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HOLDER CONTINUITY FOR THE SOLUTIONS OF THE
p(z)-LAPLACE EQUATION WITH GENERAL RIGHT-HAND
SIDE
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ABSTRACT. We show that bounded solutions of the quasilinear elliptic
equation Apyu =g+ div(F) are locally Holder continuous provided that
the functions g and F are in suitable Lebesgue spaces.

1. INTRODUCTION

We consider the following equation

(1.1) Apyu = g+ div(F) in W) (Q),
where A,yu = div(|VulP®=2Vu) is the p(z)-Laplacian, Q is an open
bounded domain of R", n > 2, z = (z1,...,%,), ¢(z) = p(pm()wll, and

p : 0 — R is a measurable function which satisfies for some positive con-
stants py >p_ >1and s >n

p- <p(r) <p;y ae e,

Vp € (L*(Q))".

As a consequence of (1.2), we have p € W1#(Q). Moreover, due to Sobolev

embedding W1*(Q) Cc C%4 (), (B =1- ﬁ), p is Holder continuous in Q.
We call a solution of equation (1.1) zfny function v € W'P@)(Q) that

fulfills

/|Vu|p(m)_2Vu-VCdx: —/g(x)gdx+/ F(z) - Vide V¢ e W™ ().
Q Q Q

(1.2)
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The Lebesgue and Sobolev spaces with variable exponents are defined (see for
example [2, 15] and [18]) by:

LP@)(Q) = {u :Q = R measurable : [ |u(z)P®dz < oo} ,

Q
Wl,p(z) (Q) _ {u c LP(I)Q) :Vu € (Lp(z)(Q))n} 7
Wo " (Q) = C5 (D)

These spaces are separable, complete and reflexive, when equipped with the
following norms

. u p(x)
||U||Lp<m>(9)—1nf{/\>0:/ E dazgl},
alA
"l Ou
||u||1,p(x)=||u||p(z)+||Vqu(x), ”qup(x):Z £ ().
i=1 tlip(z

Our aim is to establish Hélder continuity for bounded solutions of (1.1). We
observe that if p(x) > n in an open set U CC €, then by Sobolev embed-
ding Whtr@)(U) ¢ whtenU)(U) ¢ C%*(U), where p,,(U) = minp(z) and

zeU
a=1- L(U) Therefore any solution of (1.1) is Holder continuous in U.
Pm
In this paper, we assume that
(1.3) p(x) <n VreQ.

g is a real valued function that satisfies for a positive number t;

1 > —— Ve,
(1.4) p(x)
g€ L' (Q).
F = (F1,...,F,) is a vector function that satisfies for a positive number to
to > ——— Ve,
(1.5) p(r) -1
F € L"(Q).

Among problems that fit in the equation (1.1) setting, is the dam problem
(9 =0, F = xe, with e = (0,...,0,1), x € L™(Q)), and p(x) a constant,
(4,5, 9]). Tt is know that the solution in this case is CL.% () for any o € (0, 1)
(see [7]). In fact, due to the particularity of the problem (i.e., because u > 0
and x = 1 a.e. in {u > 0}), we actually have u € C1(Q) (see [12]). Another
problem is the obstacle problem, [10, 11, 13, 14, 23]). Indeed, because the
solution of the obstacle problem satisfies the Levy-Stampacchia inequality,

ie, fx([u > 0]) < Apyu < f ae in Q (see for example [24]), where
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f € L9™)(Q), one can write Apzyu =g a.e. in, whereg=60fand0<60<1
a.e. in . For a more general framework, we refer to [8, 12, 19].

Equations involving variable exponents are called equations with non-
standard growth. For an overview of such equations, we refer to [16], where
the authors establish global boundedness and Hélder continuity for a class of
elliptic problems.

The main result of this paper is the following theorem.

THEOREM 1.1. Assume that (1.2)-(1.5) hold. Then any bounded solution
of (1.1) is locally Hélder continuous in €.

It is expected that solutions of (1.1) are locally and even globally bounded
if a Dirichlet or Neumann boundary condition is added. This can be estab-
lished for example by adapting the so-called De Giorgi-Nash-Moser theory.
However, it is not the purpose of this paper to discuss this question. The
interested reader is refereed for example to the papers [16] and [25], where
global boundedness for a class of elliptic problems are established for both
homogeneous Dirichlet and nonhomogeneous Neumann boundary conditions.

In the context of constant exponent, the regularity result in Theorem 1.1
was established in [22] for a more general quasi-linear elliptic operator that
includes the p—Laplacian under the assumptions: g € L7+ (Q) and F € LY(Q)

with € > 0 and ¢ > Ll’ which coincide with assumptions (1.5). Moreover,

when the right-hand side of (1.1) is a nonnegative Radon measure with a
suitable growth condition, local Hélder continuity was established in [17] for
the p—Laplacian and in a more general framework in [22]. This result was later
extended in [7] and [20] respectively for the A—Laplacian and p(z)—Laplacian.

Throughout this paper, we will denote by B,(x) (resp. B,.(z)) the open
(resp. closed) ball of center z and radius r in R", with w,, = |B;| standing
for the measure of the unit open ball B;.

2. PROOF OF THEOREM 1.1

In this section, we denote by u a bounded solution of (1.1) with M =
||t|loo, and will show that it is locally Holder continuous in 2. The proof is
based on Lemma 2.1.

sq(1+96)
s—q

LEMMA 2.1. Let § = =2 g =1 1y = . and
2sn 2

%m
R; = min <diam(Q)/16,c(n,s,p,p+) </ |VulP@ da + 1> ) .
Q

Assume that (1.2)-(1.5) hold. Then there exists a positive constant
C= C(TL7 S5, P—5 P+, Mu dla'm(Q)7 ||VU’HL1‘7(2)(Q)7 val

o) 19l Lo ), 1 F 1 ez ()
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such that we have for R € (0, Ry) with Bag(z) C

(2.1) / |VulPrdz < Cr"—Pmtapm vr e (0, R),
By (z0)
n n
where p,, = min p(z andazl—max( , )
z€BRr(x0) ( ) t1pm t2(pm - 1)

The proof of Lemma 2.1 is based on Lemma 2.2.

LEMMA 2.2. Assume that (1.2)-(1.5) hold and let Ry be the positive num-
ber in Lemma 2.1. Then there exists a positive constant

C1 = Ci(n, 5,p—, py, dlam(Q), [[Vul[ Lo 0y, VPl Lo ()

such that we have for R € (0, Ry), Bar(zo) C Q, v € WHP@)(Bg(20)) with
Apyv =0 in Br(zo) and v =u on dBr(wo)

(2.2) /BT(%) IVolP@dz < ¢ <((%)" n Ré)/B

for all r € (0, R).

|Vu|p(x)d:17 + R"Jr5>

r(zo)

PRrOOF. First, observe that we have v € C’llo’g (Br(xo0)) (see for example
. Vopp@ |vepe
[3]). Next, since dx minimizes the energy dx
Br(zo) p(x) Br(zo) p(x)
over all functions ¢ € W1P(®)(Bg(z¢)) such that £ = u on dBr(z), we get

Vo |P@)
/ |Vo|P®) de = / p(x) [Vl dx
B (o) Br(xo) p(@)

p(x) p(x)
(2.3) < p+/ Vol 4 < p+/ Nul™ o
Br(zo) p(x) Br(zo0) p(x)
< P+ |Vu|p(x)d:17.
p— BR(:E())

Using (2.3), we get for r € [£, R)

R\" n
/ Ilepmdx:(—) (5) / V[P day
B,.(w0) r R Br(z0)
ra”n
<gn p(x)
<38 (R) /B |Vo|P®) da

T(:EU)

< 8" (%)n/B |Vo[P@) dz

r(zo)

< gnlt (L)n/ |VulP® .
p— \R/  JBu(o)
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Therefore it is enough to prove (2.2) for r € (O,%). Since A,pyv =
0 in Bgr(xo), v = wuw on OBRr(x0), we obtain by the maximum princi-
ple [[v]L(Br(zs)) < M. Moreover, we know (see [6], Corollary 2.1) for

v = 3/2 and ¢y = 3min(1,m — 1), that there exist two positive constants
1 = Cl(nvsvp*ap+) and

Ro = Ro (n s,pf,m,diam(ﬁ),/ |Vv|1’<””)da:>
B

r(zo)

such that we have for each R € (0, min(Ry, diam(£2)/16)) and r € (0, R/8),

][ |Vo|P@de < ¢ ][ |Vo|P®) dz
B,-(z0) Br(xo)

€o(1+9) 1+6
+ KR [1+ / |Vo|P®) dz 1 +][ |Vo|P®) dz ,
Br(zo) Br(zo)

. 1
Lo(Q) (1 + (dlam(Q)/2)6||vaLs(Q)) and]l fdx = E/ fdx
E E
denotes the mean value of the function f on the measurable set E.
Using (2.3), we obtain for

P\ () (14) » co(145)
co =01 (—Jr) max | 1,2°K <1 + —+/ |Vu|p(z)dx)
p— p-Ja

that
][ |Vv|p(w)dx <ec p_.;_][ |Vu|p(:”)d:17
BT(I()) p* BR(LE())

€o(1496) 1446
+ KR 142 / |VulP® da 1+ 2= |VulP® da
P— JBgr(z0) P—JBg(z0)

<c p_+][ |Vu[P®) dz
p— BR(I())

P eo(1+9) ) 1+9
+KRP (1 + —*/ |Vu|p(””)dx) 1+ = |V ul|P®) da
pP-Jo DP—JBr(x0)

1+0
<c ][ |VuP@dx + R® + RP ][ |VulP® da ;
BR(I[)) BR(IO)

where K = ||Vp|
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which leads to

/ |Vo|P@de < ¢y (i)n/ |VulP @ dz + w,r" R?
Br.(z0) R Br(zo)
or

1446
+ w;‘;rnRﬁfn(lJr‘s) / |Vu|p(z)dx
BR(LE())
(2.4)

/ Vo[ da < e (i) / VulP) dz + w, R*P
B, (x0) R Br(x0)

1496
4w, YRP7MO / | V[P da
BR(:E())

ol G [ e s
R Br(zo)

§
+w °RE (/ |Vu|p(””)d:v> / VulP@dz | .
Q Br(zo0)

We point out (see [1, 6]) that

—2meg

€0 2/B ) B
Ry = / VolP'dx + 1
o~ () < ey )

Using (2.3) again, we get for some positive constant ¢g = co(n,s,p—,p+)
independent of R

—2meg

g
Ry > ¢ / |Vo|P@ da + 1
Br(zo)
—2meg

o p_+/ |VulP@ de 41
p— BR(LE())
—2meg —m
B B
> Co (&> (/ |VulP@ de + 1)
b- Q

— e(ny5,pp) ( [ 1vupac + 1)
Q

Y

Thus, we can take

5
R; = min (diam(Q)/16,c(n, S, D=, D+) (/ IVu|P@ dz + 1) ),
Q



HOLDER CONTINUITY FOR THE p(z)-LAPLACE EQUATION 41

and (2.2) follows from (2.4) if we choose

5
Cy = comax (1,wn,wn5 </ |Vu|p(m)da:> )
Q

= C1(n, 8,p—, p+, diam(Q), [|Vpl| s (), VUl Lo () )-
O

ProOF OF LEMMA 2.1. Let R; be as in Lemma 2.1, v as in Lemma 2.2,
and R € (0, Ry). First, we have for r € (0, R)

/ |Vu[P@) = / |Vul[P@ 2Ty - V(u — v)da
BT(LE()) BT(wo)
+ / |Vul|P®) =2V - Voda
BT(IO)
(2.5) :/ (|Vu|p(m)72Vu - |Vv|p(””)*2Vv) -V(u—v)de
B, (xo)
+ / |Vo|P@ =2y - V(u — v)da
By (o)
+ / |VulP@=2Ty - Vode = I + Ir + Is.
By (w0)

Next, using the monotonicity of & — [£[P(*)=2¢ the fact that Apzyv =0 in
Bpr(z¢) and u = v on dBg(zp), we obtain

L < / (IVUIP(””)’QVu _ |Vv|p(m)*2Vv) -V (u—v)dx
Br(z0)
= / |VulP®) =2V - V(u — v)da
Br(z0)

- / IVo[P@ =20 - V(u — v)da
BR(m())

= —/ g(u—v)dz + / F-V(u—v)dx.
Br(zo)

Br(zo)

Applying Young’s inequality, we derive for some positive constant ¢ depending
only on p_ and p4

Iy, = / |Vo|P®) =2V - Vude — / |Vo[P@)
B..(z0) Br(z0)

2.7) < / V0[P [uldz
BT(IU)

1
< —/ |VulP®) da +c/ |Vo|P®) dz.
4 JB,(20) B, (o)
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Similarly, we obtain

I3 < / |VuP@=1 . |Vo|de
BT(LE())

1
< —/ |VulP® da + c/ |Vo|P®) dz.
4 /B (w0) B, (w0)

Using (2.5)-(2.8), we get

/ |VulP@ de < 40/ |Vo|P®) da — 2/ g(u —v)dx
B (z0) Br.(z0) Br(zo0)

+2/ F-V(u—v)dz.
BR(I[))

(2.8)

(2.9)

Combining (2.2), and (2.9), we get for a positive constant

C1 = Ci(n, s, p—,py, diam(Q), [ Vpll s o), [Vul Lo (o))

and

/ V[P da

B, (zo)

(2.10) <0 (((%)n+R§)/]3 o
R\(Zo

—2/ g(u—v)daj—|—2/ F-V(u—v)dz.
BR(I[)) BR(mO)

Applying Holder’s inequality and using (1.4) and the fact that |ul, |[v] < M in
Bpg(zg), we obtain for

|Vu|p(z)d3: + R”Jrﬁ)

-
041:1— and 02:4Mwn ! 'Hg”Ltl(Q)
t1pm
that
—2/ g(u —v)dx| < 4AM lg|dx
BR(I[)) BR(IO)

_L

(2.11) < AM|\gllLor (Ba(ay)) - [Br(zo)| ™7

1 n

-4, n— -
:4M”gHLt1(BR(m0)) - W, T R ty
— O2Rn*10m+0¢1;0m.

Due to (1.4) and the continuity of p(z), we have t; > " Hence ag € (0,1).

Pm
We observe from (1.3) and (1.5) that we have

@) | p@) o pm

t .
=y plx) =17 pym—1
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Applying Young’s and Holder’s inequalities and taking into account (1.5) and
using the convexity of [£|P™, we obtain for ¢ € (0,1) and a constant Cj
depending only on p_ and p4

2/ F-V(u—v)dx
BR(I[))

SCg/ |F|p:;11dx—|—e/ [V (u—v)[Pmdx
Bn(zo) Br(xo)

to(pm—1)—pm

<03HF||Z’Z;(§11 |Br(xo)|™ 2m—D

—|—e/ |V (u—v)[Pmdx
BR(I[))

(2.12)
to(pm—1)—pm e
= Caw, =2 7Y |\F||gg; R Blm D)
—i—e/ IV(u—v)Prdx
BR(LE())
S CéRn_pm"Fanm + 6217771_1 / |v,u,|prnd'r
BR(LE())
—|—e2p’"71/ [VolPrmde,
BR(I[))
where
n C/ o t2(tP7?p*1)*1§-7m —pm
— - d = Cywn 20V |||
Qa2 tz(pm — 1) an 3 3-Wn H ”Ltz(g

Due to (1.5), and the continuity of p(z), we have to > Ll’ and there-

fore ap € (0,1).
Observe that we have for w € W) (Bg(z))

/ |[Vw|Pmde = / [Vw|P™da
Br(zo) Br(zo)N[|Vw|<1]

(2.13) +/ IVw|Pm dz
BR(:E())QHVU)|>1]

< / |Vw[P®@ dz + w, R".
BR(LE())
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Using (2.3) and (2.13), we get from (2.12)

2/ F-V(u—v)dx
BR(w(J)

+earm (14 P / [VulP@dz + 2P w, R"
Y2 Br(zo)

(2.14) = (C} + 62menR(1*0¢2)Pm)Rn*pmeazpm

< Cé Rn_pm +a2pm

b (14 p-*)/ V[P do
p* BR(w(J)

<0y Rn—pm+a2pm+e/ |Vu|p($)d33 ,
BR(IU)

where C; = max (og + 277w, (diam(Q) /2) (1= 2)Pm 9Pm—1(] 4 p-*)).
Combing (2.10), (2.11) and (2.14), we get

/&(zo) IVulP@dz < €, (((%)" + R¥) /BR(M

(2.15) + C R"P £ Oy R PmtoPm 0y RN Pmta2pm

+ 046/ |VulP@ de.
BR(LE())

|Vu|p(””)d:1:>

Setting ¢(r) = / |VulP@ dz and C) = max(C}, Cy, Cy), we obtain from

BT(IU)
(2.15) that
(2.16)

o) < Gy ()" + RE +€) 6(R) + R 4 Rroprterrn g propntospn )
Now, observe that we have for @ = min(ay, az) and a = diam(2)/2
R"P 4 Rropmtonpm 4 propmtospm
= (Rﬂ+(1—a)pm + Rlar—)pm R(az—a)pm)Rn—pm+apm
(2.17) < (am(lfa)pm 1 gler—a)pm | a(ara)pm) RP—Pm+apm
= ) R Pmtorm,

Using (2.16) and (2.17), we get for C5 = C} max(1,CY)

2.18) () < Cs (((}%)" +RE +¢) 6(R) + R*Pnr) v e (0, R).

If we assume that R < €, then given that ¢ is a nonnegative and
nondecreasing function on (0, R), we infer from (2.18) and Lemma 5.12
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p. 248 of [21] applied with § = 2e, that we have for two positive constants
Cs = Cs(Cs,n, a, pp) and 09 = do(Cs, 0,y @y Piy)
r )n*;Dera;Dm

(2.19)  (r) < Cg (E

provided that § < §p and R < (5/2)% = Ro.
Using (2.19) and (2.13), for R = r and w = u, we get for

Co(¢(R) + R —Pmtorm)

Rn—pm +apm

(8(R) + R"Pmtopm)  r e (0, R)

Cr =

that

/ |vu|pmd$ < / |vu|1’(w)d$ + w,r™ < C7Tn—pm+o¢pm + W™
Br(o) B (x0)

= (C7 + wnr(lfa)pm)rnfperapm < Qpn—pmtapm

)

where C' = C7 + wy(diam(Q)/2)(1=*)Pm  This completes the proof of the
lemma. O

PrOOF OF THEOREM 1.1. Obviously we can choose ¢ small enough so
that Ry < Ry. Then, by using (2.1) and Holder’s inequality, we obtain for all
R € (0,Rs) and all 7 € (0, R)

1

Pm
/|vu|dx§|BT|1—ﬁ /|Vu|pmdx
B, B,

1— -1 _n 1
<wp Pt prye .(Crn—pm-i-apm)pm

1 1—-L n—_n n—pm-+aopm
=Crmw, ™ " " om .r Pm
= n

/. n—1+
<yt

1
where C" = C’ﬁw}l Pm - We conclude ([21, Theorem 1.53 (Morrey) p. 30])
that u € C2*(2), which completes the proof of the theorem. O

loc

REMARK 2.3. If g, F € L*(Q), then (1.4)-(1.5) are satisfied for any
t1 > 5y and ty > ;oi—. Therefore, we obtain u € C’&?(BR(Q;O)) for any

n n
Br(zg) CC Q with a—l—max< , >, pm = min p(z)
tipm t2(Pm — 1) z€BR(z0)
and R small enough. Given that ¢; and t2 can be chosen arbitrarily large, we

obtain u € C2*(Q) for any 0 < o < 1.

loc
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