THREE KINDS OF NUMERICAL INDICES OF l_{p}-SPACES

Sung Guen Kim
Kyungpook National University, Republic of Korea

Abstract

In this paper, we investigate the polynomial numerical index $n^{(k)}\left(l_{p}\right)$, the symmetric multilinear numerical index $n_{s}^{(k)}\left(l_{p}\right)$, and the multilinear numerical index $n_{m}^{(k)}\left(l_{p}\right)$ of l_{p} spaces, for $1 \leq p \leq \infty$. First we prove that $n_{s}^{(k)}\left(l_{1}\right)=n_{m}^{(k)}\left(l_{1}\right)=1$, for every $k \geq 2$. We show that for $1<p<\infty, n_{I}^{(k)}\left(l_{p}^{j+1}\right) \leq n_{I}^{(k)}\left(l_{p}^{j}\right)$, for every $j \in \mathbb{N}$ and $n_{I}^{(k)}\left(l_{p}\right)=$ $\lim _{j \rightarrow \infty} n_{I}^{(k)}\left(l_{p}^{j}\right)$, for every $I=s, m$, where $l_{p}^{j}=\left(\mathbb{C}^{j},\|\cdot\|_{p}\right)$ or $\left(\mathbb{R}^{j},\|\cdot\|_{p}\right)$. We also show the following inequality between $n_{s}^{(k)}\left(l_{p}^{j}\right)$ and $n^{(k)}\left(l_{p}^{j}\right)$: let $1<p<\infty$ and $k \in \mathbb{N}$ be fixed. Then $$
c\left(k: l_{p}^{j}\right)^{-1} n^{(k)}\left(l_{p}^{j}\right) \leq n_{s}^{(k)}\left(l_{p}^{j}\right) \leq n^{(k)}\left(l_{p}^{j}\right)
$$ for every $j \in \mathbb{N} \cup\{\infty\}$, where $l_{p}^{\infty}:=l_{p}$, $$
c\left(k: l_{p}\right)=\inf \left\{M>0:\|\check{Q}\| \leq M\|Q\|, \text { for every } Q \in \mathcal{P}\left({ }^{k} l_{p}\right)\right\}
$$ and \check{Q} denotes the symmetric k-linear form associated with Q. From this inequality, we deduce that if l_{p} is a complex space, then $\lim _{j \rightarrow \infty} n_{s}^{(j)}\left(l_{p}\right)=$ $\lim _{j \rightarrow \infty} n_{m}^{(j)}\left(l_{p}\right)=0$, for every $1<p<\infty$.

1. Introduction

Throughout this paper \mathbb{K} denotes either the complex field \mathbb{C} or the real field \mathbb{R}. If the field is not specified the results are valid in both cases. Let E and F be Banach spaces over the field \mathbb{K}. We write B_{E} and S_{E} for the closed unit ball and the unit sphere of E, respectively. The dual space of E is denoted by E^{*}. We write E^{k} for the product $E \times \cdots \times E$ with k factors, for some natural number k. We denote by $\mathcal{L}\left({ }^{k} E: F\right)$ the Banach space of

[^0]continuous k-linear mappings of E^{k} into F endowed with the norm
$$
\|A\|=\sup \left\{\left\|A\left(x_{1}, \ldots, x_{k}\right)\right\|: x_{j} \in B_{E}, j=1, \ldots, k\right\} .
$$
$A \in \mathcal{L}\left({ }^{k} E: F\right)$ is said to be symmetric if
$$
A\left(x_{1}, \ldots, x_{k}\right)=A\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)
$$
for any x_{1}, \ldots, x_{k} in E and any permutation σ of the first k natural numbers. We denote by $\mathcal{L}_{s}\left({ }^{k} E: F\right)$ the closed subspace of all symmetric k-linear maps in $\mathcal{L}\left({ }^{k} E: F\right)$. Given $A \in \mathcal{L}\left({ }^{k} E: F\right)$, we define the symmetric k-linear mapping $A_{s}: E^{k} \rightarrow F$ (which we call the symmetrization of A) by
$$
A_{s}\left(x_{1}, \ldots, x_{k}\right)=\frac{1}{k!} \sum_{\sigma} A\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)
$$
for any x_{1}, \ldots, x_{k} in E, where the summation is over the k ! permutations σ of the first k natural numbers. We denote $\mathcal{L}\left({ }^{k} E: \mathbb{K}\right)$ and $\mathcal{L}_{s}\left({ }^{k} E: \mathbb{K}\right)$ by $\mathcal{L}\left({ }^{k} E\right)$ and $\mathcal{L}_{s}\left({ }^{k} E\right)$ respectively. A mapping $P: E \rightarrow F$ is said to be a continuous k-homogeneous polynomial if there exists an $A \in \mathcal{L}\left({ }^{k} E: F\right)$ such that $P(x)=A(x, \ldots, x)$, for all $x \in E$. For $A \in \mathcal{L}\left({ }^{k} E: F\right)$, we define the associated polynomial $\widehat{A}: E \rightarrow F$ by $\widehat{A}(x)=A(x, \ldots, x)$ for $x \in E$. It is obvious that $\widehat{A}=\widehat{A_{s}}$. We denote by $\mathcal{P}\left({ }^{k} E: F\right)$ the Banach space of continuous k-homogeneous polynomials of E into F endowed with the polynomial norm $\|P\|=\sup _{x \in B_{E}}\|P(x)\|$. We denote $\mathcal{P}\left({ }^{k} E: \mathbb{K}\right)$ by $\mathcal{P}\left({ }^{k} E\right)$. We also note that $\|\hat{A}\| \leq\left\|A_{s}\right\| \leq\|A\|$ for any A in $\mathcal{L}\left({ }^{k} E: F\right)$. We refer to [7] for a general background on the theory of polynomials on an infinite dimensional Banach space.

In this paper we consider the spaces $\mathcal{L}\left({ }^{k} E: E\right), \mathcal{L}_{s}\left({ }^{k} E: E\right)$ and $\mathcal{P}\left({ }^{k} E\right.$: $E)$. Let

$$
\begin{aligned}
\Pi\left(E^{k}\right)= & \left\{\left[x^{*}, x_{1}, \ldots, x_{k}\right]: x^{*} \in E^{*}, x_{j} \in E\right. \\
& \left.1=x^{*}\left(x_{j}\right)=\left\|x_{j}\right\|=\left\|x^{*}\right\|, 1 \leq j \leq k\right\} .
\end{aligned}
$$

The numerical range of $A \in \mathcal{L}\left({ }^{k} E: E\right)$ is defined by

$$
W(A):=\left\{x^{*}\left(A\left(x_{1}, \ldots, x_{k}\right)\right):\left(x_{1}, \ldots, x_{k}, x^{*}\right) \in \Pi\left(E^{k}\right)\right\}
$$

and the numerical radius of $A \in \mathcal{L}\left({ }^{k} E: E\right)$ is defined by

$$
v(A):=\sup \left\{\left|x^{*}\left(A\left(x_{1}, \ldots, x_{k}\right)\right)\right|:\left(x_{1}, \ldots, x_{k}, x^{*}\right) \in \Pi\left(E^{k}\right)\right\}
$$

Similarly, for each $P \in \mathcal{P}\left({ }^{k} E: E\right)$, the numerical range of P is defined by

$$
W(P):=\left\{x^{*}(P x):\left(x, x^{*}\right) \in \Pi\left(E^{1}\right)\right\}
$$

and the numerical radius of P is defined by

$$
v(P):=\sup \{|\lambda|: \lambda \in W(P)\}
$$

Clearly we have $v(A) \leq\|A\|, v\left(A_{s}\right) \leq\left\|A_{s}\right\|$ and $v(\widehat{A}) \leq\|\widehat{A}\|$, for any A in $\mathcal{L}\left({ }^{k} E: E\right)$. It is obvious that

$$
\begin{equation*}
v(\widehat{A}) \leq v\left(A_{s}\right) \leq v(A) \quad\left(A \in \mathcal{L}\left({ }^{k} E: E\right)\right) \tag{*}
\end{equation*}
$$

as in the case of norms of them. The following example shows that the inequalities in $(*)$ can be strict. In fact, we define a continuous 2-linear map $A \in \mathcal{L}\left({ }^{2} l_{1}: l_{1}\right)$ by

$$
A(x, y)=\left(\frac{1}{2} x_{1} y_{1}+2 x_{1} y_{2}\right) e_{1}+\left(-\frac{1}{2} x_{2} y_{2}-x_{1} y_{2}\right) e_{2}
$$

for any $x=\left(x_{i}\right), y=\left(y_{i}\right) \in l_{1}$, where $e_{1}=(1,0,0, \ldots)$ and $e_{2}=(0,1,0,0, \ldots)$. Then we have

$$
A_{s}(x, y)=\left(\frac{1}{2} x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}\right) e_{1}+\left(-\frac{1}{2} x_{2} y_{2}-\frac{1}{2} x_{1} y_{2}-\frac{1}{2} x_{2} y_{1}\right) e_{2}
$$

and

$$
\widehat{A}(x)=\left(\frac{1}{2} x_{1}^{2}+2 x_{1} x_{2}\right) e_{1}+\left(-\frac{1}{2} x_{2}^{2}-x_{1} x_{2}\right) e_{2}
$$

It is not difficult to show that $v(\widehat{A})=\frac{1}{2},\|\widehat{A}\|=1, v\left(A_{s}\right)=\frac{3}{2}=\left\|A_{s}\right\|$ and $v(A)=3=\|A\|$. Thus

$$
v\left(\frac{\widehat{A}}{\|\widehat{A}\|}\right)<v\left(\frac{A_{s}}{\left\|A_{s}\right\|}\right)=v\left(\frac{A}{\|A\|}\right)
$$

Note that $\|\widehat{A}\|<\left\|A_{s}\right\|<\|A\|$ and $v(\widehat{A})<v\left(A_{s}\right)<v(A)$.
In [4] the k-th polynomial numerical index of E, the constant $n_{p}^{(k)}(E)$ is defined by

$$
n_{p}^{(k)}(E):=\inf \left\{v(P): P \in S_{\mathcal{P}\left({ }^{k} E: E\right)}\right\}
$$

Clearly $0 \leq n_{p}^{(k)}(E) \leq 1$ (see $[1,2,3,4,5]$ and $[8,9,10,11,12,13,14,15$, $16,17,18]$ for general information and background on the theory of numerical index of Banach spaces).

In connection to $n_{p}^{(k)}(E)$, $\operatorname{Kim}([11,13])$ introduced the new concepts of the k-th multilinear numerical index and k-th symmetric multilinear numerical index of E, generalizing to k-linear and symmetric k-linear maps, respectively the classical numerical index defined by G. Lumer ([16]) in the sixties for linear operators. The k-th multilinear numerical index of E was defined ($[11,13]$) by

$$
n_{m}^{(k)}(E):=\inf \left\{v(A): A \in S_{\mathcal{L}(k): E)}\right\}
$$

We define the k-th symmetric multilinear numerical index of E by

$$
n_{s}^{(k)}(E):=\inf \left\{v(A): A \in S_{\mathcal{L}_{s}\left({ }^{k} E: E\right)}\right\}
$$

Clearly $0 \leq n_{m}^{(k)}(E) \leq 1,0 \leq n_{s}^{(k)}(E) \leq 1$. Since $\mathcal{L}_{s}\left({ }^{k} E: E\right)$ is a closed subspace of $\mathcal{L}\left({ }^{k} E: E\right)$, we have $n_{m}^{(k)}(E) \leq n_{s}^{(k)}(E)$. Clearly $n_{m}^{(k)}(E)\left(n_{s}^{(k)}(E)\right.$ resp.) is the greatest constant $c \geq 0$ such that $c\|A\| \leq v(A)$ for every $A \in$
$\mathcal{L}\left({ }^{k} E: E\right)\left(A \in \mathcal{L}_{s}\left({ }^{k} E: E\right)\right.$ resp. $)$. Note that $n_{m}^{(k)}(E)>0\left(n_{s}^{(k)}(E)>0\right.$ resp $)$ if and only if v and $\|\cdot\|$ are equivalent norms on $\mathcal{L}\left({ }^{k} E: E\right)\left(\mathcal{L}_{s}\left({ }^{k} E: E\right)\right.$ resp $)$. It is easy to verify that if E_{1}, E_{2} are isometrically isomorphic Banach spaces, then $n_{m}^{(k)}\left(E_{1}\right)=n_{m}^{(k)}\left(E_{2}\right)$ and $n_{s}^{(k)}\left(E_{1}\right)=n_{s}^{(k)}\left(E_{2}\right) . \operatorname{Kim}([9,10])$ investigated properties and the inequalities between $n_{m}^{(k)}(E), n_{s}^{(k)}(E)$ and $n_{p}^{(k)}(E)$. In this paper, we first prove that $n_{s}^{(k)}\left(l_{1}\right)=n_{m}^{(k)}\left(l_{1}\right)=1$, for every $k \geq 2$. We show that for $1<p<\infty$,

$$
n_{I}^{(k)}\left(l_{p}^{j+1}\right) \leq n_{I}^{(k)}\left(l_{p}^{j}\right)
$$

for every $j \in \mathbb{N}$, and

$$
n_{I}^{(k)}\left(l_{p}\right)=\lim _{j \rightarrow \infty} n_{I}^{(k)}\left(l_{p}^{j}\right)
$$

for every $I=s, m$, where $l_{p}^{j}=\left(\mathbb{C}^{j},\|\cdot\|_{p}\right)$ or $\left(\mathbb{R}^{j},\|\cdot\|_{p}\right)$. We also show the following inequality between $n_{s}^{(k)}\left(l_{p}^{j}\right)$ and $n^{(k)}\left(l_{p}^{j}\right)$: let $1<p<\infty$ and $k \in \mathbb{N}$ be fixed. Then

$$
c\left(k: l_{p}^{j}\right)^{-1} n^{(k)}\left(l_{p}^{j}\right) \leq n_{s}^{(k)}\left(l_{p}^{j}\right) \leq n^{(k)}\left(l_{p}^{j}\right) \text { for every } j \in \mathbb{N} \cup\{\infty\}
$$

where $l_{p}^{\infty}:=l_{p}$,

$$
c\left(k: l_{p}\right)=\inf \left\{M>0:\|\check{Q}\| \leq M\|Q\| \text { for every } Q \in \mathcal{P}\left({ }^{k} l_{p}\right)\right\}
$$

and \check{Q} denotes the symmetric k-linear form associated with Q. From this inequality, we deduce that if l_{p} is a complex space, then $\lim _{j \rightarrow \infty} n_{s}^{(j)}\left(l_{p}\right)=$ $\lim _{j \rightarrow \infty} n_{m}^{(j)}\left(l_{p}\right)=0$, for every $1<p<\infty$.

2. The multilinear numerical index of l_{1} IS One

For $1<p<\infty$ and $j \in \mathbb{N}, l_{p}^{j}$ denotes \mathbb{K}^{j} endowed with the usual p-norm, where $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. We may consider l_{p}^{j} as a subspace of l_{p}. Let $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ be the canonical basis of l_{p} and $\left\{e_{n}^{*}\right\}_{n \in \mathbb{N}}$ the biorthogonal functionals associated to $\left\{e_{n}\right\}_{n \in \mathbb{N}}$. The following theorem presents explicit formulas for the numerical radius and the norm of T, for every $T \in \mathcal{L}\left({ }^{k} l_{1}: l_{1}\right)$ and every $k \geq 2$.

Theorem 2.1. Let $k \geq 2$. Let $T=\sum_{j \in \mathbb{N}} T_{j} e_{j} \in \mathcal{L}\left({ }^{k} l_{1}: l_{1}\right)$ be such that

$$
T_{j}\left(\sum_{i \in \mathbb{N}} x_{i}^{(1)} e_{i}, \cdots, \sum_{i \in \mathbb{N}} x_{i}^{(k)} e_{i}\right)=\sum_{i_{1}, \ldots, i_{k} \in \mathbb{N}} a_{i_{1} \cdots i_{k}}^{(j)} x_{i_{1}}^{(1)} \cdots x_{i_{k}}^{(k)} \in \mathcal{L}\left({ }^{k} l_{1}\right),
$$

for some $a_{i_{1} \cdots i_{k}}^{(j)} \in \mathbb{R}$. Then

$$
\sup \left\{\sum_{j \in \mathbb{N}}\left|a_{i_{1} \cdots i_{k}}^{(j)}\right|: i_{1}, \ldots, i_{k} \in \mathbb{N}\right\}=v(T)=\|T\|
$$

Consequently, $n_{s}^{(k)}\left(l_{1}\right)=n_{m}^{(k)}\left(l_{1}\right)=1$, for every $k \geq 2$.

Proof. Claim. The following inequality holds:

$$
\sup \left\{\sum_{j \in \mathbb{N}}\left|a_{i_{1} \cdots i_{k}}^{(j)}\right|: i_{1}, \ldots, i_{k} \in \mathbb{N}\right\} \leq v(T)
$$

Let $i_{1}, \ldots, i_{k} \in \mathbb{N}$ be fixed. Let $A=\left\{i_{1}, \ldots, i_{k}\right\}$. Notice that

$$
\left.\left[\left(\sum_{l \in A} \lambda_{l} e_{l}^{*}+\sum_{j \in \mathbb{N} \backslash A} \operatorname{sign}\left(a_{i_{1} \cdots i_{k}}^{(j)}\right) e_{j}^{*}\right), \overline{\lambda_{i_{1}}} e_{i_{1}}, \ldots, \overline{\lambda_{i_{k}}} e_{i_{k}}\right)\right] \in \Pi\left(\left(l_{1}\right)^{k}\right)
$$

for every $\lambda_{l} \in \mathbb{C}$ and $l \in A$, where $\overline{\lambda_{l}}$ is the conjugate complex number of λ_{l}. It follows that

$$
\begin{aligned}
& v(T) \geq \sup \left\{\left|\left(\sum_{l \in A} \lambda_{l} e_{l}^{*}+\sum_{j \in \mathbb{N} \backslash A} \operatorname{sign}\left(a_{i_{1} \cdots i_{k}}^{(j)}\right) e_{j}^{*}\right)\left(T\left(\overline{\lambda_{i_{1}}} e_{i_{1}}, \ldots, \overline{\lambda_{i_{k}}} e_{i_{k}}\right)\right)\right|:\right. \\
&=\left.\left|\lambda_{l}\right|=1, \lambda_{l} \in \mathbb{C} \text { for } l \in A\right\} \\
&= \sup \left\{\left|\left(\sum_{l \in A} \lambda_{l} e_{l}^{*}+\sum_{j \in \mathbb{N} \backslash A} \operatorname{sign}\left(a_{i_{1} \cdots i_{k}}^{(j)}\right) e_{j}^{*}\right)\left(T\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)\right)\right|:\right. \\
&\left.=\left|\lambda_{l}\right|=1, \lambda_{l} \in \mathbb{C} \text { for } l \in A\right\} \\
&\left.=\left|\sum_{l \in A} \lambda_{l} a_{i_{1} \cdots i_{k}}^{(l)}+\sum_{j \in \mathbb{N} \backslash A}\right| a_{i_{1} \cdots i_{k}}^{(j)}| |:\left|\lambda_{l}\right|=1, \lambda_{l} \in \mathbb{C} \text { for } l \in A\right\} \\
&=\left.\left|\sum_{l \in A}\right| a_{i_{1} \cdots i_{k}}^{(l)}\right) a_{i_{1} \cdots i_{k} \cdots i_{k}}^{(l)}\left|+\sum_{j \in \mathbb{N} \backslash A}^{(l)}\right| a_{i_{1} \cdots i_{k}}^{(j)}| | \\
&= \sum_{j \in \mathbb{N} \backslash A}\left|a_{i_{1} \cdots i_{k}}^{(j)}\right| \mid
\end{aligned}
$$

Hence, $\sup \left\{\sum_{j \in \mathbb{N}}\left|a_{i_{1} \cdots i_{k}}^{(j)}\right|: i_{1}, \ldots, i_{k} \in \mathbb{N}\right\} \leq v(T)$, which concludes the claim.

Let $\epsilon>0$. Choose $i_{1}^{\prime}, \ldots, i_{k}^{\prime} \in \mathbb{N}$ be such that

$$
\sum_{j \in \mathbb{N}}\left|a_{i_{1}^{\prime} \cdots i_{k}^{\prime}}^{(j)}\right|>\sup \left\{\sum_{j \in \mathbb{N}}\left|a_{i_{1} \cdots i_{k}}^{(j)}\right|: i_{1}, \ldots, i_{k} \in \mathbb{N}\right\}-\epsilon
$$

Let $\sum_{i \in \mathbb{N}} x_{i}^{(1)} e_{i}, \cdots, \sum_{i \in \mathbb{N}} x_{i}^{(k)} e_{i} \in S_{l_{1}}$.

It follows that

$$
\begin{aligned}
& \left\|T\left(\sum_{i \in \mathbb{N}} x_{i}^{(1)} e_{i}, \cdots, \sum_{i \in \mathbb{N}} x_{i}^{(k)} e_{i}\right)\right\|_{1} \\
& \quad=\sum_{j \in \mathbb{N}}\left|T_{j}\left(\sum_{i \in \mathbb{N}} x_{i}^{(1)} e_{i}, \cdots, \sum_{i \in \mathbb{N}} x_{i}^{(k)} e_{i}\right)\right| \\
& \quad \leq \sum_{j \in \mathbb{N}}\left(\sum_{i_{1}, \ldots, i_{k} \in \mathbb{N}}\left|a_{i_{1} \cdots i_{k}}^{(j)}\right|\left|x_{i_{1}}^{(1)}\right| \cdots\left|x_{i_{k}}^{(k)}\right|\right) \\
& \quad=\sum_{i_{1}, \ldots, i_{k} \in \mathbb{N}}\left(\sum_{j \in \mathbb{N}}\left|a_{i_{1} \cdots i_{k}}^{(j)}\right|\right)\left|x_{i_{1}}^{(1)}\right| \cdots\left|x_{i_{k}}^{(k)}\right| \\
& \quad
\end{aligned}
$$

which shows that

$$
\sup \left\{\sum_{j \in \mathbb{N}}\left|a_{i_{1} \cdots i_{k}}^{(j)}\right|: i_{1}, \ldots, i_{k} \in \mathbb{N}\right\}=v(T)=\|T\|
$$

Therefore, we complete the proof.
Notice that $n_{p}^{(2)}\left(l_{1}\right) \leq \frac{1}{2}$ from the example in the introduction. Kim ([11]) showed that $n_{s}^{(k)}\left(l_{\infty}\right)=n_{m}^{(k)}\left(l_{\infty}\right)=1$, for every $k \geq 2$.
3. Three kinds of numerical indices of l_{p}-Spaces for $1<p<\infty$

Theorem 3.1. Let $1<p<\infty$ and $k \in \mathbb{N}$ be fixed. Then

$$
n_{I}^{(k)}\left(l_{p}^{j+1}\right) \leq n_{I}^{(k)}\left(l_{p}^{j}\right), \quad \text { for every } j \in \mathbb{N}, \text { and } n_{I}^{(k)}\left(l_{p}\right)=\lim _{j \rightarrow \infty} n_{I}^{(k)}\left(l_{p}^{j}\right)
$$

for every $I=s, m$.
Proof. Let $I=s$. Let $j \in \mathbb{N}$ be fixed. We define $P_{\{1, \ldots, j\}}: l_{p} \rightarrow l_{p}^{j}$ by

$$
P_{\{1, \ldots, j\}}\left(\sum_{l=1}^{\infty} \lambda_{l} e_{l}\right)=\sum_{l=1}^{j} \lambda_{l} e_{l} .
$$

Obviously, $P_{\{1, \ldots, j\}}$ is linear. Let $T \in \mathcal{L}_{s}\left({ }^{k} l_{p}^{j}: l_{p}^{j}\right)$ with $\|T\|=1$. We define $T_{1} \in \mathcal{L}_{s}\left({ }^{k} l_{p}^{j+1}: l_{p}^{j+1}\right)$ by

$$
T_{1}\left(x_{1}, \ldots, x_{k}\right)=T\left(P_{\{1, \ldots, j\}}\left(x_{1}\right), \ldots, P_{\{1, \ldots, j\}}\left(x_{k}\right)\right)
$$

for $x_{1}, \ldots, x_{k} \in l_{p}^{j+1}$. It is obvious that $T_{1} \in \mathcal{L}_{s}\left({ }^{k} l_{p}^{j+1}: l_{p}^{j+1}\right)$ with $\left\|T_{1}\right\|=1$.
Claim 1. $v(T)=v\left(T_{1}\right)$
Let $\left[x^{*}, y_{1}, \ldots, y_{k}\right] \in \Pi\left(\left(l_{p}^{j}\right)^{k}\right)$. Then $\left[x^{*}, y_{1}, \ldots, y_{k}\right] \in \Pi\left(\left(l_{p}^{j+1}\right)^{k}\right)$ and

$$
\begin{align*}
\left|x^{*}\left(T\left(y_{1}, \ldots, y_{k}\right)\right)\right| & =\left|x^{*}\left(T\left(P_{\{1, \ldots, k\}}\left(y_{1}\right), \ldots, P_{\{1, \ldots, k\}}\left(y_{k}\right)\right)\right)\right| \tag{*}\\
& =\left|x^{*}\left(T_{1}\left(y_{1}, \ldots, y_{k}\right)\right)\right| \leq v\left(T_{1}\right) .
\end{align*}
$$

By taking the infimum in the left side of $(*)$ over $\left[x^{*}, y_{1}, \ldots, y_{k}\right] \in$ $\Pi\left(\left(l_{p}^{j}\right)^{k}\right)$, we have $v(T) \leq v\left(T_{1}\right)$. For the reverse inequality, let $\epsilon>0$. By the Hölder inequality, there exist $z_{0}:=\sum_{l=1}^{j+1} a_{l} e_{l} \in S_{l_{p}^{j+1}}$ such that

$$
\left[\sum_{l=1}^{j+1} \operatorname{sign}\left(a_{l}\right)\left|a_{l}\right|^{p-1} e_{l}^{*}, z_{0}, \ldots, z_{0}\right] \in \Pi\left(\left(l_{p}^{j+1}\right)^{k}\right)
$$

and

$$
v\left(T_{1}\right)-\epsilon<\left|\left(\sum_{l=1}^{j+1} \operatorname{sign}\left(a_{l}\right)\left|a_{l}\right|^{p-1} e_{l}^{*}\right)\left(T_{1}\left(z_{0}, \ldots, z_{0}\right)\right)\right|
$$

Let $c:=\left(\sum_{l=1}^{j}\left|a_{l}\right|^{p}\right)^{\frac{1}{p}} \leq 1$. It follows that

$$
\begin{aligned}
v\left(T_{1}\right)-\epsilon & <\left|\left(\sum_{l=1}^{j+1} \operatorname{sign}\left(a_{l}\right)\left|a_{l}\right|^{p-1} e_{l}^{*}\right)\left(T_{1}\left(z_{0}, \ldots, z_{0}\right)\right)\right| \\
& =\left|\left(\sum_{l=1}^{j+1} \operatorname{sign}\left(a_{l}\right)\left|a_{l}\right|^{p-1} e_{l}^{*}\right)\left(T\left(\sum_{l=1}^{j} a_{l} e_{l}, \ldots, \sum_{l=1}^{j} a_{l} e_{l}\right)\right)\right| \\
& =c^{k+p-1}\left|\left(\sum_{l=1}^{j} \operatorname{sign}\left(a_{l}\right) \frac{\left|a_{l}\right|^{p-1}}{c} e_{l}^{*}\right)\left(T\left(\frac{1}{c} \sum_{l=1}^{j} a_{l} e_{l}, \ldots, \frac{1}{c} \sum_{l=1}^{j} a_{l} e_{l}\right)\right)\right| \\
& \leq\left|\left(\sum_{l=1}^{j} \operatorname{sign}\left(a_{l}\right) \frac{\left|a_{l}\right|^{p-1}}{c} e_{l}^{*}\right)\left(T\left(\frac{1}{c} \sum_{l=1}^{j} a_{l} e_{l}, \ldots, \frac{1}{c} \sum_{l=1}^{j} a_{l} e_{l}\right)\right)\right|
\end{aligned}
$$

$$
\left(\text { since } c^{k+p-1} \leq 1\right)
$$

$$
\leq v(T)
$$

$$
\left.\in \Pi\left(\left(l_{p}^{j}\right)^{k}\right)\right)
$$

which shows that $v\left(T_{1}\right) \leq v(T)$. Thus, Claim 1 holds.
CLAIM 2. $n_{s}^{(k)}\left(l_{p}^{j+1}\right) \leq n_{s}^{(k)}\left(l_{p}^{j}\right)$ for every $j \in \mathbb{N}$.
It follows that

$$
\begin{aligned}
n_{s}^{(k)}\left(l_{p}^{j}\right) & =\inf _{T \in S_{\mathcal{L}_{s}\left(l_{p}^{j}: l_{p}^{j}\right)}} v(T)=\inf _{T \in S_{\mathcal{L}_{s}\left(k_{p}^{j}: l l_{p}^{j}\right)}} v\left(T_{1}\right) \\
& \geq \inf _{R \in S_{\mathcal{L}\left(l_{p}^{j+1}: l_{p}^{j+1}\right)}} \quad \inf \quad(R)=n_{s}^{(k)}\left(l_{p}^{j+1}\right) .
\end{aligned}
$$

Thus, Claim 2 holds.
We define $T_{2} \in \mathcal{L}_{s}\left({ }^{k} l_{p}: l_{p}\right)$ by

$$
T_{2}\left(z_{1}, \ldots, z_{k}\right)=T\left(P_{\{1, \ldots, j\}}\left(z_{1}\right), \ldots, P_{\{1, \ldots, j\}}\left(z_{k}\right)\right)
$$

for $z_{1}, \ldots, z_{k} \in l_{p}$. It is obvious that $T_{2} \in S_{\mathcal{L}_{s}\left({ }^{k} l_{p}: l_{p}\right)}$. By analogous argument as in Claim 1, we have $v(T)=v\left(T_{2}\right)$. It follows that

$$
\begin{aligned}
n_{s}^{(k)}\left(l_{p}^{j}\right) & =\inf _{T \in S_{\mathcal{L}_{s}\left(l_{p}^{j}: l_{p}^{j}\right)}} v(T)=\inf _{T \in S_{\mathcal{L}_{s}\left(l_{p}^{j}: l_{p}^{j}\right)}} v\left(T_{2}\right) \\
& \geq \inf _{R \in S_{\mathcal{L}_{s}\left(k l_{p}: l_{p}\right)}} v(R)=n_{s}^{(k)}\left(l_{p}\right) .
\end{aligned}
$$

Hence, $n_{s}^{(k)}\left(l_{p}\right) \leq n_{s}^{(k)}\left(l_{p}^{j}\right)$, for every $j \in \mathbb{N}$.
CLAIM 3. $n_{s}^{(k)}\left(l_{p}\right)=\lim _{j \rightarrow \infty} n_{s}^{(k)}\left(l_{p}^{j}\right)$.
Let $R \in \mathcal{L}_{s}\left({ }^{k} l_{p}: l_{p}\right)$ with $\|R\|=1$. For each $j \in \mathbb{N}$, we define $R_{j} \in \mathcal{L}_{s}\left({ }^{k} l_{p}^{j}\right.$: l_{p}^{j}) by

$$
R_{j}\left(x_{1}, \ldots, x_{k}\right)=P_{\{1, \ldots, j\}}\left(R\left(x_{1}, \ldots, x_{k}\right)\right)
$$

for $x_{1}, \ldots, x_{k} \in l_{p}^{j}$. It is obvious that $\left\|R_{j}\right\| \leq 1,\left\|R_{j}\right\| \leq\left\|R_{j+1}\right\|$ and $v\left(R_{j}\right) \leq$ $v(R)$. For each $j \in \mathbb{N}$, we define $R_{j}^{\prime} \in \mathcal{L}_{s}\left({ }^{k} l_{p}: l_{p}\right)$ by

$$
R_{j}^{\prime}\left(z_{1}, \ldots, z_{k}\right)=R_{j}\left(P_{\{1, \ldots, j\}}\left(z_{1}\right), \ldots, P_{\{1, \ldots, j\}}\left(z_{k}\right)\right)
$$

for $z_{1}, \ldots, z_{k} \in l_{p}$. By analogous arguments as in Claim 1, $v\left(R_{j}^{\prime}\right)=v\left(R_{j}\right)$.
We claim that $\lim _{j \rightarrow \infty}\left\|R_{j}\right\|=1$.

Indeed, let $\epsilon>0$. Choose $z_{1}, \ldots, z_{k} \in S_{l_{p}}$ such that $\left\|R\left(z_{1}, \ldots, z_{k}\right)\right\|>$ $1-\epsilon$. By continuity of R at z_{1}, \ldots, z_{k}, it follows that

$$
\begin{aligned}
\| R_{j}(& \left.P_{\{1, \ldots, j\}}\left(z_{1}\right), \ldots, P_{\{1, \ldots, j\}}\left(z_{k}\right)\right)-R\left(z_{1}, \ldots, z_{k}\right) \| \\
\leq & \| P_{\{1, \ldots, j\}}\left(R\left(P_{\{1, \ldots, j\}}\left(z_{1}\right), \ldots, P_{\{1, \ldots, j\}}\left(z_{k}\right)\right)\right) \\
& \quad-R\left(P_{\{1, \ldots, j\}}\left(z_{1}\right), \ldots, P_{\{1, \ldots, j\}}\left(z_{k}\right)\right) \| \\
& +\left\|R\left(P_{\{1, \ldots, j\}}\left(z_{1}\right), \ldots, P_{\{1, \ldots, j\}}\left(z_{k}\right)\right)-R\left(z_{1}, \ldots, z_{k}\right)\right\| \\
\leq & \left\|\left(I-P_{\{1, \ldots, j\}}\right)\left(R\left(P_{\{1, \ldots, j\}}\left(z_{1}\right), \ldots, P_{\{1, \ldots, j\}}\left(z_{k}\right)\right)\right)\right\| \\
& +\sum_{1 \leq l \leq k}\left\|P_{\{1, \ldots, j\}}\left(z_{l}\right)-z_{l}\right\| \rightarrow 0 \text { as } j \rightarrow \infty .
\end{aligned}
$$

Choose $N_{0} \in \mathbb{N}$ such that

$$
\left\|R_{j}\left(P_{\{1, \ldots, j\}}\left(z_{1}\right), \ldots, P_{\{1, \ldots, j\}}\left(z_{k}\right)\right)-R\left(z_{1}, \ldots, z_{k}\right)\right\|<\epsilon
$$

for all $j \geq N_{0}$. Then for all $j \geq N_{0}$,

$$
1 \geq\left\|R_{j}\right\| \geq\left\|R_{j}\left(P_{\{1, \ldots, j\}}\left(z_{1}\right), \ldots, P_{\{1, \ldots, j\}}\left(z_{k}\right)\right)-R\left(z_{1}, \ldots, z_{k}\right)\right\|>1-2 \epsilon
$$

which shows that $\lim _{j \rightarrow \infty}\left\|R_{j}\right\|=1$.
We claim that $\lim _{j \rightarrow \infty} v\left(R_{j}\right)=v(R)$.
Indeed, let $\epsilon>0$. Choose $\left[y^{*}, y_{0}, \ldots, y_{0}\right] \in \Pi\left(\left(l_{p}\right)^{k}\right)$ such that

$$
\left|y^{*}\left(R\left(y_{0}, \ldots, y_{0}\right)\right)\right|>v(R)-\epsilon
$$

Let $y_{0}:=\sum_{l=1}^{\infty} b_{l} e_{l}$. By the Hölder inequality, $y^{*}=\sum_{l=1}^{\infty} \operatorname{sign}\left(b_{l}\right)\left|b_{l}\right|^{p-1} e_{l}^{*}$. For $j \in \mathbb{N}$, we define

$$
y_{0}^{(j)}:=\sum_{l=1}^{j-1} b_{l} e_{l}+\left(\sum_{l=j}^{\infty}\left|b_{l}\right|^{p}\right)^{\frac{1}{p}} e_{l}
$$

and

$$
y_{j}^{*}:=\sum_{l=1}^{j-1} \operatorname{sign}\left(b_{l}\right)\left|b_{l}\right|^{p-1} e_{l}^{*}+\left(\sum_{l=j}^{\infty}\left|b_{l}\right|^{p}\right)^{\frac{p-1}{p}} e_{l}^{*}
$$

Let $q \in \mathbb{R}$ be such that $1 / p+1 / q=1$. It is obvious that $\left[y_{j}^{*}, y_{0}^{(j)}, \ldots, y_{0}^{(j)}\right] \in$ $\Pi\left(\left(l_{p}\right)^{k}\right)$ and

$$
\lim _{j \rightarrow \infty}\left\|y_{0}-y_{0}^{(j)}\right\|_{p}=0=\lim _{j \rightarrow \infty}\left\|y^{*}-y_{j}^{*}\right\|_{q}
$$

Notice that

$$
\lim _{j \rightarrow \infty} y_{j}^{*}\left(R\left(y_{0}^{(j)}, \ldots, y_{0}^{(j)}\right)\right)=y^{*}\left(R\left(y_{0}, \ldots, y_{0}\right)\right)
$$

Indeed,

$$
\begin{aligned}
& \left|y_{j}^{*}\left(R\left(y_{0}^{(j)}, \ldots, y_{0}^{(j)}\right)\right)-y^{*}\left(R\left(y_{0}, \ldots, y_{0}\right)\right)\right| \\
& \quad \leq\left|y_{j}^{*}\left(R\left(y_{0}^{(j)}, \ldots, y_{0}^{(j)}\right)\right)-y^{*}\left(R\left(y_{0}^{(j)}, \ldots, y_{0}^{(j)}\right)\right)\right| \\
& \quad+\left|y^{*}\left(R\left(y_{0}^{(j)}, \ldots, y_{0}^{(j)}\right)\right)-y^{*}\left(R\left(y_{0}, \ldots, y_{0}\right)\right)\right| \\
& \leq \leq y_{j}^{*}-y^{*}\left\|_{q}\right\| R\left(y_{0}^{(j)}, \ldots, y_{0}^{(j)}\right) \|_{p} \\
& \quad+\left\|R\left(y_{0}^{(j)}, \ldots, y_{0}^{(j)}\right)-R\left(y_{0}, \ldots, y_{0}\right)\right\|_{p} \rightarrow 0 \text { as } j \rightarrow \infty
\end{aligned}
$$

Choose $N_{1} \in \mathbb{N}$ such that

$$
\left|y_{j}^{*}\left(R\left(y_{0}^{(j)}, \ldots, y_{0}^{(j)}\right)\right)\right|>v(R)-\epsilon,
$$

for all $j \geq N_{1}$. It is easy to show that for all $j \geq N_{1}$,

$$
y_{N_{1}}^{*}\left(R_{j}^{\prime}\left(y_{0}^{\left(N_{1}\right)}, \ldots, y_{0}^{\left(N_{1}\right)}\right)\right)=y_{N_{1}}^{*}\left(R\left(y_{0}^{\left(N_{1}\right)}, \ldots, y_{0}^{\left(N_{1}\right)}\right)\right)
$$

It follows that for all $j \geq N_{1}$,

$$
\begin{aligned}
v(R)-\epsilon & <\left|y_{N_{1}}^{*}\left(R\left(y_{0}^{\left(N_{1}\right)}, \ldots, y_{0}^{\left(N_{1}\right)}\right)\right)\right| \\
& =\left|y_{N_{1}}^{*}\left(R_{j}^{\prime}\left(y_{0}^{\left(N_{1}\right)}, \ldots, y_{0}^{\left(N_{1}\right)}\right)\right)\right| \\
& \leq v\left(R_{j}^{\prime}\right)=v\left(R_{j}\right) \leq v(R),
\end{aligned}
$$

which shows that $\lim _{j \rightarrow \infty} v\left(R_{j}\right)=v(R)$. It follows that

$$
\begin{equation*}
v(R)=\lim _{j \rightarrow \infty} v\left(\frac{R_{j}}{\left\|R_{j}\right\|}\right) \geq \lim _{j \rightarrow \infty} n_{s}^{(k)}\left(l_{p}^{j}\right) \geq n_{s}^{(k)}\left(l_{p}\right) \tag{**}
\end{equation*}
$$

Taking the infimum in the left side of $(* *)$ over $R \in \mathcal{L}_{s}\left({ }^{k} l_{p}: l_{p}\right)$ with $\|R\|=1$, we have

$$
n_{s}^{(k)}\left(l_{p}\right)=\lim _{j \rightarrow \infty} n_{s}^{(k)}\left(l_{p}^{j}\right)
$$

If $I=m$, analogous arguments give the proof. We complete the proof.
For a Banach space X, the k-th polarization constant of X is defined by

$$
c(k: X):=\inf \left\{M>0:\|\mathscr{Q}\| \leq M\|Q\| \text { for every } Q \in \mathcal{P}\left({ }^{k} X\right)\right\}
$$

where \check{Q} denotes the symmetric k-linear form associated with Q. The polarization constant of X is defined by $c(X):=\liminf _{k \rightarrow \infty} c(k: X)^{\frac{1}{k}}$. Recently, Dimant et al. ([6]) proved that $c(X)=1$ if X is a finite dimensional complex space and $c(X) \leq 2$ if X is a finite dimensional real space.

The following theorem shows some relation between $n_{s}^{(k)}\left(l_{p}^{j}\right)$ and $n^{(k)}\left(l_{p}^{j}\right)$.

Theorem 3.2. Let $1<p<\infty$ and $k \in \mathbb{N}$ be fixed. Then

$$
c\left(k: l_{p}^{j}\right)^{-1} n^{(k)}\left(l_{p}^{j}\right) \leq n_{s}^{(k)}\left(l_{p}^{j}\right) \leq n^{(k)}\left(l_{p}^{j}\right) \text { for every } j \in \mathbb{N} \cup\{\infty\}
$$

where $l_{p}^{\infty}:=l_{p}$.
Proof. Let $P \in \mathcal{P}\left({ }^{k} l_{p}: l_{p}\right)$ with $\|P\|=1$. Let $q \in \mathbb{R}$ be such that $1 / p+1 / q=1$. It is enough to show the theorem for $j=\infty$. It follows that

$$
\begin{align*}
v(P) & =\sup \left\{\left|y^{*}(P(x))\right|:\left[y^{*}, x\right] \in \Pi\left(l_{p}\right)\right\} \\
& =\sup \left\{\left|y^{*}\left(\check{P}\left(x_{1}, \ldots, x_{k}\right)\right)\right|:\left[y^{*}, x_{1}, \ldots, x_{k}\right] \in \Pi\left(\left(l_{p}\right)^{k}\right)\right\} \\
& =\sup \left\{\left|y^{*}(\check{P}(x, \ldots, x))\right|:\left[y^{*}, x\right] \in \Pi\left(l_{p}\right)\right\}
\end{align*}
$$

(by the Hölder inequality)

$$
\begin{aligned}
& =v(\check{P})=\|\check{P}\| v\left(\frac{\check{P}}{\|\check{P}\|}\right) \\
& \geq\|P\| n_{s}^{(k)}\left(l_{p}\right)=n_{s}^{(k)}\left(l_{p}\right)
\end{aligned}
$$

Taking the infimum in the left side of (\dagger) over $P \in \mathcal{P}\left({ }^{k} l_{p}: l_{p}\right)$ with $\|P\|=1$, we obtain $n_{s}^{(k)}\left(l_{p}\right) \leq n^{(k)}\left(l_{p}\right)$. Let $T \in \mathcal{L}_{s}\left({ }^{k} l_{p}: l_{p}\right)$ with $\|T\|=1$. It follows that

$$
\begin{aligned}
v(T)= & \sup \left\{\left|y^{*}\left(T\left(x_{1}, \ldots, x_{k}\right)\right)\right|:\left[y^{*}, x_{1}, \ldots, x_{k}\right] \in \Pi\left(\left(l_{p}\right)^{k}\right)\right\} \\
= & \sup \left\{\left|y^{*}(T(x, \ldots, x))\right|:\left[y^{*}, x\right] \in \Pi\left(l_{p}\right)\right\} \\
& (\text { by the Hölder inequality }) \\
= & \sup \left\{\left|y^{*}(\hat{T}(x))\right|:\left[y^{*}, x\right] \in \Pi\left(l_{p}\right)\right\} \\
= & \|\hat{T}\| \sup \left\{\left|y^{*}\left(\frac{\hat{T}}{\|\hat{T}\|}(x)\right)\right|:\left[y^{*}, x\right] \in \Pi\left(l_{p}\right)\right\} \\
\geq & \frac{1}{\inf \left\{M>0:\|\check{P}\| \leq M\|P\| \text { for every } P \in \mathcal{P}\left({ }^{k} l_{p}: l_{p}\right)\right\}} v\left(\frac{\hat{T}}{\|\hat{T}\|}\right) \\
\geq & c\left(k: l_{p}\right)^{-1} n^{(k)}\left(l_{p}\right),
\end{aligned}
$$

where \hat{T} denotes the k-homogeneous polynomial associated with T. Taking the infimum in the left side of $(\dagger \dagger)$ over $T \in \mathcal{L}_{s}\left({ }^{k} l_{p}: l_{p}\right)$ with $\|T\|=1$, we obtain

$$
c\left(k: l_{p}\right)^{-1} n^{(k)}\left(l_{p}\right) \leq n_{s}^{(k)}\left(l_{p}\right)
$$

Therefore, we complete the proof.

Theorem 3.3. Let $1<p<\infty$. The following assertions hold:
(a) if l_{p} is a complex space, then given $\epsilon>0$, there is $N \in \mathbb{N}$ such that

$$
(1+\epsilon)^{-k} n^{(k)}\left(l_{p}\right) \leq n_{s}^{(k)}\left(l_{p}\right) \leq n^{(k)}\left(l_{p}\right) \text { for every } k \geq N
$$

(b) if l_{p} is a real space, then given $\epsilon>0$, there is $N \in \mathbb{N}$ such that

$$
(2+\epsilon)^{-k} n^{(k)}\left(l_{p}\right) \leq n_{s}^{(k)}\left(l_{p}\right) \leq n^{(k)}\left(l_{p}\right) \text { for every } k \geq N
$$

Proof. (a) Let $j \in \mathbb{N}$ be fixed. Since l_{p}^{j} is a finite dimensional complex space, by [6, Theorem 2.1],

$$
\limsup _{k \rightarrow \infty} c\left(k: l_{p}^{j}\right)^{\frac{1}{k}}=1
$$

Let $\epsilon>0$. There is $N \in \mathbb{N}$ such that

$$
\sup \left\{c\left(k: l_{p}^{j}\right)^{\frac{1}{k}}: k \geq N\right\}<1+\epsilon
$$

Hence,

$$
c\left(k: l_{p}^{j}\right)^{-1}>(1+\epsilon)^{-k} \text { for every } k \geq N
$$

By Theorems A and B, it follows that

$$
\begin{aligned}
n_{s}^{(k)}\left(l_{p}\right) & =\inf \left\{n_{s}^{(k)}\left(l_{p}^{i}\right): i \in \mathbb{N}\right\} \geq n_{s}^{(k)}\left(l_{p}^{j}\right) \geq c\left(k: l_{p}^{j}\right)^{-1} n^{(k)}\left(l_{p}^{j}\right) \\
& >(1+\epsilon)^{-k} n^{(k)}\left(l_{p}^{j}\right) \geq(1+\epsilon)^{-k} n^{(k)}\left(l_{p}\right) .
\end{aligned}
$$

(b) Let $j \in \mathbb{N}$ be fixed. Since l_{p}^{j} is a finite dimensional real space, by [6, Proposition 2.7],

$$
\limsup _{k \rightarrow \infty} c\left(k: l_{p}^{j}\right)^{\frac{1}{k}} \leq 2
$$

The proof follows by analogous arguments to the ones given in the proof of (a).

Corollary 3.4. Let $k \in \mathbb{N}$. If $l_{2 k}$ is a real space, then $n_{s}^{(2 k+1)}\left(l_{2 k}\right)=0$. Hence, $\lim _{j \rightarrow \infty} n_{s}^{(j)}\left(l_{2 k}\right)=0$, for every $j \in \mathbb{N}$.

Proof. It follows by [12, Theorem 3.6] and Theorem 3.2.
Corollary 3.5. Let $1<p<\infty$ and $k \in \mathbb{N}$ be fixed. If l_{p} is a complex space, then $n_{s}^{(k)}\left(l_{p}\right) \leq 2^{\frac{1-k}{p}}$. Hence, $\lim _{j \rightarrow \infty} n_{s}^{(j)}\left(l_{p}\right)=\lim _{j \rightarrow \infty} n_{m}^{(j)}\left(l_{p}\right)=0$, for every $1<p<\infty$.

Proof. It follows by [12, Theorem 3.8] and Theorem 3.2.

Acknowledgements.

The author is thankful to the referee for the careful reading. Considered suggestions led to a better presentation in the paper.

References

[1] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, Cambridge University Press, London-New York, 1971.
[2] F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press, London-New York, 1973.
[3] Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. 54 (1996), 135-147.
[4] Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, The polynomial numerical index of a Banach space, Proc. Edinb. Math. Soc. 49 (2006), 39-52.
[5] Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, Composition, numerical range and Aron-Berner extension, Math. Scand. 103 (2008), 97-110.
[6] V. Dimant, D. Galicer and J. T. Rodriguez, The polarization constant of finite dimensional complex space is one, Math. Proc. Cambridge Philos. Soc. 172 (2022), 105--123.
[7] S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London, 1999.
[8] J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a normed space, J. London Math. Soc. 2 (1970), 481-488.
[9] D. Garcia, B. Grecu, M. Maestre, M. Martin and J. Meri, Two dimensional Banach spaces with polynomial numerical index zero, Linear Algebra Appl. 430 (2009), 24882500.
[10] C. Finet, M. Martin and R. Paya, Numerical index and renorming, Proc. Amer. Math. Soc. 131 (2003), 871-877.
[11] S. G. Kim, Three kinds of numerical indices of a Banach space, Math. Proc. R. Ir. Acad. 112A (2012), 21-35.
[12] S. G. Kim, Polynomial numerical index of $l_{p}(1<p<\infty)$, Kyungpook Math. J. 55 (2015), 615-624.
[13] S. G. Kim, Three kinds of numerical indices of a Banach space II, Quaest. Math. 39 (2016), 153-166.
[14] S. G. Kim, M. Martin and J. Meri, On the polynomial numerical index of the real spaces $c_{0}, \ell_{1}, \ell_{\infty}$, J. Math. Anal. Appl. 337 (2008), 98-106.
[15] G. Lopez, M. Martin and R. Paya, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), 207-212.
[16] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
[17] M. Martin and R. Paya, Numerical index of vector-valued function spaces, Studia Math. 142 (2000), 269-280.
[18] M. Martin, J. Meri and M. Popov, On the numerical index of $L_{p}(\mu)$-spaces, Israel J. Math. 184 (2011), 183-192.
S. G. Kim

Department of Mathematics
Kyungpook National University
Daegu 702-701
Republic of Korea
E-mail: sgk317@knu.ac.kr
Received: 28.6.2021.
Revised: 26.11.2021.

[^0]: 2020 Mathematics Subject Classification. 46A22, 46G20.
 Key words and phrases. The polynomial numerical index, the symmetric multilinear numerical index, the multilinear numerical index.

