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THREE KINDS OF NUMERICAL INDICES OF [,-SPACES

SuNG GUEN Kim
Kyungpook National University, Republic of Korea

ABSTRACT. In this paper, we investigate the polynomial numerical
index n(®)(1,), the symmetric multilinear numerical index ngk)(lp)7 and
the multilinear numerical index ngf)(lp) of I, spaces, for 1 < p < oco. First
we prove that ngk)(ll) = nss)(ll) = 1, for every k > 2. We show that
for 1 < p < oo, ngk)(l{fl) < ngk)(l;), for every j € N and ngk)(lp) =
lim;j o0 ngk)(l;), for every I = s, m, where I} = (- |lp) or (RI, || - |Ip)-
We also show the following inequality between ngk)(li,) and n(k)(l;): let
1 <p < ooandk €N be fixed. Then

ek )"t n® @) <alP @) <n® @),
for every j € NU {oo}, where I5° :=Ip,
e(k : 1) = inf {M >0: Q[ € M|Q||, for every Q € P(’“lp)}

and Q denotes the symmetric k-linear form associated with Q. From this
inequality, we deduce that if I}, is a complex space, then lim;_, ngj) (Ip) =

limj o0 nsfl) (Ip) =0, for every 1 < p < oo.

1. INTRODUCTION

Throughout this paper K denotes either the complex field C or the real
field R. If the field is not specified the results are valid in both cases. Let
E and F be Banach spaces over the field K. We write Bg and Sg for the
closed unit ball and the unit sphere of E, respectively. The dual space of
is denoted by E*. We write E* for the product E x --- x E with k factors,
for some natural number k. We denote by L£(*E : F) the Banach space of
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continuous k-linear mappings of E¥ into F' endowed with the norm
[|A]] = sup {||A(z1,...,2x)| :z; € Bg,j=1,....k}.
A€ L(*E : F) is said to be symmetric if

A(xlv s 7$k) = A(Ia(l)v o ')IO'(IC)))

for any 1, ...,z in F and any permutation o of the first k£ natural numbers.
We denote by Ls(*E : F) the closed subspace of all symmetric k-linear maps
in L(*E : F). Given A € L(*E : F), we define the symmetric k-linear mapping
Ay 1 E¥ — F (which we call the symmetrization of A) by

1
As(.%'l, .. .,xk) = E ZA(xg(l), .. .,Ig(k)),

for any z1,...,x, in E, where the summation is over the k! permutations
o of the first k& natural numbers. We denote L(*E : K) and L (*F : K)
by L(*E) and Ls(*E) respectively. A mapping P : E — F is said to be
a continuous k-homogeneous polynomial if there exists an A € L(*E : F)
such that P(z) = A(x,...,z), for all # € E. For A € L(*E : F), we define
the associated polynomial A : E — F by A(z) = A(x,...,z) for z € E. It is
obvious that A = A,. We denote by P(*E : F) the Banach space of continuous
k-homogeneous polynomials of E into F' endowed with the polynomial norm
| P|| = sup,cp, | P(z)|. We denote P(*E : K) by P(*E). We also note that
|A| < ||As| < ||A]| for any A in L(*E : F). We refer to [7] for a general
background on the theory of polynomials on an infinite dimensional Banach
space.

In this paper we consider the spaces L(*E : E), L;(*E : E) and P(*E :
E). Let

II(E*) :{[3:*,331, o) xt € BNz € B,
1= () = gl = "l 1 < j < k.
The numerical range of A € L(*E : E) is defined by
W(A) = { z*(A(z1,...,21)) : (x1,...,2,2%) € T(EX)}
and the numerical radius of A € L(*E : E) is defined by
v(A) :=sup { [*(A(z1,...,21))| : (21,..., 28, 2%) € I(EX)}.
Similarly, for each P € P(*E : E), the numerical range of P is defined by
W(P) := {z*(Pz) : (z,z*) € TI(E")}

and the numerical radius of P is defined by

v(P) :=sup {|A\ : A€ W(P)}.
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Clearly we have v(A) < [|A],v(A,) < ||As]| and v(A) < ||A], for any A in
L(*E: E). It is obvious that

(%) v(A) < v(A,) <v(4) (AeL(FE:E)),

as in the case of norms of them. The following example shows that the
inequalities in () can be strict. In fact, we define a continuous 2-linear map
A€ Ll : 1) by

1 1
Az, y) = (5351241 +2z192)e1 + (—5332242 — T1Yy2)ez,

for any @ = (z;),y = (y;) € l1, where e; = (1,0,0,...) and e = (0,1,0,0,...).
Then we have
1 1 1 1
As(z,y) = (§x1y1 + x1Y2 + T2y1)er + (—59023/2 — %1y — §$2y1)€2

and

~

1 1
Ar) = (5517% +2x122)e1 + (—53:% — x172)e3.

It is not difficult to show that v(A) = L ||A|| = 1,0(A,) = 2 = ||A,] and
v(A) =3 = ||A]|. Thus
A A, A
Vi—) < Vvt——)=0v(7—).
G < G =y
Note that || A] < ||As|| < [|A]| and v(A) < v(A) < v(A).
In [4] the k-th polynomial numerical index of E, the constant n,(,k) (E) is
defined by
n{¥)(B) == inf {v(P): P € Sp(p.p}-

Clearly 0 < n{(E) < 1 (see [1, 2, 3, 4, 5] and [8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18] for general information and background on the theory of numerical
index of Banach spaces).

In connection to n,(,k) (E), Kim ([11, 13]) introduced the new concepts of
the k-th multilinear numerical index and k-th symmetric multilinear numerical
index of F, generalizing to k-linear and symmetric k-linear maps, respectively
the classical numerical index defined by G. Lumer ([16]) in the sixties for linear
operators. The k-th multilinear numerical index of E was defined ([11, 13])
by

n(B) == inf {v(A) 1 A€ Serp.m)}-
We define the k-th symmetric multilinear numerical index of E by
n{®) (E) :=inf {v(A): A€ Sz (rp.p}-

Clearly 0 < ng«f)(E) < 1,0 < ngk)(E) < 1. Since L,(*E : E) is a closed
subspace of L(*E : E), we have nk) (E) < ngk)(E). Clearly nk) (E) (ngk) (E)
resp.) is the greatest constant ¢ > 0 such that ¢||A|| < v(A) for every A €
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L*E: E) (A€ Ly(*E : E) resp.). Note that ni¥) (E)>0 (ngk) (E) > 0 resp)
if and only if v and || - || are equivalent norms on L(*E : E) (Ls(*E : E) resp).
It is easy to verify that if Fy, Fy are isometrically isomorphic Banach spaces,
then n¥) (Ey) = nk) (E2) and ngk)(El) =i (E2). Kim ([9, 10]) investigated
properties and the inequalities between nk) (E), k) (F) and nl(jk)(E). In this
paper, we first prove that n{) (ly) = nk) (I1) = 1, for every k > 2. We show
that for 1 < p < oo,
ni? (1) < nf (1),

for every j € N, and

k . k i
n (1,) = lim 0 (1),

for every I = s,m, where IJ = (C7, | - ||,) or (R?, ]| - [|,). We also show the
following inequality between ngk)(lg;) and n(®) (7): let 1 <p <ooand ke N
be fixed. Then

c(k - 2)7t n® ) <P (12) < n®) (1) for every j € NU {oc},

where [)° := [,
c(k :1,) = inf {M >0: Q| < M|Q]| for every Q € P(kz,,)}

and Q denotes the symmetric k-linear form associated with Q. From this
inequality, we deduce that if [, is a complex space, then lim;_, . ngj )(lp) =

limj o0 n$) (I,) =0, for every 1 < p < oo.

2. THE MULTILINEAR NUMERICAL INDEX OF [ IS ONE

For 1l <p<ooandjeN, lg denotes K7 endowed with the usual p-norm,
where K = R or C. We may consider lg) as a subspace of l,. Let {e, }nen be the
canonical basis of [, and {e} },,cn the biorthogonal functionals associated to
{en}nen. The following theorem presents explicit formulas for the numerical
radius and the norm of T, for every T € E(kll :11) and every k > 2.

THEOREM 2.1. Let k> 2. Let T =Y. _Tje; € L(*l1 : 11) be such that

jEN
1 k j 1 k
TJ(Z:CE )eiv... 72;1:5 )61) = Z G’Ei)zk Iz('l) :Cgk) c L(kll)7
i€N ieN i1y0rin EN

for some al i, €R. Then

iy

sup{z a

JjEN

(7

i1l

ity € N = o(T) = T,

Consequently, n®) (lh) = nk) (Ih1) = 1, for every k > 2.
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Proor. CraiM. The following inequality holds:

sup{z

jeN

(7
ail"'ik

:m”wmeN}gmﬂ.

Let i1,...,ix € N be fixed. Let A = {i1,...,ir}. Notice that

[(Z)\lef + Z sign(agf_)__ik)e;>,)\_ileil, .. ,)\_ikeik)} e I((h)"),

leA JEN\A

for every \; € C and [ € A, where )\; is the conjugate complex number of ;.
It follows that

>sup{‘(2)\lel + Z sign(a g) i ;)(T(A_ileil,...,)\ikeik))‘:

leA JEN\A
MAZLMerHeA}

Sup{’(Z/\lel + Z sign(a Z(f) i *)(T(eil,...,eik))’:
leA jEN\A
Mﬂ:lhe@bneA}

=sup{‘2)\laZl i T Z o

’Ll 'Lk
leA JEN\A

:’Zs&gn Z(i Zk 11 lk—l— Z

lcA JEN\A

*!Z + 2 ol
JEN\A
- 3|

Gyeig |
jeN

LMAZLMecmueA}

711 i

711 ik

Hence, sup{ZJGN ’ag) z;c‘ ti1,...,i € N} < o(T), which concludes the
claim.
Let € > 0. Choose 4,,...,7;, € N be such that

{3 ]a

jEN

()

711 g

’(J)_

Zil,...,ikEN}—

k
Let EZEN i€, ’ZiEN‘Iz(’ )ei c Sll-
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It follows that
(X aleio Y ale)|
fr( e Tt
€N 1N
=y Tj(ZxE”ei,--- ,ngmei)

JEN ieN €N

j 1 k
SZ( Z ag.)..ik :171(-1) xEk))
JEN i1,...,ix€N
= Y (] ]) [P [

(9) (1) (k)
Y (b b
i1,..,i, €N jEN
= (X1a? 1+e) > [all gl
jen ' OF i1,erin €N
= (X [a? |+ ) ([ (X =)
jen ' F ir €N ir€N

+ e <ou(T) + € (by Claim),

= E ’CLE/J) i
PR
JEN

which shows that

sup { S el | i, in € N} = o(T) = |T|.
JEN
Therefore, we complete the proof. O

Notice that nl(f)(ll) < 1 from the example in the introduction. Kim ([11])
showed that n{" (loo) = nk) (o) = 1, for every k > 2.

3. THREE KINDS OF NUMERICAL INDICES OF lp—SPACES FOR 1 <p < o0

THEOREM 3.1. Let 1 < p < oo and k € N be fixred. Then

ngk)(lgfl) < n(lk) (1), for every j €N, and ngk) (lp) = ]li)rlgo nﬁk) (1),

for every I = s, m.

PROOF. Let I = s. Let j € N be fixed. We define Pgy ;1 : 1, — lg) by

.....
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Obviously, Pyy,. jy is linear. Let T € Ly(¥1 : 17) with || T| = 1. We define
Ty € LRI 17HY) by

T1 (Il, I ,Ik) = T(P{l,...,j} (:El), ey P{l,...,j} (Ik))
for zy, ..., @ € I 1t is obvious that Ty € L (FIJ*! - 17F1) with [|T3]| = 1.

Cram 1. o(T) = v(Ty)
Let [#*,y1, .,y € T((1))"). Then [z, y1, ..., yx] € TI((*)") and

(T, )| = o (T(Paay ) Py @) )|

= ’x*(Tl(ylu . 73/19))’ < v(T1).

By taking the infimum in the left side of (%) over [z*,y1,...,yx] €
IL((12)%), we have v(T) < v(T1). For the reverse inequality, let ¢ > 0. By

the Holder inequality, there exist zg := Ef;l aje; € Sy+1 such that
P

Jj+1
[ sien(ala’ e}, z0.....z0] € (@)
=1
and
Jj+1
o(T1) — e < | (D sten(a)al ;) (Ta(zo, - 20))|.
=1
Let ¢ := (Z{_l |al|p)% < 1. Tt follows that

v(Th) —e< ’(Z&gn ap)|ag|P~ 161) (Tl(zo, . .,zo))’
J J
— ’(Zsign(alﬂa”p_le?‘) (T(Zalel, e Zalel))‘
1=1 =1 =1
J |a |p—1 1 J 1 J
= ck'“’_l}(Zsign(al)—l e?‘) (T(— Zalel, U Z am))}
=1 ¢ “= e
i ! L LI
< ‘(251gn(al)7 e?) (T(EZalel,...,EZaleO)‘
=1 =1 =1

(since FP71 < 1)
<o(T)

J |al|p 1 J

(smce [(Z sign(az) € )’ Z%el’ i% ]

=1 =1

5)),
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which shows that v(T7) < v(T'). Thus, Claim 1 holds.
Cram 2. n{® () < nk) (17) for every j € N.

It follows that

W)= if (T) = _ inf (Th)
Ng m v m vl
p TGSES(’CL%:L%,) TGSES("L%:L%,)

> inf v(R) =nP ().

Rescs(kz{fl;z{fl)

Thus, Claim 2 holds.
We define Ty € L4(*1, : 1,,) by

TQ(Zl, ey Zk) = T(P{l,...,j} (2’1), e aP{l,...,j} (Zk))

for z1,..., 2 € lp. It is obvious that T5 € Sg (x;,.1,). By analogous argument
as in Claim 1, we have v(T) = v(T3). It follows that

D)=, mf T = it oDy
Ng 1mn v 1mn vid2
p Tesﬂs(kl%:l%) Tesﬂs(kl“;:l“;)

> inf v(R) = ngk) lp).

2 pesif (R) (lp)

Hence, nt”(1,,) < n{® (17), for every j € N.
Cram 3. nd (1) = limjo nl™ (17).
Let R € Ly(*1, : 1) with || R|| = 1. For each j € N, we define R; € L (*1J :
l3) by
Rj(x1,...,o) = P, 5y (R(ivl, . 75%)),

for x1,..., 2, € IJ. It is obvious that ||R;|| < 1,[|R;| < ||Rjs1]| and v(R;) <
v(R). For each j € N, we define R; € Ls(*1, :1,) by

Rj(zl, ceey Zk) = Rj (P{l,...,j} (21), ceey P{l,...,j} (Zk)),

for z1,...,2, € . By analogous arguments as in Claim 1, v(R;-) = v(Ry).
We claim that lim; o ||R;]| = 1.
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Indeed, let € > 0. Choose z1,...,2, € S, such that [|[R(z1,...,2z)| >
1 — €. By continuity of R at z1,..., 2, it follows that

Y=o a) s )
+ Z HP{lvnnj}(Zl) -z

1<i<k
Choose Ny € N such that

— 0 as j — oo.

for all 7 > Ny. Then for all j > Ny,
V2 Ryl 2 || Ry (P, iy (1), o Pty (30)) = Rz, o2 > 1= 26,

which shows that lim;_. || R[] = 1.
We claim that lim;_,o, v(R;) = v(R).
Indeed, let € > 0. Choose [y*, 4o, . - .,y0] € I1((1,)¥) such that

’y*(R(yo, . ,yo))’ > v(R) —e.

Let yo := > o, bie;. By the Holder inequality, y* = >,°, sign(b;) |by|Pte}.
For j € N, we define

y(()j). Zblel+ Z|bl|p%
and

Jj—1 [e%s)
p—1
= sign(b) [bilPtep + O [bufP) 7 e
=1 I=j

Let ¢ € R be such that 1/p+ 1/q = 1. It is obvious that [yj,yéj), . .,y(()j) S
(1,)") and
Gy —n_ 1 * *
Jim flyo —yg"llp = 0= lim fly" =47,
Notice that
lim o (R(yS, .. u")) = v (R(yo, - v0))-

j‘)OO
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Indeed,

yi (R = v (R, 30))|

v RO ") =y (RO, )]
v (RS- u6”) = (Rl 30))

<y —y*llq HR(yé”,---,yéj))Hp

<

+

+ HR(y(()j),...,yéj)) —R(yo,...,yo)Hp —0as j— oo.

Choose N7 € N such that
v RO -] > v (R) — e,
for all 7 > Nj. It is easy to show that for all j > Ny,

, ' (N N . N N
v, Ry s™ -y = wa RO, yE™),
It follows that for all j > Ny,

v(R) —e<

% N N
yi, RSNy 1)))’
% ’ N N
yN1(Rj(y((J 1)7"'7y((J 1)))‘

’

< o(R)) = v(R;) < v(R),

which shows that lim; o v(R;) = v(R). It follows that

(%) o(R) = lim v( R, ) > lim o (1) > n®)(1,).

oo \|[Ry|l/ T i=oo

Taking the infimum in the left side of (x*) over R € L4(*1, : 1,,) with ||R| = 1,

we have

n(1,) = tim 0 (1)

If I = m, analogous arguments give the proof. We complete the proof.

For a Banach space X, the k-th polarization constant of X is defined by

c(k: X) :=inf {M >0:[|Q| < M| Q| for every Q € ’P(kX)},

where @ denotes the symmetric k-linear form associated with Q. The polar-
ization constant of X is defined by ¢(X) := liminfy_,o c(k : X)¥. Recently,
Dimant et al. ([6]) proved that ¢(X) =1 if X is a finite dimensional complex

space and ¢(X) < 2 if X is a finite dimensional real space.

The following theorem shows some relation between n{*) (13) and n®) (12).
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THEOREM 3.2. Let 1 < p < oo and k € N be fixred. Then
C1iN=1 (k) (15 k) (17 k) (17 .
c(k: 1) nl )(lfo) <nf )(l;) < n! )(lfo) for every 7 € NU {oo},
where 157 := 1.

Proor. Let P € P(*l, : 1,) with |[P|| = 1. Let ¢ € R be such that
1/p+1/q = 1. It is enough to show the theorem for j = oo. It follows that

o(P) = sup { |y (P(2))] : [y", 2] € TI(1,) }
= sup { |y (P(ar,.. o)) 1 [y o,y € TH()Y)
0 = sup{ *(P(x,. .. ,:v))‘ Dyt ] € H(lp)}

(by the Holder inequality)

P
=o(P) = 1P v(57)
> ||P| ngk)(lp) = gk)(lp)'

Taking the infimum in the left side of (1) over P € P(¥l, : I,) with ||P| = 1,

we obtain n{® (1,) < n®)(1,). Let T € L4(*1, : 1,) with |T|| = 1. It follows
that

o(T) = sup{’y*(T(:z:l,...,:ck))’ Yt @, T € n((zp)k)}

= sup{‘y*(T(m,...,%))‘ : [y*,w] € H(lp)}

(by the Holder inequality)

—sup{|y (B ly"a] €11, )}

( @) el € 1)}

: (o)
inf {M >0 ||P|| < M||P|l for every P € P(*, : zp)} ial
> c(k: lp)il n(k)(lp),

(1)

Il s

Y

where T' denotes the k-homogeneous polynomial associated with 7. Taking
the infimum in the left side of (1) over T € Ls(*l, : 1,) with |T| = 1, we
obtain

c(k : lp)iln(k) (Ip) < ”gk) (Lp)-

Therefore, we complete the proof. O
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THEOREM 3.3. Let 1 < p < oco. The following assertions hold:
(a) ifl, is a complex space, then given € > 0, there is N € N such that

(146 n® ) <n®@,) <n®™(1,) for every k > N;
(b) ifl, is a real space, then given € > 0, there is N € N such that
24 e n® (1) <n®(1,) <n®(1,) for every k> N.
PROOF. (a) Let j € N be fixed. Since IJ is a finite dimensional complex

space, by [6, Theorem 2.1],

limsup c(k : lg)% =1

k—o00

Let € > 0. There is N € N such that
sup{c(k : lg))% ck>N}<l+e
Hence,
ek )t > (14 )" for every k > N.
By Theorems A and B, it follows that
n{)(1,) = inf{nM(11) i € N} > 0P (1) > e(k : 1)~ n™ (1)
> (146 "MW) > (1+¢) " nM(1,).
(b) Let j € N be fixed. Since IJ is a finite dimensional real space, by [6,
Proposition 2.7],
limsup c(k : lg)% < 2.

k— o0

The proof follows by analogous arguments to the ones given in the proof of
(a). O

COROLLARY 3.4. Let k € N. If lo) is a real space, then ng%ﬂ)(l%) = 0.

Hence, lim;_, o ngj)(l%) =0, for every j € N.
PRrROOF. It follows by [12, Theorem 3.6] and Theorem 3.2. O

COROLLARY 3.5. Let 1 <p < oo and k € N be fized. If I, is a complex
(k)

space, then ng’ (I,) < 2% Hence, lim;_,o ngj)(lp) = lim; o0 n$) (I,) =0,
for every 1 < p < oo.

PRrROOF. It follows by [12, Theorem 3.8] and Theorem 3.2. O
ACKNOWLEDGEMENTS.

The author is thankful to the referee for the careful reading. Considered
suggestions led to a better presentation in the paper.



(1]
(2]
(3]
(4]
(5]

[6]

[7]
(8]

(9]

[10]

THREE KINDS OF NUMERICAL INDICES OF [,-SPACES 61

REFERENCES

F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of
elements of normed algebras, Cambridge University Press, London-New York, 1971.
F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press,
London-New York, 1973.

Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings
and polynomials, J. London Math. Soc. 54 (1996), 135-147.

Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, The polynomial numerical index
of a Banach space, Proc. Edinb. Math. Soc. 49 (2006), 39-52.

Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, Composition, numerical range and
Aron-Berner extension, Math. Scand. 103 (2008), 97-110.

V. Dimant, D. Galicer and J. T. Rodriguez, The polarization constant of finite di-
mensional complex space is one, Math. Proc. Cambridge Philos. Soc. 172 (2022),
105--123.

S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London,
1999.

J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a
normed space, J. London Math. Soc. 2 (1970), 481-488.

D. Garcia, B. Grecu, M. Maestre, M. Martin and J. Meri, Two dimensional Banach
spaces with polynomial numerical index zero, Linear Algebra Appl. 430 (2009), 2488
2500.

C. Finet, M. Martin and R. Paya, Numerical index and renorming, Proc. Amer.
Math. Soc. 131 (2003), 871-877.

S. G. Kim, Three kinds of numerical indices of a Banach space, Math. Proc. R. Ir.
Acad. 112A (2012), 21-35.

S. G. Kim, Polynomial numerical index of I, (1 < p < o0), Kyungpook Math. J. 55
(2015), 615-624.

S. G. Kim, Three kinds of numerical indices of a Banach space II, Quaest. Math. 39
(2016), 153-166.

S. G. Kim, M. Martin and J. Meri, On the polynomial numerical index of the real
spaces co, {1,400, J. Math. Anal. Appl. 337 (2008), 98-106.

G. Lopez, M. Martin and R. Paya, Real Banach spaces with numerical index 1, Bull.
London Math. Soc. 31 (1999), 207-212.

G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
M. Martin and R. Paya, Numerical index of vector-valued function spaces, Studia
Math. 142 (2000), 269-280.

M. Martin, J. Meri and M. Popov, On the numerical index of Ly (p)-spaces, Israel J.
Math. 184 (2011), 183-192.
S. G. Kim

Department of Mathematics
Kyungpook National University
Daegu 702-701

Republic of Korea

E-mail: sgk317@knu.ac.kr

Received: 28.6.2021.
Revised: 26.11.2021.



