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Abstract. In this paper, we will use the categorical approach to
Hilbert C∗-modules over a commutative C∗-algebra to investigate the
approximately orthogonality preserving mappings on Hilbert C∗-modules
over a commutative C∗-algebra.

Indeed, we show that if Ψ : Γ → Γ′ is a nonzero C0(Z)-linear (δ, ε)-
orthogonality preserving mapping between the continuous fields of Hilbert
spaces on a locally compact Hausdorff space Z, then Ψ is injective, contin-
uous and also for every x, y ∈ Γ and z ∈ Z,

|〈Ψ(x),Ψ(y)〉(z) − ϕ2(z)〈x, y〉(z)| ≤
4(ε− δ)

(1− δ)(1 + ε)
‖Ψ(x)‖‖Ψ(y)‖,

where ϕ(z) = sup{‖Ψ(u)(z)‖ : u is a unit vector in Γ}.

1. Introduction

Recently, some authors studied orthogonality and approximately or-
thogonality preserving mappings in the framework of Hilbert C∗-modules
[1, 4, 6, 7, 8, 10]. We recall that in a Hilbert C∗-module (E, 〈·, ·〉), ele-
ments x, y are said to be orthogonal, denoted by x ⊥ y, if 〈x, y〉 = 0, and
also for a given ε ∈ [0, 1), they are called ε-orthogonal, denoted by x ⊥ε y, if
‖〈x, y〉‖ ≤ ε‖x‖‖y‖.

Let δ, ε ∈ [0, 1). A mapping Φ : E → F between Hilbert C∗-modules is
called
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• orthogonality preserving if for every x, y ∈ E,

x ⊥ y ⇒ Φ(x) ⊥ Φ(y);

• approximately orthogonality preserving or (δ, ε)-orthogonality preserv-
ing if for every x, y ∈ E,

x ⊥δ y ⇒ Φ(x) ⊥ε Φ(y);

• ε-orthogonality preserving if for every x, y ∈ E,

x ⊥ y ⇒ Φ(x) ⊥ε Φ(y).

It is very easy to see that a linear orthogonality preserving mapping between
Hilbert spaces must be a scalar multiple of an isometry. Similarly, Leung et
al. [7, 8], showed that the module structure and the orthogonality structure
of a Hilbert C∗-module determine its inner product structure. In fact, they
proved that if Φ : E −→ F is a A-linear orthogonality preserving mapping
between Hilbert C∗-modules E and F over a C∗-algebra A, then there exists
a (unique) positive central element u in the multiplier algebra M(JE), such
that

〈Φ(x),Φ(y)〉 = u〈x, y〉 (x, y ∈ E),

where JE is the closed two-sided ideal of A generated by all the A-valued
inner products of elements in E.

Approximately orthogonality preserving mappings between Hilbert spaces
have been studied in [2, 3, 12, 13]. Some authors studied approximately or-
thogonality preserving mappings on Hilbert C∗-modules over standard C∗-
algebras. In fact, ε-orthogonality preserving and (δ, ε)-orthogonality preserv-
ing has been explored for A-linear maps on Hilbert C∗-modules over a stan-
dard C∗-algebra A, by Ilǐsević, Turnšek [6], and Moslehian and Zamani [10],
respectively.

In this paper, we investigate approximately orthogonality preserving
property for mappings on Hilbert C∗-modules over commutative C∗-algebras.
In fact, we will use the categorical approach which says that the category
of (left) Hilbert C∗-modules over a commutative C∗-algebra A = C0(Z) is
equivalent to the category of continuous fields of Hilbert spaces over the lo-
cally compact Hausdorff space Z, see [5, 11].

The following theorem is the main result of this paper and it will be
proved by some lemmas in the next sections. We recall that for a given linear
operator T on a Hilbert space H the minimum modulus [T ] of T is defined by

[T ] = inf {‖Tx‖ : ‖x‖ = 1} = sup{m ≥ 0 : m‖x‖ ≤ ‖Tx‖}.

Main Theorem. Let δ, ε ∈ [0, 1) and Ψ : Γ → Γ′ be a nonzero C0(Z)-
linear (δ, ε)-orthogonality preserving mapping between the continuous fields of
Hilbert spaces over a locally compact Hausdorff space Z. Then

(1) Ψ is injective and continuous,
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(2) maps ϕ(z) = ‖Ψz‖ and φ(z) = [Ψz] are bounded on Z, where the linear
map Ψz is given by Ψz(x(z)) = Ψ(x)(z).

Moreover, for every map γ : Z → [0,∞) satisfying φ ≤ γ ≤ ϕ on Z and every
x, y ∈ Γ, z ∈ Z we have

(3)
1

θ
γ(z)‖x(z)‖ ≤ ‖Ψ(x)(z)‖ ≤ θγ(z)‖x(z)‖,

(4)
1

θ2
γ2(z)〈x, x〉(z) ≤ 〈Ψ(x),Ψ(x)〉(z) ≤ θ2γ2(z)〈x, x〉(z),

(5) |〈Ψ(x),Ψ(y)〉(z)− γ2(z)〈x, y〉(z)|

≤ 4

(

1−
1

θ2

)

min{γ2(z)‖x‖‖y‖, ‖Ψ(x)‖‖Ψ(y)‖},

where θ = θ(δ, ε) =

√

(1−δ)(1+ε)
(1+δ)(1−ε) + 2ε

√

(1−δ)(1+ε)
(1+δ)(1−ε) .

2. Preliminaries

Definition 2.1. Let Z be a locally compact Hausdorff space. Consider
((Hz)z∈Z ,Γ), where (Hz)z∈Z is a family of Hilbert spaces and Γ is a subset
of

∏

z∈Z Hz. Also, we set

C0 −
∏

z∈Z

Hz =

{

x ∈
∏

z∈Z

Hz : [z 7→ ‖x(z)‖] ∈ C0(Z)

}

.

The pair ((Hz)z∈Z ,Γ) satisfying the following properties is said to be a con-
tinuous field of Hilbert spaces.

1) Γ is a linear subspace of C0 −
∏

z∈Z Hz.
2) The set {x(z) : x ∈ Γ} equals to Hz, for every z ∈ Z.
3) If x ∈ C0 −

∏

z∈Z Hz and for every z ∈ Z and every ε > 0 there is a
x′ ∈ Γ such that ‖x(s) − x′(s)‖ < ε in some neighbourhood of z, then
x ∈ Γ.

If there is no confusion, we denote a continuous field of Hilbert spaces
((Hz)z∈Z ,Γ) by Γ.

If Γ is a continuous field of Hilbert spaces, then the function z 7→
〈x(z), y(z)〉 is an element of C0(Z), for every x, y ∈ Γ. In fact, Γ is a (left)
Hilbert C0(Z)-module equipped with the following pointwise multiplication
and C0(Z)-valued inner product

(f · x)(z) = f(z)x(z) & 〈x, y〉(z) = 〈x(z), y(z)〉,

for all f ∈ C0(Z), x, y ∈ Γ and z ∈ Z. Moreover, corresponding to every
Hilbert C0(Z)-module E, there is a unique continuous field of Hilbert spaces
isomorphic to E. The following lemma determines the structure of C0(Z)-
linear mappings between continuous fields of Hilbert spaces.
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Lemma 2.2. Let Ψ : ({Hz}z∈Z,Γ) → ({Kz}z∈Z ,Γ
′) be a nonzero C0(Z)-

linear mapping. For every z ∈ Z, the map Ψz : Hz −→ Kz defined by
Ψz(x(z)) = (Ψ(x))(z) is well-defined and linear. Moreover the C0(Z)-linear
map Ψ is bounded if and only if for every z ∈ Z, Ψz is linear and bounded
and supz∈Z ‖Ψz‖ < ∞. Indeed, ‖Ψ‖ = supz∈Z ‖Ψz‖.

Proof. By [9, Proposition 1.3.10], for every x ∈ Γ and α ∈ (0, 1
2 ) there

is y ∈ Γ such that x = 〈x, x〉αy and so Ψ(x) = 〈x, x〉αΨ(y). Hence, obviously
x(z) = 0 implies that Ψ(x)(z) = 0. The rest of the proof is straightforward.

The following fact about elements of a continuous field of Hilbert spaces
can be concluded by the locally compact version of Tietze extension theorem.

Lemma 2.3. Let z0 ∈ Z and y ∈ Γ. If y(z0) 6= 0, then there is g ∈ C0(Z)
such that ‖gy‖ = ‖g(z0)y(z0)‖ = 1. Consequently, if Hz0 6= {0}, then for any
unit vector h ∈ Hz0 , there is x ∈ Γ such that ‖x‖ = 1 and x(z0) = h.

Proof. Let λ = ‖y(z0)‖. Since f(z) = ‖y(z)‖ is a member of C0(Z),
then the set K = {z ∈ Z : f(z) ≥ λ} is compact. Let g0(k) =

1
f(k) , for every

k ∈ K. Clearly, g0 ∈ C(K) and 0 ≤ g0(k) ≤
1
λ
, for all k ∈ K. By the locally

compact version of Tietze extension theorem, there is a g ∈ C0(Z) extending
g0 and 0 ≤ g(z) ≤ 1

λ
, for all z ∈ Z. Hence, we have

sup
z∈Z

g(z)f(z) = sup
z∈K

g(z)f(z) = 1 = g(z0)f(z0).

For second part, we note that for any unit vector h ∈ Hz0 there is a y ∈ Γ
such that y(z0) = h. Then, by the previous step, there is g ∈ C0(Z) such that
‖gy‖ = ‖g(z0)y(z0)‖ = 1 and 0 ≤ g(z) ≤ 1, for all z ∈ Z. Let x = gy. Then
we have ‖x‖ = 1 and x(z0) = h, since g(z0) = 1.

3. ε-orthogonality preserving mappings

In this section, we prove the main theorem in the case δ = 0. That is,
throughout this section, we suppose that Ψ : Γ → Γ′ is a nonzero C0(Z)-linear
ε-orthogonality preserving mapping between the continuous fields of Hilbert
spaces over a locally compact Hausdorff space Z.

The first step to prove the main theorem is to observe that for every
z ∈ Z, Ψz : Hz → Kz is ε-orthogonality preserving. Hence, some results that
hold in the setting of Hilbert spaces and Hilbert C∗-modules over standard
C∗-algebras can be generalized to Hilbert C0(Z)-modules.

Lemma 3.1. For every z ∈ Z, the linear map Ψz : Hz −→ Kz is ε-
orthogonality preserving and so continuous.

Proof. Suppose that z0 ∈ Z, x, y ∈ Γ and also x(z0) ⊥ y(z0). We
show that Ψz0(x(z0)) ⊥ε Ψz0(y(z0)). If x(z0) = 0 (or y(z0) = 0), then
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Ψ(z)(z0) = 0 (or Ψ(y)(z0) = 0) and so Ψz0(x(z0)) ⊥
ε Ψz0(y(z0)). Otherwise,

let f = 〈y, x〉 ∈ C0(Z) and define u = 〈y, x〉x ∈ Γ. Obviously, u−〈x, x〉y ⊥ x.
Since Ψ is ε-orthogonality preserving, then for every z ∈ Z, we have

|〈Ψ(u)(z)− ‖x(z)‖2Ψ(y)(z),Ψ(x)(z)〉|

≤ ε‖Ψ(u)(z)− ‖x(z)‖2Ψ(y)(z)‖‖Ψ(x)(z)‖.

Now, by definition of u, we have

|‖Ψ(x)(z)‖2f(z)− ‖x(z)‖2〈Ψ(y)(z),Ψ(x)(z)〉|

≤ ε‖f(z)Ψ(x)(z)− ‖x(z)‖2Ψ(y)(z)‖‖Ψ(x)(z)‖.

Since, f(z0) = 0 and also x(z0) 6= 0, then

|〈Ψ(y)(z0),Ψ(x)(z0)〉| ≤ ε‖Ψ(y)(z0)‖‖Ψ(x)(z0)‖.

That is, Ψz0(x(z0)) ⊥
ε Ψz0(y(z0)).

The following corollary, which is essentially the main theorem with δ = 0,
follows from the preceding lemma and [10, Theorem 3.6].

Corollary 3.2. For every x ∈ Γ and z ∈ Z, we have

1

θ
ϕ(z)‖x(z)‖ ≤ ‖Ψ(x)(z)‖ ≤ θφ(z)‖x(z)‖,

where ϕ(z) = ‖Ψz‖, φ(z) = [Ψz] and θ =

√

1+ε
1−ε

+ 2ε
√

1+ε
1−ε

.

Consequently, Ψ is injective and also for every map γ : Z → [0,∞)
satisfying φ ≤ γ ≤ ϕ on Z and every x, y ∈ Γ, z ∈ Z we have

1.
1

θ
γ(z)‖x(z)‖ ≤ ‖Ψ(x)(z)‖ ≤ θγ(z)‖x(z)‖,

2.
1

θ2
γ2(z)〈x, x〉(z) ≤ 〈Ψ(x),Ψ(x)〉(z) ≤ θ2γ2(z)〈x, x〉(z),

3. |〈Ψ(x),Ψ(y)〉(z)− γ2(z)〈x, y〉(z)|

≤ 4

(

1−
1

θ2

)

min{γ2(z)‖x‖‖y‖, ‖Ψ(x)‖‖Ψ(y)‖}.

Also, some other inequalities can be obtained from the main results of
[6, 10] and [12].

Corollary 3.3. For every x ∈ Γ and every z ∈ Z,

1.

√

1− ε

1 + ε
‖Ψz‖‖x(z)‖ ≤ ‖Ψz(x(z))‖ ≤ ‖Ψz‖‖x(z)‖,

2. |〈Ψ(x),Ψ(y)〉(z)− ϕ2(z)〈x, y〉(z)| ≤
4ε

1 + ε
‖Ψ(x)‖‖Ψ(y)‖.

Lemma 3.4. Ψ is continuous. Consequently, the maps ϕ and φ, defined
in the previous lemma, are bounded.
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Proof. Suppose that {xn}
∞

n=1 is a sequence of Γ converging to zero and
{Ψ(xn)}

∞

n=1 converges to u ∈ Γ′. Let z ∈ Z. We show that u(z) = 0. Without
loss of generality, we can assume that xn(z) 6= 0, for all n ∈ N. For every
y ∈ Γ, 〈y, y〉(z)xn(z) − 〈xn, y〉(z)y(z) ⊥ y(z). Also, by Lemma 3.1, the map
Ψz : Hz → Kz is ε-orthogonality preserving. Consequently,

‖〈y, y〉(z)〈Ψ(xn),Ψ(y)〉(z)− 〈xn, y〉(z)〈Ψ(y),Ψ(y)〉(z)‖

≤ ε‖〈y, y〉(z)Ψ(xn)− 〈xn, y〉(z)Ψ(y)(z)‖‖Ψ(y)(z)‖.

Since, limn→∞ xn = 0 and limn→∞ Ψ(xn) = u, we have

‖〈u,Ψ(y)〉(z)‖ ≤ ε‖u(z)‖‖Ψ(y)(z)‖.

The preceding inequality holds for every y ∈ Γ. Hence, for every n ∈ N the
following holds:

‖〈u,Ψ(xn)〉(z)‖ ≤ ε‖u(z)‖‖Ψ(xn)(z)‖.

Now, since {Ψ(xn)}
∞

n=1 converges to u, we have

‖〈u(z), u(z)〉‖ ≤ ε‖u(z)‖‖u(z)‖.

This implies u(z) = 0, because ε < 1. Finally, ϕ is bounded, since

sup
z∈Z

ϕ(z) = sup
z∈Z

‖Ψz‖ = ‖Ψ‖ < ∞.

Also, the map φ (≤ ϕ) is bounded.

The proofs of Lemmas 3.1 and 3.4, provide a more direct proof for the
main result of [7].

Corollary 3.5. [7, Corollary 3.7] Suppose that E and F are two Hilbert
C0(Z)-modules and Ψ : E −→ F is an orthogonality preserving C0(Z)-module
map. Then Ψ is bounded and there exists a bounded nonnegative function ϕ

on Z that is continuous on ZE = {z ∈ Z : 〈x, x〉(z) 6= 0 for some x ∈ E} and
satisfies

〈Ψ(x),Ψ(y)〉 = ϕ · 〈x, y〉,

for all x, y ∈ E.

Remark 3.6. In [10], the authors show that if a nonzero module map
T is a ε-orthogonality preserving mapping between Hilbert C∗-modules over
a standard C∗-algebra, then [T ] > 0. However, this is in general not true
when we deal with commutative C∗-algebras. For instance, let Z = N and
Γ = Γ′ = C0(Z). Then Ψ : Γ −→ Γ′ defined by Ψ((hn)n∈N) = ( 1

n
hn)n∈N is a

nonzero C0(Z)-linear orthogonality preserving mapping, but [Ψ] = 0.
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4. Approximately orthogonality preserving mappings

In this section, we prove the main theorem in the case δ 6= 0. That
is, throughout this section, we assume that the nonzero C0(Z)-linear map
Ψ : Γ → Γ′ is a (δ, ε)-orthogonality preserving mapping, for some δ ∈ (0, 1).

At first we note that Ψ is also ε-orthogonality preserving mapping. Hence
Ψ is continuous and injective, by the previous section.

Similar to the previous section, we show that for every z ∈ Z, Ψz is an
approximately orthogonality preserving mappings.

Lemma 4.1. Suppose that V is an open subset of Z and x, y ∈ Γ. If
x(z) ⊥δ y(z) for some δ ≥ 0 and every z ∈ V , then Ψ(x)(z) ⊥ε Ψ(y)(z), for
all z ∈ V .

Proof. Let z0 be an arbitrary element of V . We can assume that
Ψ(x)(z0) 6= 0 and Ψ(y)(z0) 6= 0. By Lemma 2.3, there are g, h ∈ C0(Z)
such that

‖gΨ(x)‖ = ‖g(z0)Ψ(x)(z0)‖ = 1 & ‖hΨ(y)‖ = ‖h(z0)Ψ(y)(z0)‖ = 1.

Also, by the Urysohn’s lemma there exists a f ∈ C0(Z) such that ‖f‖ = 1,
f(z0) = 1 and f |V c = 0.

The assumption of x(·) ⊥δ y(·) on V , yields that fgx(z) ⊥δ hy(z), for all
z ∈ Z, i. e., fgx ⊥δ hy in Γ. Then we have

‖〈Ψ(fgx),Ψ(hy)〉‖ ≤ ε‖Ψ(fgx)‖‖Ψ(hy)‖,

and so

|f(z0)||g(z0)||h(z0)||〈Ψ(x)(z0),Ψ(y)(z0)〉|

≤ ε‖f‖‖gΨ(x)‖‖hΨ(y)‖ = ε|g(z0)|‖Ψ(x)(z0)‖|h(z0)|‖Ψ(y)(z0)‖.

Consequently,

|〈Ψ(x)(z0),Ψ(y)(z0)〉| ≤ ε‖Ψ(x)(z0)‖‖Ψ(y)(z0)‖,

which is the desired result.

Lemma 4.2. For every z ∈ Z and for every δ′ < δ, the linear map Ψz :
Hz −→ Kz is (δ′, ε)- orthogonality preserving and so continuous.

Proof. Let z0 ∈ Z and x, y ∈ Γ. Suppose that x(z0) ⊥
δ′ y(z0) and also

x(z0) 6= 0 and y(z0) 6= 0. In other words, |〈x(z0), y(z0)〉| ≤ δ′‖x(z0)‖‖y(z0)‖.
Since δ′ < δ, we have

|〈x(z0), y(z0)〉| < δ‖x(z0)‖‖y(z0)‖.

Now, according to the continuity, there is some open neighborhood V of z0
such that for every z ∈ V ,

|〈x(z), y(z)〉| < δ‖x(z)‖‖y(z)‖.
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Consequently, for every z ∈ V , x(z) ⊥δ y(z). Hence, Lemma 4.1 yields
that for every z ∈ V , Ψ(x)(z) ⊥ε Ψ(y)(z). In particular, Ψz0(x(z0)) ⊥ε

Ψz0(y(z0)). Therefore, the linear map Ψz0 is (δ′, ε)-orthogonality preserving
and so continuous.

Proof of Main Theorem. As mentioned above, the map Ψ is injec-
tive and continuous. On the other hand, we have limδ′→δ− θ(δ′, ε) = θ(δ, ε).
Hence, all the inequalities in the main theorem hold by the above lemma and
[10, Theorem 3.6]. Then, the proof is complete.

The following result follows from Lemma 4.2 and [13, Theorem 3.4].

Corollary 4.3. We have δ ≤ ε. Also, the following statements hold:

1. for every z ∈ Z, η‖Ψz‖ ≤ [Ψz];
2. for every x ∈ Γ and z ∈ Z,

η‖Ψz‖‖x(z)‖ ≤ ‖Ψ(x)(z)‖ ≤ ‖Ψz‖‖x(z)‖;

where η =
√

1−ε
1+ε

√

1+δ
1−δ

.
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