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HÖLDER CONTINUITY FOR THE SOLUTIONS OF THE

p(x)-LAPLACE EQUATION WITH GENERAL RIGHT-HAND

SIDE
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Abstract. We show that bounded solutions of the quasilinear elliptic
equation ∆p(x)u = g + div(F) are locally Hölder continuous provided that
the functions g and F are in suitable Lebesgue spaces.

1. Introduction

We consider the following equation

(1.1) ∆p(x)u = g + div(F) in W−1,q(x)(Ω),

where ∆p(x)u = div(|∇u|p(x)−2∇u) is the p(x)-Laplacian, Ω is an open

bounded domain of R
n, n ≥ 2, x = (x1, . . . , xn), q(x) = p(x)

p(x)−1 , and

p : Ω → R is a measurable function which satisfies for some positive con-
stants p+ > p− > 1 and s > n

(1.2)
p− ≤ p(x) ≤ p+ a.e. x ∈ Ω,

∇p ∈ (Ls(Ω))
n
.

As a consequence of (1.2), we have p ∈ W 1,s(Ω). Moreover, due to Sobolev

embedding W 1,s(Ω) ⊂ C0,β(Ω),
(

β = 1−
n

s

)

, p is Hölder continuous in Ω.

We call a solution of equation (1.1) any function u ∈ W 1,p(x)(Ω) that
fulfills
∫

Ω

|∇u|p(x)−2∇u · ∇ζdx = −

∫

Ω

g(x)ζdx+

∫

Ω

F(x) · ∇ζdx ∀ζ ∈ W
1,p(x)
0 (Ω).
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36 A. LYAGHFOURI

The Lebesgue and Sobolev spaces with variable exponents are defined (see for
example [2, 15] and [18]) by:

Lp(x)(Ω) =

{

u : Ω → R measurable :

∫

Ω

|u(x)|p(x)dx < ∞

}

,

W 1,p(x)(Ω) =
{

u ∈ Lp(x)Ω) : ∇u ∈
(

Lp(x)(Ω)
)n}

,

W
1,p(x)
0 (Ω) = C∞

0 (Ω)W 1,p(x)(Ω).

These spaces are separable, complete and reflexive, when equipped with the
following norms

‖u‖Lp(x)(Ω) = inf

{

λ > 0 :

∫

Ω

∣

∣

∣

u

λ

∣

∣

∣

p(x)

dx ≤ 1

}

,

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x), ‖∇u‖p(x) =
n
∑

i=1

∥

∥

∥

∥

∂u

∂xi

∥

∥

∥

∥

p(x)

.

Our aim is to establish Hölder continuity for bounded solutions of (1.1). We
observe that if p(x) > n in an open set U ⊂⊂ Ω, then by Sobolev embed-
ding W 1,p(x)(U) ⊂ W 1,pm(U)(U) ⊂ C0,α(U), where pm(U) = min

x∈U
p(x) and

α = 1−
n

pm(U)
. Therefore any solution of (1.1) is Hölder continuous in U .

In this paper, we assume that

(1.3) p(x) ≤ n ∀x ∈ Ω.

g is a real valued function that satisfies for a positive number t1

(1.4)
t1 >

n

p(x)
∀x ∈ Ω,

g ∈ Lt1(Ω).

F = (F1, . . . , Fn) is a vector function that satisfies for a positive number t2

(1.5)
t2 >

n

p(x)− 1
∀x ∈ Ω,

F ∈ Lt2(Ω).

Among problems that fit in the equation (1.1) setting, is the dam problem
(g = 0, F = χe, with e = (0, . . . , 0, 1), χ ∈ L∞(Ω)), and p(x) a constant,

[4, 5, 9]). It is know that the solution in this case is C0,α
loc (Ω) for any α ∈ (0, 1)

(see [7]). In fact, due to the particularity of the problem (i.e., because u ≥ 0

and χ = 1 a.e. in {u > 0}), we actually have u ∈ C0,1
loc (Ω) (see [12]). Another

problem is the obstacle problem, [10, 11, 13, 14, 23]). Indeed, because the
solution of the obstacle problem satisfies the Levy-Stampacchia inequality,
i.e., fχ([u > 0]) ≤ ∆p(x)u ≤ f a.e. in Ω (see for example [24]), where
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f ∈ Lq(x)(Ω), one can write ∆p(x)u = g a.e. in Ω, where g = θf and 0 ≤ θ ≤ 1
a.e. in Ω. For a more general framework, we refer to [8, 12, 19].

Equations involving variable exponents are called equations with non-
standard growth. For an overview of such equations, we refer to [16], where
the authors establish global boundedness and Hölder continuity for a class of
elliptic problems.

The main result of this paper is the following theorem.

Theorem 1.1. Assume that (1.2)-(1.5) hold. Then any bounded solution
of (1.1) is locally Hölder continuous in Ω.

It is expected that solutions of (1.1) are locally and even globally bounded
if a Dirichlet or Neumann boundary condition is added. This can be estab-
lished for example by adapting the so-called De Giorgi-Nash-Moser theory.
However, it is not the purpose of this paper to discuss this question. The
interested reader is refereed for example to the papers [16] and [25], where
global boundedness for a class of elliptic problems are established for both
homogeneous Dirichlet and nonhomogeneous Neumann boundary conditions.

In the context of constant exponent, the regularity result in Theorem 1.1
was established in [22] for a more general quasi-linear elliptic operator that

includes the p−Laplacian under the assumptions: g ∈ L
n

p+ǫ (Ω) and F ∈ Lt(Ω)

with ǫ > 0 and t >
n

p− 1
, which coincide with assumptions (1.5). Moreover,

when the right-hand side of (1.1) is a nonnegative Radon measure with a
suitable growth condition, local Hölder continuity was established in [17] for
the p−Laplacian and in a more general framework in [22]. This result was later
extended in [7] and [20] respectively for the A−Laplacian and p(x)−Laplacian.

Throughout this paper, we will denote by Br(x) (resp. Br(x)) the open
(resp. closed) ball of center x and radius r in R

n, with ωn = |B1| standing
for the measure of the unit open ball B1.

2. Proof of Theorem 1.1

In this section, we denote by u a bounded solution of (1.1) with M =
‖u‖∞, and will show that it is locally Hölder continuous in Ω. The proof is
based on Lemma 2.1.

Lemma 2.1. Let δ = s−n
2sn , q = n+s

2 , m = sq(1+δ)
s−q , and

R1 = min

(

diam(Ω)/16, c(n, s, p−, p+)

(∫

Ω

|∇u|p(x)dx+ 1

)
−m
β

)

.

Assume that (1.2)-(1.5) hold. Then there exists a positive constant

C = C(n, s, p−, p+,M, diam(Ω), ‖∇u‖Lp(x)(Ω), ‖∇p‖Ls(Ω), ‖g‖Lt1(Ω), ‖F‖Lt2(Ω)),
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such that we have for R ∈ (0, R1) with B2R(x0) ⊂ Ω

(2.1)

∫

Br(x0)

|∇u|pmdx ≤ Crn−pm+αpm ∀r ∈ (0, R),

where pm = min
x∈BR(x0)

p(x) and α = 1−max

(

n

t1pm
,

n

t2(pm − 1)

)

.

The proof of Lemma 2.1 is based on Lemma 2.2.

Lemma 2.2. Assume that (1.2)-(1.5) hold and let R1 be the positive num-
ber in Lemma 2.1. Then there exists a positive constant

C1 = C1(n, s, p−, p+, diam(Ω), ‖∇u‖Lp(x)(Ω), ‖∇p‖Ls(Ω)),

such that we have for R ∈ (0, R1), B2R(x0) ⊂ Ω, v ∈ W 1,p(x)(BR(x0)) with
∆p(x)v = 0 in BR(x0) and v = u on ∂BR(x0)

(2.2)

∫

Br(x0)

|∇v|p(x)dx ≤ C1

(

(( r

R

)n

+R
β

2

)

∫

BR(x0)

|∇u|p(x)dx+Rn+β

)

for all r ∈ (0, R).

Proof. First, observe that we have v ∈ C1,σ
loc (BR(x0)) (see for example

[3]). Next, since

∫

BR(x0)

|∇v|p(x)

p(x)
dx minimizes the energy

∫

BR(x0)

|∇ξ|p(x)

p(x)
dx

over all functions ξ ∈ W 1,p(x)(BR(x0)) such that ξ = u on ∂BR(x0), we get

(2.3)

∫

BR(x0)

|∇v|p(x)dx =

∫

BR(x0)

p(x)
|∇v|p(x)

p(x)
dx

≤ p+

∫

BR(x0)

|∇v|p(x)

p(x)
dx ≤ p+

∫

BR(x0)

|∇u|p(x)

p(x)
dx

≤
p+
p−

∫

BR(x0)

|∇u|p(x)dx.

Using (2.3), we get for r ∈
[

R
8 , R

)

∫

Br(x0)

|∇v|p(x)dx =

(

R

r

)n
( r

R

)n
∫

Br(x0)

|∇v|p(x)dx

≤ 8n
( r

R

)n
∫

Br(x0)

|∇v|p(x)dx

≤ 8n
( r

R

)n
∫

BR(x0)

|∇v|p(x)dx

≤ 8n
p+
p−

( r

R

)n
∫

BR(x0)

|∇u|p(x)dx.
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Therefore it is enough to prove (2.2) for r ∈
(

0, R8
)

. Since ∆p(x)v =
0 in BR(x0), v = u on ∂BR(x0), we obtain by the maximum princi-
ple ‖v‖L∞(BR(x0)) ≤ M . Moreover, we know (see [6], Corollary 2.1) for

γ = β/2 and ǫ0 = 1
2 min(1,m − 1), that there exist two positive constants

c1 = c1(n, s, p−, p+) and

R0 = R0

(

n, s, p−, p+, diam(Ω),

∫

BR(x0)

|∇v|p(x)dx

)

such that we have for each R ∈ (0,min(R0, diam(Ω)/16)) and r ∈ (0, R/8),

−

∫

Br(x0)

|∇v|p(x)dx ≤ c1

(

−

∫

BR(x0)

|∇v|p(x)dx

+KRβ

(

1 +

∫

BR(x0)

|∇v|p(x)dx

)ǫ0(1+δ)(

1 +−

∫

BR(x0)

|∇v|p(x)dx

)1+δ )

,

whereK = ‖∇p‖Ls(Ω)

(

1 + (diam(Ω)/2)β‖∇p‖Ls(Ω)

)

and−

∫

E

fdx =
1

|E|

∫

E

fdx

denotes the mean value of the function f on the measurable set E.
Using (2.3), we obtain for

c2 = c1

(

p+
p−

)(1+ǫ0)(1+δ)

max

(

1, 2δK

(

1 +
p+
p−

∫

Ω

|∇u|p(x)dx

)ǫ0(1+δ)
)

that

−

∫

Br(x0)

|∇v|p(x)dx ≤ c1

(

p+
p−

−

∫

BR(x0)

|∇u|p(x)dx

+KRβ

(

1 +
p+
p−

∫

BR(x0)

|∇u|p(x)dx

)ǫ0(1+δ)(

1 +
p+
p−

−

∫

BR(x0)

|∇u|p(x)dx

)1+δ )

≤ c1

(

p+
p−

−

∫

BR(x0)

|∇u|p(x)dx

+KRβ

(

1 +
p+
p−

∫

Ω

|∇u|p(x)dx

)ǫ0(1+δ)
(

1 +
p+
p−

−

∫

BR(x0)

|∇u|p(x)dx

)1+δ )

≤ c2



−

∫

BR(x0)

|∇u|p(x)dx+Rβ +Rβ

(

−

∫

BR(x0)

|∇u|p(x)dx

)1+δ


 ,
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which leads to
∫

Br(x0)

|∇v|p(x)dx ≤ c2

(

( r

R

)n
∫

BR(x0)

|∇u|p(x)dx+ ωnr
nRβ

+ ω−δ
n rnRβ−n(1+δ)

(

∫

BR(x0)

|∇u|p(x)dx

)1+δ )

or
(2.4)
∫

Br(x0)

|∇v|p(x)dx ≤ c2

(

( r

R

)n
∫

BR(x0)

|∇u|p(x)dx+ ωnR
n+β

+ ω−δ
n Rβ−nδ

(

∫

BR(x0)

|∇u|p(x)dx

)1+δ )

≤ c2

(

( r

R

)n
∫

BR(x0)

|∇u|p(x)dx+ ωnR
n+β

+ ω−δ
n R

β

2

(∫

Ω

|∇u|p(x)dx

)δ
(

∫

BR(x0)

|∇u|p(x)dx

))

.

We point out (see [1, 6]) that

R0 ≈

(

ǫ0
c(n, p−, p+)mc(β)

)2/β
(

∫

BR(x0)

|∇v|p(x)dx + 1

)

−2mǫ0
β

.

Using (2.3) again, we get for some positive constant c0 = c0(n, s, p−, p+)
independent of R

R0 ≥ c0

(

∫

BR(x0)

|∇v|p(x)dx+ 1

)

−2mǫ0
β

≥ c0

(

p+
p−

∫

BR(x0)

|∇u|p(x)dx+ 1

)

−2mǫ0
β

≥ c0

(

p+
p−

)

−2mǫ0
β

(∫

Ω

|∇u|p(x)dx+ 1

)
−m
β

= c(n, s, p−, p+)

(∫

Ω

|∇u|p(x)dx + 1

)
−m
β

.

Thus, we can take

R1 = min

(

diam(Ω)/16, c(n, s, p−, p+)

(∫

Ω

|∇u|p(x)dx+ 1

)
−m
β

)

,
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and (2.2) follows from (2.4) if we choose

C1 = c2 max

(

1, ωn, ω
−δ
n

(∫

Ω

|∇u|p(x)dx

)δ
)

= C1(n, s, p−, p+, diam(Ω), ‖∇p‖Ls(Ω), ‖∇u‖Lp(x)(Ω)).

Proof of Lemma 2.1. Let R1 be as in Lemma 2.1, v as in Lemma 2.2,
and R ∈ (0, R1). First, we have for r ∈ (0, R)

(2.5)

∫

Br(x0)

|∇u|p(x) =

∫

Br(x0)

|∇u|p(x)−2∇u · ∇(u− v)dx

+

∫

Br(x0)

|∇u|p(x)−2∇u · ∇vdx

=

∫

Br(x0)

(

|∇u|p(x)−2∇u− |∇v|p(x)−2∇v
)

· ∇(u− v)dx

+

∫

Br(x0)

|∇v|p(x)−2∇v · ∇(u− v)dx

+

∫

Br(x0)

|∇u|p(x)−2∇u · ∇vdx = I1 + I2 + I3.

Next, using the monotonicity of ξ → |ξ|p(x)−2ξ, the fact that ∆p(x)v = 0 in
BR(x0) and u = v on ∂BR(x0), we obtain

(2.6)

I1 ≤

∫

BR(x0)

(

|∇u|p(x)−2∇u − |∇v|p(x)−2∇v
)

· ∇(u− v)dx

=

∫

BR(x0)

|∇u|p(x)−2∇u · ∇(u − v)dx

−

∫

BR(x0)

|∇v|p(x)−2∇v · ∇(u− v)dx

= −

∫

BR(x0)

g(u− v)dx +

∫

BR(x0)

F · ∇(u − v)dx.

Applying Young’s inequality, we derive for some positive constant c depending
only on p− and p+

(2.7)

I2 =

∫

Br(x0)

|∇v|p(x)−2∇v · ∇udx−

∫

Br(x0)

|∇v|p(x)

≤

∫

Br(x0)

|∇v|p(x)−1 · |∇u|dx

≤
1

4

∫

Br(x0)

|∇u|p(x)dx + c

∫

Br(x0)

|∇v|p(x)dx.
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Similarly, we obtain

(2.8)

I3 ≤

∫

Br(x0)

|∇u|p(x)−1 · |∇v|dx

≤
1

4

∫

Br(x0)

|∇u|p(x)dx+ c

∫

Br(x0)

|∇v|p(x)dx.

Using (2.5)-(2.8), we get

(2.9)

∫

Br(x0)

|∇u|p(x)dx ≤ 4c

∫

Br(x0)

|∇v|p(x)dx− 2

∫

BR(x0)

g(u− v)dx

+ 2

∫

BR(x0)

F · ∇(u − v)dx.

Combining (2.2), and (2.9), we get for a positive constant

C1 = C1(n, s, p−, p+, diam(Ω), ‖∇p‖Ls(Ω), ‖∇u‖Lp(x)(Ω))

and

(2.10)

∫

Br(x0)

|∇u|p(x)dx

≤ C1

(

(( r

R

)n

+R
β

2

)

∫

BR(x0)

|∇u|p(x)dx+Rn+β

)

− 2

∫

BR(x0)

g(u− v)dx+ 2

∫

BR(x0)

F · ∇(u− v)dx.

Applying Hölder’s inequality and using (1.4) and the fact that |u|, |v| ≤ M in
BR(x0), we obtain for

α1 = 1−
n

t1pm
and C2 = 4Mω

1− 1
t1

n · ‖g‖Lt1(Ω)

that

(2.11)

∣

∣

∣

∣

∣

−2

∫

BR(x0)

g(u− v)dx

∣

∣

∣

∣

∣

≤ 4M

∫

BR(x0)

|g|dx

≤ 4M‖g‖Lt1(BR(x0)) · |BR(x0)|
1− 1

t1

= 4M‖g‖Lt1(BR(x0)) · ω
1− 1

t1
n · R

n− n
t1

= C2R
n−pm+α1pm .

Due to (1.4) and the continuity of p(x), we have t1 >
n

pm
. Hence α1 ∈ (0, 1).

We observe from (1.3) and (1.5) that we have

t2 ≥
t2p(x)

n
>

p(x)

p(x) − 1
≥

pm
pm − 1

.
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Applying Young’s and Hölder’s inequalities and taking into account (1.5) and
using the convexity of |ξ|pm , we obtain for ǫ ∈ (0, 1) and a constant C3

depending only on p− and p+

(2.12)

∣

∣

∣

∣

∣

2

∫

BR(x0)

F · ∇(u − v)dx

∣

∣

∣

∣

∣

≤ C3

∫

BR(x0)

|F |
pm

pm−1 dx+ ǫ

∫

BR(x0)

|∇(u − v)|pmdx

≤ C3‖F‖
pm

pm−1

Lt2(Ω) · |BR(x0)|
t2(pm−1)−pm

t2(pm−1)

+ ǫ

∫

BR(x0)

|∇(u − v)|pmdx

= C3ω
t2(pm−1)−pm

t2(pm−1)
n ‖F‖

pm
pm−1

Lt2(Ω)R
n− npm

t2(pm−1)

+ ǫ

∫

BR(x0)

|∇(u − v)|pmdx

≤ C′
3R

n−pm+α2pm + ǫ2pm−1

∫

BR(x0)

|∇u|pmdx

+ ǫ2pm−1

∫

BR(x0)

|∇v|pmdx,

where

α2 = 1−
n

t2(pm − 1)
and C′

3 = C3.ω
t2(pm−1)−pm

t2(pm−1)
n · ‖F‖

pm
pm−1

Lt2(Ω).

Due to (1.5), and the continuity of p(x), we have t2 >
n

pm − 1
, and there-

fore α2 ∈ (0, 1).
Observe that we have for w ∈ W 1,p(x)(BR(x0))

(2.13)

∫

BR(x0)

|∇w|pmdx =

∫

BR(x0)∩[|∇w|≤1]

|∇w|pmdx

+

∫

BR(x0)∩[|∇w|>1]

|∇w|pmdx

≤

∫

BR(x0)

|∇w|p(x)dx+ ωnR
n.
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Using (2.3) and (2.13), we get from (2.12)

(2.14)

∣

∣

∣

∣

∣

2

∫

BR(x0)

F · ∇(u − v)dx

∣

∣

∣

∣

∣

≤ C′
3R

n−pm+α2pm

+ ǫ2pm−1(1 +
p+
p−

)

∫

BR(x0)

|∇u|p(x)dx+ ǫ2pmωnR
n

= (C′
3 + ǫ2pmωnR

(1−α2)pm)Rn−pm+α2pm

+ ǫ2pm−1(1 +
p+
p−

)

∫

BR(x0)

|∇u|p(x)dx

≤ C4

(

Rn−pm+α2pm + ǫ

∫

BR(x0)

|∇u|p(x)dx

)

,

where C4 = max

(

C′
3 + 2pmωn(diam(Ω)/2)(1−α2)pm , 2pm−1(1 +

p+
p−

)

)

.

Combing (2.10), (2.11) and (2.14), we get

(2.15)

∫

Br(x0)

|∇u|p(x)dx ≤ C1

(

(( r

R

)n

+R
β

2

)

∫

BR(x0)

|∇u|p(x)dx

)

+ C1R
n+β + C2R

n−pm+α1pm + C4R
n−pm+α2pm

+ C4ǫ

∫

BR(x0)

|∇u|p(x)dx.

Setting φ(r) =

∫

Br(x0)

|∇u|p(x)dx and C′
4 = max(C1, C2, C4), we obtain from

(2.15) that
(2.16)

φ(r) ≤ C′
4

((( r

R

)n

+ R
β
2 + ǫ

)

φ(R) +Rn+β +Rn−pm+α1pm +Rn−pm+α2pm

)

.

Now, observe that we have for α = min(α1, α2) and a = diam(Ω)/2

(2.17)

Rn+β +Rn−pm+α1pm +Rn−pm+α2pm

= (Rβ+(1−α)pm +R(α1−α)pm +R(α2−α)pm)Rn−pm+αpm

≤
(

aβ+(1−α)pm + a(α1−α)pm + a(α2−α)pm

)

Rn−pm+αpm

= C′′
4R

n−pm+αpm .

Using (2.16) and (2.17), we get for C5 = C′
4 max(1, C′′

4 )

(2.18) φ(r) ≤ C5

((( r

R

)n

+R
β

2 + ǫ
)

φ(R) +Rn−pm+αpm

)

∀r ∈ (0, R).

If we assume that R
β

2 < ǫ, then given that φ is a nonnegative and
nondecreasing function on (0, R), we infer from (2.18) and Lemma 5.12
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p. 248 of [21] applied with δ = 2ǫ, that we have for two positive constants
C6 = C6(C5, n, α, pm) and δ0 = δ0(C5, n, α, pm)

(2.19) φ(r) ≤ C6

( r

R

)n−pm+αpm (

φ(R) +Rn−pm+αpm
)

∀r ∈ (0, R)

provided that δ < δ0 and R < (δ/2)
2
β = R2.

Using (2.19) and (2.13), for R = r and w = u, we get for

C7 =
C6(φ(R) +Rn−pm+αpm)

Rn−pm+αpm

that
∫

Br(x0)

|∇u|pmdx ≤

∫

Br(x0)

|∇u|p(x)dx + ωnr
n ≤ C7r

n−pm+αpm + ωnr
n

= (C7 + ωnr
(1−α)pm )rn−pm+αpm ≤ Crn−pm+αpm ,

where C = C7 + ωn(diam(Ω)/2)(1−α)pm . This completes the proof of the
lemma.

Proof of Theorem 1.1. Obviously we can choose δ small enough so
that R2 < R1. Then, by using (2.1) and Hölder’s inequality, we obtain for all
R ∈ (0, R2) and all r ∈ (0, R)

∫

Br

|∇u|dx ≤ |Br|
1− 1

pm

(

∫

Br

|∇u|pmdx

)
1

pm

≤ ω
1− 1

pm
n · rn−

n
pm · (Crn−pm+αpm)

1
pm

= C
1

pm ω
1− 1

pm
n · rn−

n
pm · r

n−pm+αpm
pm

≤ C′rn−1+α,

where C′ = C
1

pm ω
1− 1

pm
n . We conclude ([21, Theorem 1.53 (Morrey) p. 30])

that u ∈ C0,α
loc (Ω), which completes the proof of the theorem.

Remark 2.3. If g, F ∈ L∞(Ω), then (1.4)-(1.5) are satisfied for any

t1 > n
p(x) and t2 > n

p(x)−1 . Therefore, we obtain u ∈ C0,α
loc (BR(x0)) for any

BR(x0) ⊂⊂ Ω with α = 1−max

(

n

t1pm
,

n

t2(pm − 1)

)

, pm = min
x∈BR(x0)

p(x)

and R small enough. Given that t1 and t2 can be chosen arbitrarily large, we
obtain u ∈ C0,α

loc (Ω) for any 0 < α < 1.
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