0}\left(\mathfrak{m}_{\mathfrak{l}, p}, \operatorname{coker} \varphi\right) \rightarrow 0 \tag{4.4}
\end{align*}
$$

We stop at $H^{0}\left(\mathfrak{m}_{\mathfrak{l}, p}, \operatorname{coker} \varphi\right)$ because $H^{1}\left(\mathfrak{m}_{\mathfrak{l}, p}, Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} \mathrm{~Wh}(M)\right)=0$ by (4.2). Note that $H^{0}\left(\mathfrak{m}_{\mathfrak{r}, p},-\right)=\mathrm{Wh}(-)$ and we have $\mathrm{Wh}\left(Q_{\chi_{p}} \otimes_{H_{\chi_{p}}} \mathrm{~Wh}(M)\right)$ $=\mathrm{Wh}(M)$, so (4.4) implies that $\mathrm{Wh}(\operatorname{coker} \varphi)=0$ hence coker $\varphi=0$, i.e., the $\operatorname{map} \varphi$ is an isomorphism.

Corollary 4.7. There is a one-to-one correspondence between simple Whittaker modules of \mathfrak{g}_{p} and simple modules of the finite W-algebra.
4.3. Whittaker modules for truncated current Lie algebras in the sl${ }_{2}$ case. Consider the case when $\mathfrak{g}=s \ell_{2}$. Let $\{e, f, h\}$ be the canonical basis of $s \ell_{2}$ such that

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h
$$

Denote by $x_{i}:=x \otimes t^{i}$ for $x \in \mathfrak{g}$ (the notation is different from what we used before). We allow to use e_{i}, h_{i}, f_{i} for all non-negative integers i in \mathfrak{g}_{p}, but will
consider them as zero when $i>p$. It is obvious that $\left\{e_{i}, f_{i}, h_{i} \mid 0 \leq i \leq p\right\}$ form a basis of \mathfrak{g}_{p}. Fix a non-degenerate invariant bilinear form $(\cdot \mid \cdot)_{p}$ on \mathfrak{g}_{p}.

There is a natural good \mathbb{Z}-grading for the nilpotent element f_{0} on \mathfrak{g}_{p} given by $\operatorname{ad}\left(-h_{0}\right)$. Explicitly, the \mathbb{Z}-grading is

$$
\mathfrak{g}_{p}(-2)=\operatorname{span}\left\{e_{i}\right\}_{0 \leq i \leq p}, \mathfrak{g}_{p}(0)=\operatorname{span}\left\{h_{i}\right\}_{0 \leq i \leq p}, \mathfrak{g}_{p}(2)=\operatorname{span}\left\{f_{i}\right\}_{0 \leq i \leq p}
$$

Keep the notation of Section 3.1. We have $\mathfrak{m}_{p}=\mathfrak{g}_{p}(-2)$. Let $\chi_{p}:=\left(f_{0} \mid \cdot\right)_{p}$ and $I_{\chi_{p}}$ be the left ideal of $U\left(\mathfrak{g}_{p}\right)$ generated by $\left\{e_{i}-\chi_{p}\left(e_{i}\right)\right\}_{0 \leq i \leq p}$. A Whittaker module for \mathfrak{g}_{p} is a module on which $e_{i}-\chi_{p}\left(e_{i}\right)$ acts locally nilpotently for all i. Consider the \mathfrak{g}_{p}-module $Q_{\chi_{p}}=U\left(\mathfrak{g}_{p}\right) / I_{\chi_{p}}$. As f_{0} is regular nilpotent, by Kostant's Theorem 4.2, the finite W-algebra is isomorphic to the center of $U\left(\mathfrak{g}_{p}\right)$, i.e.,

$$
H_{\chi_{p}} \cong Z\left(\mathfrak{g}_{p}\right) .
$$

Following the idea of A. Molev [13, 14], for $0 \leq k \leq p$, define

$$
C_{k}=\sum_{0 \leq j \leq k}\left(\frac{h_{p-k+j}}{2}\left(\frac{h_{p-j}}{2}+(p+1) \delta_{p, j}\right)+f_{p-k+j} e_{p-j}\right) \in U\left(\mathfrak{g}_{p}\right) .
$$

Proposition $4.8([9,14])$. The center of $U\left(\mathfrak{g}_{p}\right)$ is $Z\left(\mathfrak{g}_{p}\right)=\mathbb{C}\left[C_{0}, \cdots, C_{p}\right]$.
It is well known that simple modules of $\mathbb{C}\left[C_{0}, \cdots, C_{p}\right]$ are all one-dimensional and one-to-one correspond to its maximal ideals. Let \mathbb{C}_{ε} be such a module, while C_{k} acts on it as ε_{k} for $0 \leq k \leq p$, and $\varepsilon_{1}, \cdots, \varepsilon_{p} \in \mathbb{C}$ are arbitrary constants. By Skryabin equivalence (Theorem 4.6), we have the following result.

Theorem 4.9. Simple Whittaker modules of \mathfrak{g}_{p} are of the form $Q_{\chi_{p}} \otimes_{Z\left(\mathfrak{g}_{p}\right)}$ \mathbb{C}_{ε}.

Acknowledgements.
This paper is based on the author's PhD thesis. He would like to thank his PhD supervisor Michael Lau for the guidance and China Postdoctoral Science Foundation (File No. 2019M653136) for the financial support.

References

[1] A. Babichenko and D. Ridout, Takiff superalgebras and conformal field theory, J. Phys. A 46 (2013), 125204.
[2] J. Brundan, S. M. Goodwin and A. Kleshchev, Highest weight theory for finite Walgebras, Int. Math. Res. Not. 15 (2008), 53 pp.
[3] P. Casati, Drinfeld-Sokolov hierarchies on truncated current Lie algebras, In: Algebraic methods in dynamical systems, Polish Acad. Sci. Inst. Math., Warsaw (2011), 163-171.
[4] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124.
[5] A. De Sole, V. Kac and D. Valeri, Structure of classical (finite and affine) \mathcal{W}-algebras, J. Eur. Math. Soc. 9 (2016), 1873-1908.
[6] A. Elashvili and V. Kac, Classification of good gradings of simple Lie algebras, In: Lie groups and invariant theory, Amer. Math. Soc., Providence, 2005, 85-104.
[7] W. L. Gan and V. Ginzburg, Quantization of slodowy slices, Int. Math. Res. Not. 5 (2002), 243-255.
[8] X. He, W-algebras associated to truncated current Lie algebras, PhD Thesis, Université Laval, 2018.
[9] X. He, M. Lau and N. Qiao, Whittaker modules for truncated current Lie algebras, in preparation.
[10] B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101-184.
[11] T. E. Lynch, Generalized Whittaker vectors and representation theory. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)-MIT, 1979.
[12] T. Macedo and A. Savage, Invariant polynomials on truncated multicurrent algebras, J. Pure Appl. Algebra. 223 (2019), 349-368. https://dspace.mit.edu/handle/1721. 1/15994
[13] A. Molev, Casimir elements for certain polynomial current Lie algebras, in: Group 21, Physical applications and mathematical aspects of geometry, groups, and algebras, Vol. 1, 1997, 172-176.
[14] A. Molev, Casimir elements and Sugawara operators for Takiff algebras, J. Math. Phys. 62 (2021), 12 pp.
[15] M. Mustaţa, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), 397-424.
[16] A. Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 1-55.
[17] M. Raïs and P. Tauvel, Indice et polynômes invariants pour certaines algèbres de Lie. J. Reine Angew. Math., 425 (1992), 123-140.
[18] I. Vaisman, Lectures on the geometry of Poisson manifolds, Progr. Math. Birkhäuser Verlag, Basel, 1994.
[19] W. Wang, Nilpotent orbits and finite W-algebras, in: Geometric representation theory and extended affine Lie algebras, Amer. Math. Soc., Providence, 2011, 71-105.
[20] B. J. Wilson, Highest-weight theory for truncated current Lie algebras, J. Algebra 336 (2011), 1-27.
X. He

Paris Curie Engineer School
Beijing University of Chemical Technology
P.R.China

E-mail: hexiao@amss.ac.cn
Received: 6.9.2021.

[^0]: 2020 Mathematics Subject Classification. 17B56, 17B70, 17 B 81.
 Key words and phrases. Truncated current Lie algebras, Finite W-algebras, Skryabin equivalence, Whittaker modules.

