HÖLDER CONTINUITY FOR THE SOLUTIONS OF THE $p(x)$-LAPLACE EQUATION WITH GENERAL RIGHT-HAND SIDE

Abdeslem Lyaghfouri
United Arab Emirates University, UAE

Abstract

We show that bounded solutions of the quasilinear elliptic equation $\Delta_{p(x)} u=g+\operatorname{div}(\mathbf{F})$ are locally Hölder continuous provided that the functions g and \mathbf{F} are in suitable Lebesgue spaces.

1. Introduction

We consider the following equation

$$
\begin{equation*}
\Delta_{p(x)} u=g+\operatorname{div}(\mathbf{F}) \quad \text { in } W^{-1, q(x)}(\Omega) \tag{1.1}
\end{equation*}
$$

where $\Delta_{p(x)} u=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is the $p(x)$-Laplacian, Ω is an open bounded domain of $\mathbb{R}^{n}, n \geq 2, x=\left(x_{1}, \ldots, x_{n}\right), q(x)=\frac{p(x)}{p(x)-1}$, and $p: \Omega \rightarrow \mathbb{R}$ is a measurable function which satisfies for some positive constants $p_{+}>p_{-}>1$ and $s>n$

$$
\begin{align*}
& p_{-} \leq p(x) \leq p_{+} \quad \text { a.e. } x \in \Omega, \\
& \nabla p \in\left(L^{s}(\Omega)\right)^{n} . \tag{1.2}
\end{align*}
$$

As a consequence of (1.2), we have $p \in W^{1, s}(\Omega)$. Moreover, due to Sobolev embedding $W^{1, s}(\Omega) \subset C^{0, \beta}(\Omega),\left(\beta=1-\frac{n}{s}\right), p$ is Hölder continuous in Ω.

We call a solution of equation (1.1) any function $u \in W^{1, p(x)}(\Omega)$ that fulfills
$\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \cdot \nabla \zeta d x=-\int_{\Omega} g(x) \zeta d x+\int_{\Omega} \mathbf{F}(x) \cdot \nabla \zeta d x \quad \forall \zeta \in W_{0}^{1, p(x)}(\Omega)$.

2020 Mathematics Subject Classification. 35B65, 35J92.
Key words and phrases. $p(x)$-Laplacian, Hölder continuity.

The Lebesgue and Sobolev spaces with variable exponents are defined (see for example $[2,15]$ and [18]) by:

$$
\begin{aligned}
& L^{p(x)}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \text { measurable }: \int_{\Omega}|u(x)|^{p(x)} d x<\infty\right\} \\
& \left.W^{1, p(x)}(\Omega)=\left\{u \in L^{p(x)} \Omega\right): \nabla u \in\left(L^{p(x)}(\Omega)\right)^{n}\right\} \\
& W_{0}^{1, p(x)}(\Omega)=\bar{C}_{0}^{\infty}(\Omega)_{W^{1, p(x)}(\Omega)}
\end{aligned}
$$

These spaces are separable, complete and reflexive, when equipped with the following norms

$$
\begin{aligned}
& \|u\|_{L^{p(x)}(\Omega)}=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{u}{\lambda}\right|^{p(x)} d x \leq 1\right\} \\
& \|u\|_{1, p(x)}=\|u\|_{p(x)}+\|\nabla u\|_{p(x)}, \quad\|\nabla u\|_{p(x)}=\sum_{i=1}^{n}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{p(x)}
\end{aligned}
$$

Our aim is to establish Hölder continuity for bounded solutions of (1.1). We observe that if $p(x)>n$ in an open set $U \subset \subset \Omega$, then by Sobolev embed$\operatorname{ding} W^{1, p(x)}(U) \subset W^{1, p_{m}(U)}(U) \subset C^{0, \alpha}(U)$, where $p_{m}(U)=\min _{x \in \bar{U}} p(x)$ and $\alpha=1-\frac{n}{p_{m}(U)}$. Therefore any solution of (1.1) is Hölder continuous in U. In this paper, we assume that

$$
\begin{equation*}
p(x) \leq n \quad \forall x \in \Omega \tag{1.3}
\end{equation*}
$$

g is a real valued function that satisfies for a positive number t_{1}

$$
\begin{align*}
& t_{1}>\frac{n}{p(x)} \quad \forall x \in \Omega \tag{1.4}\\
& g \in L^{t_{1}}(\Omega)
\end{align*}
$$

$\mathbf{F}=\left(F_{1}, \ldots, F_{n}\right)$ is a vector function that satisfies for a positive number t_{2}

$$
\begin{align*}
& t_{2}>\frac{n}{p(x)-1} \quad \forall x \in \Omega \tag{1.5}\\
& \mathbf{F} \in L^{t_{2}}(\Omega)
\end{align*}
$$

Among problems that fit in the equation (1.1) setting, is the dam problem $\left(g=0, \mathbf{F}=\chi \mathbf{e}\right.$, with $\left.\mathbf{e}=(0, \ldots, 0,1), \chi \in L^{\infty}(\Omega)\right)$, and $p(x)$ a constant, $[4,5,9])$. It is know that the solution in this case is $C_{\mathrm{loc}}^{0, \alpha}(\Omega)$ for any $\alpha \in(0,1)$ (see [7]). In fact, due to the particularity of the problem (i.e., because $u \geq 0$ and $\chi=1$ a.e. in $\{u>0\}$), we actually have $u \in C_{\text {loc }}^{0,1}(\Omega)$ (see [12]). Another problem is the obstacle problem, $[10,11,13,14,23]$). Indeed, because the solution of the obstacle problem satisfies the Levy-Stampacchia inequality, i.e., $f \chi([u>0]) \leq \Delta_{p(x)} u \leq f$ a.e. in Ω (see for example [24]), where
$f \in L^{q(x)}(\Omega)$, one can write $\Delta_{p(x)} u=g$ a.e. in Ω, where $g=\theta f$ and $0 \leq \theta \leq 1$ a.e. in Ω. For a more general framework, we refer to [8, 12, 19].

Equations involving variable exponents are called equations with nonstandard growth. For an overview of such equations, we refer to [16], where the authors establish global boundedness and Hölder continuity for a class of elliptic problems.

The main result of this paper is the following theorem.
Theorem 1.1. Assume that (1.2)-(1.5) hold. Then any bounded solution of (1.1) is locally Hölder continuous in Ω.

It is expected that solutions of (1.1) are locally and even globally bounded if a Dirichlet or Neumann boundary condition is added. This can be established for example by adapting the so-called De Giorgi-Nash-Moser theory. However, it is not the purpose of this paper to discuss this question. The interested reader is refereed for example to the papers [16] and [25], where global boundedness for a class of elliptic problems are established for both homogeneous Dirichlet and nonhomogeneous Neumann boundary conditions.

In the context of constant exponent, the regularity result in Theorem 1.1 was established in [22] for a more general quasi-linear elliptic operator that includes the p-Laplacian under the assumptions: $g \in L^{\frac{n}{p+\epsilon}}(\Omega)$ and $\mathbf{F} \in L^{t}(\Omega)$ with $\epsilon>0$ and $t>\frac{n}{p-1}$, which coincide with assumptions (1.5). Moreover, when the right-hand side of (1.1) is a nonnegative Radon measure with a suitable growth condition, local Hölder continuity was established in [17] for the p-Laplacian and in a more general framework in [22]. This result was later extended in [7] and [20] respectively for the A-Laplacian and $p(x)$-Laplacian.

Throughout this paper, we will denote by $B_{r}(x)$ (resp. $\bar{B}_{r}(x)$) the open (resp. closed) ball of center x and radius r in \mathbb{R}^{n}, with $\omega_{n}=\left|B_{1}\right|$ standing for the measure of the unit open ball B_{1}.

2. Proof of Theorem 1.1

In this section, we denote by u a bounded solution of (1.1) with $M=$ $\|u\|_{\infty}$, and will show that it is locally Hölder continuous in Ω. The proof is based on Lemma 2.1.

Lemma 2.1. Let $\delta=\frac{s-n}{2 s n}, q=\frac{n+s}{2}, m=\frac{s q(1+\delta)}{s-q}$, and

$$
R_{1}=\min \left(\operatorname{diam}(\Omega) / 16, c\left(n, s, p_{-}, p_{+}\right)\left(\int_{\Omega}|\nabla u|^{p(x)} d x+1\right)^{\frac{-m}{\beta}}\right)
$$

Assume that (1.2)-(1.5) hold. Then there exists a positive constant
$C=C\left(n, s, p_{-}, p_{+}, M, \operatorname{diam}(\Omega),\|\nabla u\|_{L^{p(x)}(\Omega)},\|\nabla p\|_{L^{s}(\Omega)},\|g\|_{L^{t_{1}}(\Omega)},\|F\|_{L^{t_{2}}(\Omega)}\right)$,
such that we have for $R \in\left(0, R_{1}\right)$ with $B_{2 R}\left(x_{0}\right) \subset \Omega$

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p_{m}} d x \leq C r^{n-p_{m}+\alpha p_{m}} \quad \forall r \in(0, R) \tag{2.1}
\end{equation*}
$$

where $p_{m}=\min _{x \in \bar{B}_{R}\left(x_{0}\right)} p(x)$ and $\alpha=1-\max \left(\frac{n}{t_{1} p_{m}}, \frac{n}{t_{2}\left(p_{m}-1\right)}\right)$.
The proof of Lemma 2.1 is based on Lemma 2.2.
Lemma 2.2. Assume that (1.2)-(1.5) hold and let R_{1} be the positive number in Lemma 2.1. Then there exists a positive constant

$$
C_{1}=C_{1}\left(n, s, p_{-}, p_{+}, \operatorname{diam}(\Omega),\|\nabla u\|_{L^{p(x)}(\Omega)},\|\nabla p\|_{L^{s}(\Omega)}\right)
$$

such that we have for $R \in\left(0, R_{1}\right), B_{2 R}\left(x_{0}\right) \subset \Omega, v \in W^{1, p(x)}\left(B_{R}\left(x_{0}\right)\right)$ with $\Delta_{p(x)} v=0$ in $B_{R}\left(x_{0}\right)$ and $v=u$ on $\partial B_{R}\left(x_{0}\right)$

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} d x \leq C_{1}\left(\left(\left(\frac{r}{R}\right)^{n}+R^{\frac{\beta}{2}}\right) \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x+R^{n+\beta}\right) \tag{2.2}
\end{equation*}
$$

for all $r \in(0, R)$.
Proof. First, observe that we have $v \in C_{l o c}^{1, \sigma}\left(B_{R}\left(x_{0}\right)\right)$ (see for example [3]). Next, since $\int_{B_{R}\left(x_{0}\right)} \frac{|\nabla v|^{p(x)}}{p(x)} d x$ minimizes the energy $\int_{B_{R}\left(x_{0}\right)} \frac{|\nabla \xi|^{p(x)}}{p(x)} d x$ over all functions $\xi \in W^{1, p(x)}\left(B_{R}\left(x_{0}\right)\right)$ such that $\xi=u$ on $\partial B_{R}\left(x_{0}\right)$, we get

$$
\begin{align*}
\int_{B_{R}\left(x_{0}\right)}|\nabla v|^{p(x)} d x & =\int_{B_{R}\left(x_{0}\right)} p(x) \frac{|\nabla v|^{p(x)}}{p(x)} d x \\
& \leq p_{+} \int_{B_{R}\left(x_{0}\right)} \frac{|\nabla v|^{p(x)}}{p(x)} d x \leq p_{+} \int_{B_{R}\left(x_{0}\right)} \frac{|\nabla u|^{p(x)}}{p(x)} d x \tag{2.3}\\
& \leq \frac{p_{+}}{p_{-}} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x .
\end{align*}
$$

Using (2.3), we get for $r \in\left[\frac{R}{8}, R\right)$

$$
\begin{aligned}
\int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} d x & =\left(\frac{R}{r}\right)^{n}\left(\frac{r}{R}\right)^{n} \int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} d x \\
& \leq 8^{n}\left(\frac{r}{R}\right)^{n} \int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} d x \\
& \leq 8^{n}\left(\frac{r}{R}\right)^{n} \int_{B_{R}\left(x_{0}\right)}|\nabla v|^{p(x)} d x \\
& \leq 8^{n} \frac{p_{+}}{p_{-}}\left(\frac{r}{R}\right)^{n} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x .
\end{aligned}
$$

Therefore it is enough to prove (2.2) for $r \in\left(0, \frac{R}{8}\right)$. Since $\Delta_{p(x)} v=$ 0 in $B_{R}\left(x_{0}\right), v=u$ on $\partial B_{R}\left(x_{0}\right)$, we obtain by the maximum principle $\|v\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)} \leq M$. Moreover, we know (see [6], Corollary 2.1) for $\gamma=\beta / 2$ and $\epsilon_{0}=\frac{1}{2} \min (1, m-1)$, that there exist two positive constants $c_{1}=c_{1}\left(n, s, p_{-}, p_{+}\right)$and

$$
R_{0}=R_{0}\left(n, s, p_{-}, p_{+}, \operatorname{diam}(\Omega), \int_{B_{R}\left(x_{0}\right)}|\nabla v|^{p(x)} d x\right)
$$

such that we have for each $R \in\left(0, \min \left(R_{0}, \operatorname{diam}(\Omega) / 16\right)\right)$ and $r \in(0, R / 8)$,

$$
\begin{aligned}
& f_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} d x \leq c_{1}\left(f_{B_{R}\left(x_{0}\right)}|\nabla v|^{p(x)} d x\right. \\
& \left.\quad+K R^{\beta}\left(1+\int_{B_{R}\left(x_{0}\right)}|\nabla v|^{p(x)} d x\right)^{\epsilon_{0}(1+\delta)}\left(1+f_{B_{R}\left(x_{0}\right)}|\nabla v|^{p(x)} d x\right)^{1+\delta}\right)
\end{aligned}
$$

where $K=\|\nabla p\|_{L^{s}(\Omega)}\left(1+(\operatorname{diam}(\Omega) / 2)^{\beta}\|\nabla p\|_{L^{s}(\Omega)}\right)$ and $f_{E} f d x=\frac{1}{|E|} \int_{E} f d x$ denotes the mean value of the function f on the measurable set E.

Using (2.3), we obtain for

$$
c_{2}=c_{1}\left(\frac{p_{+}}{p_{-}}\right)^{\left(1+\epsilon_{0}\right)(1+\delta)} \max \left(1,2^{\delta} K\left(1+\frac{p_{+}}{p_{-}} \int_{\Omega}|\nabla u|^{p(x)} d x\right)^{\epsilon_{0}(1+\delta)}\right)
$$

that

$$
\begin{aligned}
& f_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} d x \leq c_{1}\left(\frac{p_{+}}{p_{-}} f_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x\right. \\
& \left.\quad+K R^{\beta}\left(1+\frac{p_{+}}{p_{-}} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x\right)^{\epsilon_{0}(1+\delta)}\left(1+\frac{p_{+}}{p_{-}} f_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x\right)^{1+\delta}\right) \\
& \quad \leq c_{1}\left(\frac{p_{+}}{p_{-}} f_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x\right. \\
& \left.\quad+K R^{\beta}\left(1+\frac{p_{+}}{p_{-}} \int_{\Omega}|\nabla u|^{p(x)} d x\right)^{\epsilon_{0}(1+\delta)}\left(1+\frac{p_{+}}{p_{-}} f_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x\right)^{1+\delta}\right) \\
& \quad \leq c_{2}\left(f_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x+R^{\beta}+R^{\beta}\left(f_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x\right)^{1+\delta}\right)
\end{aligned}
$$

which leads to

$$
\begin{aligned}
\int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} d x \leq & c_{2}\left(\left(\frac{r}{R}\right)^{n} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x+\omega_{n} r^{n} R^{\beta}\right. \\
& \left.+\omega_{n}^{-\delta} r^{n} R^{\beta-n(1+\delta)}\left(\int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x\right)^{1+\delta}\right)
\end{aligned}
$$

or

$$
\begin{align*}
\int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} d x \leq & c_{2}\left(\left(\frac{r}{R}\right)^{n} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x+\omega_{n} R^{n+\beta}\right. \tag{2.4}\\
& \left.+\omega_{n}^{-\delta} R^{\beta-n \delta}\left(\int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x\right)^{1+\delta}\right) \\
\leq & c_{2}\left(\left(\frac{r}{R}\right)^{n} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x+\omega_{n} R^{n+\beta}\right. \\
& \left.+\omega_{n}^{-\delta} R^{\frac{\beta}{2}}\left(\int_{\Omega}|\nabla u|^{p(x)} d x\right)^{\delta}\left(\int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x\right)\right)
\end{align*}
$$

We point out (see $[1,6]$) that

$$
R_{0} \approx\left(\frac{\epsilon_{0}}{c\left(n, p_{-}, p_{+}\right)^{m} c(\beta)}\right)^{2 / \beta}\left(\int_{B_{R}\left(x_{0}\right)}|\nabla v|^{p(x)} d x+1\right)^{\frac{-2 m \epsilon_{0}}{\beta}}
$$

Using (2.3) again, we get for some positive constant $c_{0}=c_{0}\left(n, s, p_{-}, p_{+}\right)$ independent of R

$$
\begin{aligned}
R_{0} & \geq c_{0}\left(\int_{B_{R}\left(x_{0}\right)}|\nabla v|^{p(x)} d x+1\right)^{\frac{-2 m_{0}}{\beta}} \\
& \geq c_{0}\left(\frac{p_{+}}{p_{-}} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x+1\right)^{\frac{-2 m \epsilon_{0}}{\beta}} \\
& \geq c_{0}\left(\frac{p_{+}}{p_{-}}\right)^{\frac{-2 m c_{0}}{\beta}}\left(\int_{\Omega}|\nabla u|^{p(x)} d x+1\right)^{\frac{-m}{\beta}} \\
& =c\left(n, s, p_{-}, p_{+}\right)\left(\int_{\Omega}|\nabla u|^{p(x)} d x+1\right)^{\frac{-m}{\beta}} .
\end{aligned}
$$

Thus, we can take

$$
R_{1}=\min \left(\operatorname{diam}(\Omega) / 16, c\left(n, s, p_{-}, p_{+}\right)\left(\int_{\Omega}|\nabla u|^{p(x)} d x+1\right)^{\frac{-m}{\beta}}\right)
$$

and (2.2) follows from (2.4) if we choose

$$
\begin{aligned}
C_{1} & =c_{2} \max \left(1, \omega_{n}, \omega_{n}^{-\delta}\left(\int_{\Omega}|\nabla u|^{p(x)} d x\right)^{\delta}\right) \\
& =C_{1}\left(n, s, p_{-}, p_{+}, \operatorname{diam}(\Omega),\|\nabla p\|_{L^{s}(\Omega)},\|\nabla u\|_{L^{p(x)}(\Omega)}\right)
\end{aligned}
$$

Proof of Lemma 2.1. Let R_{1} be as in Lemma 2.1, v as in Lemma 2.2, and $R \in\left(0, R_{1}\right)$. First, we have for $r \in(0, R)$

$$
\begin{align*}
\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)}= & \int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)-2} \nabla u \cdot \nabla(u-v) d x \\
& +\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)-2} \nabla u \cdot \nabla v d x \\
= & \int_{B_{r}\left(x_{0}\right)}\left(|\nabla u|^{p(x)-2} \nabla u-|\nabla v|^{p(x)-2} \nabla v\right) \cdot \nabla(u-v) d x \tag{2.5}\\
& +\int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)-2} \nabla v \cdot \nabla(u-v) d x \\
& +\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)-2} \nabla u \cdot \nabla v d x=I_{1}+I_{2}+I_{3}
\end{align*}
$$

Next, using the monotonicity of $\xi \rightarrow|\xi|^{p(x)-2} \xi$, the fact that $\Delta_{p(x)} v=0$ in $B_{R}\left(x_{0}\right)$ and $u=v$ on $\partial B_{R}\left(x_{0}\right)$, we obtain

$$
\begin{align*}
I_{1} \leq & \int_{B_{R}\left(x_{0}\right)}\left(|\nabla u|^{p(x)-2} \nabla u-|\nabla v|^{p(x)-2} \nabla v\right) \cdot \nabla(u-v) d x \\
= & \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)-2} \nabla u \cdot \nabla(u-v) d x \tag{2.6}\\
& -\int_{B_{R}\left(x_{0}\right)}|\nabla v|^{p(x)-2} \nabla v \cdot \nabla(u-v) d x \\
= & -\int_{B_{R}\left(x_{0}\right)} g(u-v) d x+\int_{B_{R}\left(x_{0}\right)} F \cdot \nabla(u-v) d x .
\end{align*}
$$

Applying Young's inequality, we derive for some positive constant c depending only on p_{-}and p_{+}

$$
\begin{align*}
I_{2} & =\int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)-2} \nabla v \cdot \nabla u d x-\int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} \\
& \leq \int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)-1} \cdot|\nabla u| d x \tag{2.7}\\
& \leq \frac{1}{4} \int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)} d x+c \int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} d x .
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
I_{3} & \leq \int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)-1} \cdot|\nabla v| d x \tag{2.8}\\
& \leq \frac{1}{4} \int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)} d x+c \int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} d x .
\end{align*}
$$

Using (2.5)-(2.8), we get

$$
\begin{align*}
\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)} d x \leq & 4 c \int_{B_{r}\left(x_{0}\right)}|\nabla v|^{p(x)} d x-2 \int_{B_{R}\left(x_{0}\right)} g(u-v) d x \tag{2.9}\\
& +2 \int_{B_{R}\left(x_{0}\right)} F \cdot \nabla(u-v) d x
\end{align*}
$$

Combining (2.2), and (2.9), we get for a positive constant

$$
C_{1}=C_{1}\left(n, s, p_{-}, p_{+}, \operatorname{diam}(\Omega),\|\nabla p\|_{L^{s}(\Omega)},\|\nabla u\|_{L^{p(x)}(\Omega)}\right)
$$

and

$$
\begin{align*}
& \int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)} d x \\
& \leq C_{1}\left(\left(\left(\frac{r}{R}\right)^{n}+R^{\frac{\beta}{2}}\right) \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x+R^{n+\beta}\right) \tag{2.10}\\
&-2 \int_{B_{R}\left(x_{0}\right)} g(u-v) d x+2 \int_{B_{R}\left(x_{0}\right)} F \cdot \nabla(u-v) d x .
\end{align*}
$$

Applying Hölder's inequality and using (1.4) and the fact that $|u|,|v| \leq M$ in $B_{R}\left(x_{0}\right)$, we obtain for

$$
\alpha_{1}=1-\frac{n}{t_{1} p_{m}} \text { and } C_{2}=4 M \omega_{n}^{1-\frac{1}{t_{1}}} \cdot\|g\|_{L^{t_{1}}(\Omega)}
$$

that

$$
\begin{align*}
\left|-2 \int_{B_{R}\left(x_{0}\right)} g(u-v) d x\right| & \leq 4 M \int_{B_{R}\left(x_{0}\right)}|g| d x \\
& \leq 4 M\|g\|_{L^{t_{1}}\left(B_{R}\left(x_{0}\right)\right)} \cdot\left|B_{R}\left(x_{0}\right)\right|^{1-\frac{1}{t_{1}}} \tag{2.11}\\
& =4 M\|g\|_{L^{t_{1}}\left(B_{R}\left(x_{0}\right)\right)} \cdot \omega_{n}^{1-\frac{1}{t_{1}}} \cdot R^{n-\frac{n}{t_{1}}} \\
& =C_{2} R^{n-p_{m}+\alpha_{1} p_{m}} .
\end{align*}
$$

Due to (1.4) and the continuity of $p(x)$, we have $t_{1}>\frac{n}{p_{m}}$. Hence $\alpha_{1} \in(0,1)$.
We observe from (1.3) and (1.5) that we have

$$
t_{2} \geq \frac{t_{2} p(x)}{n}>\frac{p(x)}{p(x)-1} \geq \frac{p_{m}}{p_{m}-1}
$$

Applying Young's and Hölder's inequalities and taking into account (1.5) and using the convexity of $|\xi|^{p_{m}}$, we obtain for $\epsilon \in(0,1)$ and a constant C_{3} depending only on p_{-}and p_{+}

$$
\begin{align*}
& \left|2 \int_{B_{R}\left(x_{0}\right)} F \cdot \nabla(u-v) d x\right| \\
& \leq \\
& \leq C_{3} \int_{B_{R}\left(x_{0}\right)}|F|^{\frac{p_{m}}{p_{m}-1}} d x+\epsilon \int_{B_{R}\left(x_{0}\right)}|\nabla(u-v)|^{p_{m}} d x \\
& \leq \tag{2.12}\\
& \quad C_{3}\|F\|_{L^{p_{m}-1}}^{\frac{p_{m}}{t_{2}}(\Omega)} \cdot\left|B_{R}\left(x_{0}\right)\right|^{\frac{t_{2}\left(p_{m}-1\right)-p_{m}}{t_{2}\left(p_{m}-1\right)}} \\
& \quad+\epsilon \int_{B_{R}\left(x_{0}\right)}|\nabla(u-v)|^{p_{m}} d x \\
& =C_{3} \omega_{n}^{\frac{t_{2}\left(p_{m}-1\right)-p_{m}}{t_{2}\left(p_{m}-1\right)}}\|F\|_{L^{t_{2}(\Omega)}}^{\frac{p_{m}}{p_{m}-1}} R^{n-\frac{n p_{m}}{t_{2}\left(p_{m}-1\right)}} \\
& \quad+\epsilon \int_{B_{R}\left(x_{0}\right)}|\nabla(u-v)|^{p_{m}} d x \\
& \leq \\
& \quad C_{3}^{\prime} R^{n-p_{m}+\alpha_{2} p_{m}}+\epsilon 2^{p_{m}-1} \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p_{m}} d x \\
& \quad+\epsilon 2^{p_{m}-1} \int_{B_{R}\left(x_{0}\right)}|\nabla v|^{p_{m}} d x,
\end{align*}
$$

where

$$
\alpha_{2}=1-\frac{n}{t_{2}\left(p_{m}-1\right)} \quad \text { and } \quad C_{3}^{\prime}=C_{3} \cdot \omega_{n}^{\frac{t_{2}\left(p_{m}-1\right)-p_{m}}{t_{2}\left(p_{m}-1\right)}} \cdot\|F\|_{L^{t_{2}(\Omega)}}^{\frac{p_{m}}{p_{m}-1}}
$$

Due to (1.5), and the continuity of $p(x)$, we have $t_{2}>\frac{n}{p_{m}-1}$, and therefore $\alpha_{2} \in(0,1)$.

Observe that we have for $w \in W^{1, p(x)}\left(B_{R}\left(x_{0}\right)\right)$

$$
\begin{align*}
\int_{B_{R}\left(x_{0}\right)}|\nabla w|^{p_{m}} d x= & \int_{B_{R}\left(x_{0}\right) \cap[|\nabla w| \leq 1]}|\nabla w|^{p_{m}} d x \\
& +\int_{B_{R}\left(x_{0}\right) \cap[|\nabla w|>1]}|\nabla w|^{p_{m}} d x \tag{2.13}\\
\leq & \int_{B_{R}\left(x_{0}\right)}|\nabla w|^{p(x)} d x+\omega_{n} R^{n}
\end{align*}
$$

Using (2.3) and (2.13), we get from (2.12)

$$
\begin{align*}
& \left|2 \int_{B_{R}\left(x_{0}\right)} F \cdot \nabla(u-v) d x\right| \leq C_{3}^{\prime} R^{n-p_{m}+\alpha_{2} p_{m}} \\
& \quad+\epsilon 2^{p_{m}-1}\left(1+\frac{p_{+}}{p_{-}}\right) \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x+\epsilon 2^{p_{m}} \omega_{n} R^{n} \\
& \quad=\left(C_{3}^{\prime}+\epsilon 2^{p_{m}} \omega_{n} R^{\left(1-\alpha_{2}\right) p_{m}}\right) R^{n-p_{m}+\alpha_{2} p_{m}} \tag{2.14}\\
& \quad+\epsilon 2^{p_{m}-1}\left(1+\frac{p_{+}}{p_{-}}\right) \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x \\
& \quad \leq C_{4}\left(R^{n-p_{m}+\alpha_{2} p_{m}}+\epsilon \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x\right)
\end{align*}
$$

where $C_{4}=\max \left(C_{3}^{\prime}+2^{p_{m}} \omega_{n}(\operatorname{diam}(\Omega) / 2)^{\left(1-\alpha_{2}\right) p_{m}}, 2^{p_{m}-1}\left(1+\frac{p_{+}}{p_{-}}\right)\right)$.
Combing (2.10), (2.11) and (2.14), we get

$$
\begin{align*}
\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)} d x \leq & C_{1}\left(\left(\left(\frac{r}{R}\right)^{n}+R^{\frac{\beta}{2}}\right) \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x\right) \\
& +C_{1} R^{n+\beta}+C_{2} R^{n-p_{m}+\alpha_{1} p_{m}}+C_{4} R^{n-p_{m}+\alpha_{2} p_{m}} \tag{2.15}\\
& +C_{4} \epsilon \int_{B_{R}\left(x_{0}\right)}|\nabla u|^{p(x)} d x
\end{align*}
$$

Setting $\phi(r)=\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)} d x$ and $C_{4}^{\prime}=\max \left(C_{1}, C_{2}, C_{4}\right)$, we obtain from (2.15) that
$\phi(r) \leq C_{4}^{\prime}\left(\left(\left(\frac{r}{R}\right)^{n}+R^{\frac{\beta}{2}}+\epsilon\right) \phi(R)+R^{n+\beta}+R^{n-p_{m}+\alpha_{1} p_{m}}+R^{n-p_{m}+\alpha_{2} p_{m}}\right)$.
Now, observe that we have for $\alpha=\min \left(\alpha_{1}, \alpha_{2}\right)$ and $a=\operatorname{diam}(\Omega) / 2$

$$
\begin{align*}
& R^{n+\beta}+R^{n-p_{m}+\alpha_{1} p_{m}}+R^{n-p_{m}+\alpha_{2} p_{m}} \\
& \quad=\left(R^{\beta+(1-\alpha) p_{m}}+R^{\left(\alpha_{1}-\alpha\right) p_{m}}+R^{\left(\alpha_{2}-\alpha\right) p_{m}}\right) R^{n-p_{m}+\alpha p_{m}} \\
& \quad \leq\left(a^{\beta+(1-\alpha) p_{m}}+a^{\left(\alpha_{1}-\alpha\right) p_{m}}+a^{\left(\alpha_{2}-\alpha\right) p_{m}}\right) R^{n-p_{m}+\alpha p_{m}} \tag{2.17}\\
& \quad=C_{4}^{\prime \prime} R^{n-p_{m}+\alpha p_{m}}
\end{align*}
$$

Using (2.16) and (2.17), we get for $C_{5}=C_{4}^{\prime} \max \left(1, C_{4}^{\prime \prime}\right)$

$$
\begin{equation*}
\phi(r) \leq C_{5}\left(\left(\left(\frac{r}{R}\right)^{n}+R^{\frac{\beta}{2}}+\epsilon\right) \phi(R)+R^{n-p_{m}+\alpha p_{m}}\right) \quad \forall r \in(0, R) \tag{2.18}
\end{equation*}
$$

If we assume that $R^{\frac{\beta}{2}}<\epsilon$, then given that ϕ is a nonnegative and nondecreasing function on $(0, R)$, we infer from (2.18) and Lemma 5.12
p. 248 of [21] applied with $\delta=2 \epsilon$, that we have for two positive constants $C_{6}=C_{6}\left(C_{5}, n, \alpha, p_{m}\right)$ and $\delta_{0}=\delta_{0}\left(C_{5}, n, \alpha, p_{m}\right)$

$$
\begin{equation*}
\phi(r) \leq C_{6}\left(\frac{r}{R}\right)^{n-p_{m}+\alpha p_{m}}\left(\phi(R)+R^{n-p_{m}+\alpha p_{m}}\right) \quad \forall r \in(0, R) \tag{2.19}
\end{equation*}
$$

provided that $\delta<\delta_{0}$ and $R<(\delta / 2)^{\frac{2}{\beta}}=R_{2}$.
Using (2.19) and (2.13), for $R=r$ and $w=u$, we get for

$$
C_{7}=\frac{C_{6}\left(\phi(R)+R^{n-p_{m}+\alpha p_{m}}\right)}{R^{n-p_{m}+\alpha p_{m}}}
$$

that

$$
\begin{aligned}
\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p_{m}} d x & \leq \int_{B_{r}\left(x_{0}\right)}|\nabla u|^{p(x)} d x+\omega_{n} r^{n} \leq C_{7} r^{n-p_{m}+\alpha p_{m}}+\omega_{n} r^{n} \\
& =\left(C_{7}+\omega_{n} r^{(1-\alpha) p_{m}}\right) r^{n-p_{m}+\alpha p_{m}} \leq C r^{n-p_{m}+\alpha p_{m}}
\end{aligned}
$$

where $C=C_{7}+\omega_{n}(\operatorname{diam}(\Omega) / 2)^{(1-\alpha) p_{m}}$. This completes the proof of the lemma.

Proof of Theorem 1.1. Obviously we can choose δ small enough so that $R_{2}<R_{1}$. Then, by using (2.1) and Hölder's inequality, we obtain for all $R \in\left(0, R_{2}\right)$ and all $r \in(0, R)$

$$
\begin{aligned}
\int_{B_{r}}|\nabla u| d x & \leq\left|B_{r}\right|^{1-\frac{1}{p_{m}}}\left(\int_{B_{r}}|\nabla u|^{p_{m}} d x\right)^{\frac{1}{p_{m}}} \\
& \leq \omega_{n}^{1-\frac{1}{p_{m}}} \cdot r^{n-\frac{n}{p_{m}}} \cdot\left(C r^{n-p_{m}+\alpha p_{m}}\right)^{\frac{1}{p_{m}}} \\
& =C^{\frac{1}{p_{m}}} \omega_{n}^{1-\frac{1}{p_{m}}} \cdot r^{n-\frac{n}{p_{m}}} \cdot r^{\frac{n-p_{m}+\alpha p_{m}}{p_{m}}} \\
& \leq C^{\prime} r^{n-1+\alpha},
\end{aligned}
$$

where $C^{\prime}=C^{\frac{1}{p_{m}}} \omega_{n}^{1-\frac{1}{p_{m}}}$. We conclude ([21, Theorem 1.53 (Morrey) p. 30]) that $u \in C_{l o c}^{0, \alpha}(\Omega)$, which completes the proof of the theorem.

REMARK 2.3. If $g, F \in L^{\infty}(\Omega)$, then (1.4)-(1.5) are satisfied for any $t_{1}>\frac{n}{p(x)}$ and $t_{2}>\frac{n}{p(x)-1}$. Therefore, we obtain $u \in C_{l o c}^{0, \alpha}\left(B_{R}\left(x_{0}\right)\right)$ for any $B_{R}\left(x_{0}\right) \subset \subset \Omega$ with $\alpha=1-\max \left(\frac{n}{t_{1} p_{m}}, \frac{n}{t_{2}\left(p_{m}-1\right)}\right), p_{m}=\min _{x \in \overline{\bar{B}}_{R}\left(x_{0}\right)} p(x)$ and R small enough. Given that t_{1} and t_{2} can be chosen arbitrarily large, we obtain $u \in C_{l o c}^{0, \alpha}(\Omega)$ for any $0<\alpha<1$.

References

[1] E. Acerbi and G. Mingione, Gradient estimates for the $p(x)$-Laplacean system, J. Reine Angew. Math. 584 (2005), 117-148.
[2] S. Antontsev and S. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, in: Handbook of differential equations: Stationary partial differential equations, Vol 3, Elsevier-North Holland, 2006, 1-100.
[3] A. Coscia and G. Mingione, Hölder continuity of the gradient of $p(x)$-harmonic mappings, C. R. Acad. Sci. Paris Sér. I Math. 328, (1999), 363-368.
[4] J. Carrillo and A. Lyaghfouri, The dam problem for nonlinear Darcy's laws and Dirichlet boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 453-505.
[5] S. Challal and A. Lyaghfouri, A filtration problem through a heterogeneous porous medium, Interfaces Free Bound. 6 (2004), 55-79.
[6] S. Challal and A. Lyaghfouri, Gradient estimates for $p(x)$-harmonic functions, Manuscripta Math. 131 (2010), 403-414.
[7] S. Challal and A. Lyaghfouri, Hölder continuity of solutions to the A-Laplace equation involving measures, Commun. Pure Appl. Anal. 8, (2009), 1577-1583.
[8] S. Challal and A. Lyaghfouri, Lipschitz continuity of solutions of a free boundary problem involving the p-Laplacian, J. Math. Anal. Appl. 355 (2009), 700-707.
[9] S. Challal and A. Lyaghfouri, On the dam problem with two fluids governed by a nonlinear Darcy's law, Adv. Differential Equations 11 (2006), 841-892.
[10] S. Challal and A. Lyaghfouri, Porosity of free boundaries in A-obstacle problems, Nonlinear Anal. 70 (2009), 2772-2778.
[11] S. Challal and A. Lyaghfouri, On the porosity of the free boundary in the $p(x)$-obstacle problem, Port. Math. 68 (2011), 109-123.
[12] S. Challal and A. Lyaghfouri, Regularity results for a quasilinear free boundary problem, Math. Model. Anal. 25, (2020), 338-350.
[13] S. Challal, A. Lyaghfouri and J. F. Rodrigues, On the A-obstacle problem and the Hausdorff measure of its free boundary, Ann. Mat. Pura Appl. (4) 191 (2012), 113165.
[14] S. Challal, A. Lyaghfouri, J. F. Rodrigues and R. Teymurazyan, On the regularity of the free boundary for a class of quasilinear obstacle problems, Interfaces Free Bound. 16 (2014), 359-394.
[15] X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001), 424-446.
[16] K. Ho, Y.-H. Kim, P. Winkert and C. Zhang, The boundedness and Hölder continuity of solutions to elliptic equations involving variable exponents and critical growth, J. Differential Equations 313 (2022), 503-532.
[17] T. Kilpeläinen, Hölder continuity of solutions to quasilinear elliptic equations involving measures, Potential Anal. 3 (1994), 265-272.
[18] O. Kováčik and J. Rákosnik, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J. 41(116) (1991), 592-618.
[19] A. Lyaghfouri, A continuity result for a quasilinear elliptic free boundary problem, Appl. Math. 65 (2020), 67-87.
[20] A. Lyaghfouri, Hölder continuity of $p(x)$-superharmonic functions, Nonlinear Anal. 73 (2010), 2433-2444.
[21] J. Malý and W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, American Mathematical Society, Providence, 1997.
[22] J. M. Rakotoson and W. P. Ziemer, Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. Amer. Math. Soc. 319 (1990), 747-764.
[23] J. F. Rodrigues and R. Teymurazyan, On the two obstacles problem in Orlicz-Sobolev spaces and applications, Complex Var. Elliptic Equ. 56 (2011), 769-787.
[24] J. F. Rodrigues, M. Sanchon and J. M. Urbano, The obstacle problem for nonlinear elliptic equations with variable growth and L^{1}-data, Monatsh. Math. 154, (2008), 303322.
[25] P. Winkert and R. Zacher, A priori bounds for weak solutions to elliptic equations with nonstandard growth, Discrete Contin. Dyn. Syst. Ser. S 5, (2012), 865-878.
A. Lyaghfouri

Department of Mathematical Sciences
United Arab Emirates University
Al Ain, Abu Dhabi
UAE
E-mail: a.lyaghfouri@uaeu.ac.ae
Received: 15.3.2021.
Revised: 28.3.2022.

