
GLASNIK MATEMATIČKI
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RECONSTRUCTION PROPERTIES OF SELECTIVE RIPS

COMPLEXES
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University of Ljubljana, Slovenia

Abstract. Selective Rips complexes associated to two parameters are
certain subcomplexes of Rips complexes consisting of thin simplices. They
are designed to detect more closed geodesics than their Rips counterparts.
In this paper we introduce a general definition of selective Rips complexes
with countably many parameters and prove basic reconstruction properties
associated with them. In particular, we prove that selective Rips complexes
of a closed Riemannian manifold X attain the homotopy type of X at small
scales. We also completely classify the resulting persistent fundamental
group and 1-dimensional persistent homology.

1. Introduction

Rips complexes, sometimes also called Vietoris-Rips complexes, are one
of the most widespread constructions of simplicial complexes built upon a
metric space. Originally introduced by Vietoris in [10], they have been used
to approximate spaces in order to define a cohomology theory [7], study groups
[6], and treat large scale structures [4]. Due to their simplicity they provide
a prime construction of filtrations in the context of persistent homology and
applied topology [5]. They are known to encode geometric properties of the
underlying space although the treatment of the precise nature of this encoding
has only recently been expedited [3, 1, 2, 11, 12, 15, 8].

Given a geodesic space X , a geodesic circle in X is a geodesic determined
by an isometric embedding (S1, dg) →֒ X , where dg is a geodesic metric.
Recent results [12, 15] show that geodesic circles can be detected by persis-
tent homology constructed via Rips complexes in dimensions 1, 2, and above.
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However, detections in dimensions 2 and above require geodesic circles to have
wide neighborhoods adhering to certain geometric conditions. This technical
requirement has been circumvented in [13] which demonstrated that arbitrar-
ily small geodesically convex neighborhoods suffice to detect a geodesic circle
using selective Rips complexes with two parameters. In particular, selective
Rips complexes with two parameters are a modification of Rips complexes
designed to detect many (in some cases all [14]) geodesic circles.

In this paper we study basic reconstruction properties of selective Rips
complexes. We first provide a more general definition of selective Rips com-
plexes, thus formalizing a construction with “thin” simplices. We then prove
basic reconstruction results.

1. A functorial reconstruction theorem for closed connected Riemannian
manifolds (Theorem 3.11). When restricted to Rips complexes, our
approach provides a novel proof of the reconstruction result for Rips
complexes [7].

2. A complete classification of 1-dimensional persistence of geodesic
spaces in the last section. Using ideas of [12] we prove that 1-
dimensional persistence of Rips and selective Rips complexes are iso-
morphic up to reparameterization. This is in sharp contrast with
higher-dimensional persistence [13].

To summarize, we prove that the reconstruction properties of selective Rips
complexes closely resemble those of Rips complexes.

Selective Rips complexes have a potential to act as a finer yet still easily
computable version of Rips complexes. In [13] it was demonstrated that selec-
tive Rips complexes detect some geodesic circles that are undetected by Rips
complexes. As our understanding of information encoded by Rips complexes
(and the corresponding persistent homology) grows [11, 12, 15, 13, 14, 8, 2],
we expect the variants using selective Rips complexes to encode more infor-
mation of the same type. As such, the parameters of selective Rips complexes
would allow us to control the level of details extracted by, for example, per-
sistent homology. Such a control is a beneficial in theoretical and, above all,
practical applications.

2. Selective Rips complex

In this section we define selective Rips complexes and prove their homo-
topy types are preserved by crushings of the underlying space. We first recall
a definition of (open) Rips complexes that will be used here. Given metric
space (X, d) and a scale r > 0, the Rips complex, Rips(X, r), is an abstract
simplicial complex with vertex set X defined by the following rule: a finite
σ ⊆ X is a simplex if Diam(σ) < r.

Definition 2.1. Let X be a metric space and r1 ≥ r2 ≥ · · · positive
scales forming a sequence r̃ = (r1, r2, . . .). The selective Rips complex
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sRips(X ; r1, r2, . . .) = sRips(X ; r̃), is an abstract simplicial complex defined
by the following rule: a finite σ ⊆ X is a simplex if for each positive integer
i, the set σ can be expressed as a union of i-many sets of diameter less than
ri.

Definition 2.1 implies that sRips(X ; r1, r2, . . .) is a subcomplex of
Rips(X, r1) and that sRips(X ; r, r, r, . . .) = Rips(X, r). Furthermore, increas-
ing the sequence of scales pointwise results in a larger selective Rips complex.
The following example demonstrates a difference between selective Rips com-
plex and Rips complex.

Example 2.2. Let r1 > r2 > 0. Let x, y, z ∈ X be such points that
pairwise distances between points are smaller than r1 and greater than r2.
Note that the 2-simplex σ = {x, y, z} ∈ Rips(X ; r1). On the other hand σ is
not contained in sRips(X ; r1, r2).

Through this paper we also use the standard notation for homotopy equiv-
alence (≃) and isomorphism (∼=).

Lemma 2.3. Let X be a finite metric space and let r1 ≥ r2 ≥ · · · be
positive scales. Then there exists δ > 0 and a sequence of positive scales
r′1 ≥ r′2 ≥ · · · such that:

• for i = 1, 2, . . . , |X | we have r′i = ri − 2δ, and
• idX induces a simplicial isomorphism

sRips(X ; r′1, r
′
2, . . .) → sRips(X ; r1, r2, . . .).

Proof. Let

mi = max{Diam(A) | A ⊆ X and Diam(A) < ri}

for each i = 1, 2, . . . , |X |. Since each point is of diameter zero, mi are well
defined non-negative numbers. Since X is finite, there exists δ > 0 such that
mi < ri − 2δ, ∀i. For indices i > |X | we can choose r′i to be any decreasing
sequence of positive scales with the initial term below r′|X|.

Let K be a q-simplex in sRips(X ; r1, r2, . . .). By definition of selective
Rips complex for each i = 1, . . . , q there exists U1, . . . , Ui ⊆ K such that
U1, . . . , Ui = K, where Diam(Uk) < ri for each k = 1, . . . , i. From definition of
mi it follows that Diam(Uk) < mi for each k = 1, . . . , i and since mi < ri−2δ
it follows that Diam(Uk) < ri − 2δ. Finally, K ∈ sRips(X ; r′1, r

′
2, . . .).

Next, we define a crushing of a metric space introduced by Hausmann [7].

Definition 2.4. Let X be a metric space and A ⊆ X. A continuous map
F : X × [0, 1] → X satisfying

1. F (x, 1) = x, F (x, 0) ∈ A and F (a, t) = a, ∀a ∈ A, t ∈ [0, 1];
2. d(F (x, u), F (y, u)) ≤ d(F (x, t), F (y, t)), ∀u ≤ t, x, y ∈ X.
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is called a crushing (or deformation contraction in [15]) from X onto A. We
say that a metric space X is crushable if there is a crushing X onto a point.

Recall that two maps f, g : K1 → K2 between simplicial complexes are
contiguous if for given a simplex σ ∈ K1, f(σ) ∪ g(σ) is contained in a
simplex in K2. Note that contiguous maps are homotopic (see [9, p. 130]).

Proposition 2.5. Let X be a metric space admitting a chrushing onto a
subspace A ⊆ X. Then for any positive scales r1 ≥ r2 ≥ r3 ≥ · · · , the inclu-
sion sRips(A; r1, r2, . . .) → sRips(X ; r1, r2, . . .) is a homotopy equivalence.

Proof. The proof is an adaptation of the proof of [7, Proposition 2.2].
Let K be a finite simplicial complex and L its subcomplex. Moreover, let

h : (K,L) → (sRips(X ; r1, r2, . . .), sRips(A; r1, r2, . . .))

be a continuous map. By the Whitehead theorem it is enough to show
that such a function is homotopic (rel L) to a map sending K into
sRips(A; r1, r2, . . .). By simplicial approximation we may, after replacing K
and L with one of their barycentric subdivision, assume h is a simplicial map.
Let K = h(K0) and L = h(L0) be finite subsets of X and A. Let N denote
the number of points in K. Since K and L are finite, Lemma 2.3 implies there
exists:

• δ > 0 and
• a sequence of positive scales r′1 ≥ r′2 ≥ · · · satisfying:

– for i = 1, 2, . . . , |X | we have r′i = ri − 2δ, and
– idX induces a simplicial inclusion

sRips(X ; r′1, r
′
2, . . .) → sRips(X ; r1, r2, . . .),

such that

(sRips(K; r′1, r
′
2, . . .), sRips(L; r

′
1, r

′
2, . . .))

= (sRips(K; r1, r2, . . .), sRips(L; r1, r2, . . .)).

We have factorization h = j ◦ h, where

h : (K,L) →
(
sRips

(
K; r′1, r

′
2, . . .

)
, sRips

(
L; r′1, r

′
2, . . .

))

is induced by h and

j :
(
sRips

(
K; r1 − 2δ, . . .

)
, sRips

(
L; r1 − 2δ, . . .

))

→ (sRips (X ; r1, r2, . . .) , sRips (A; r1, r2, . . .))

is the obvious inclusion.
Let F : X × [0, 1] → X be a crushing of X onto A. Let p be a positive

integer so that for all x ∈ K \ L and all k = 0, 1, . . . , p− 1 we have

d

(
F

(
x,

k

p

)
, F

(
x,

k + 1

p

))
< min{δ, r′2N}.
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The map x 7→ F
(
x, k

p

)
induces then a simplicial map

fk : sRips
(
K; r′1, r

′
2, . . .

)
→ sRips (X ; r1, r2, . . .)

such that fp
∣∣
sRips(K;r′

1
,...) and fk

∣∣
sRips(L;r′

1
,...) are identities on subcomplexes

of sRips (X ; r1, r2, . . .) for all k, and f0
(
sRips

(
K; r′1, . . .

))
⊆ sRips (A; r1, r2, . . .).

Next we will prove that for all k we have fk ≃ fk+1 by showing the the
mentioned pair of maps are contiguous. Let

W = {x0, . . . , xq} ∈ sRips
(
K; r1 − 2δ, . . .

)
.

From Definition 2.4 of crushing if follows that fk(W ) ∈ sRips
(
K; r1 − 2δ, . . .

)

and fk+1(W ) ∈ sRips
(
K; r1 − 2δ, . . .

)
. To show that

U =
{
fk(x1), . . . , f

k(xq), f
k+1(x1), . . . , f

k+1(xq)
}
∈ sRips (X ; r1, r2, . . .)

we define the following clusters.

• For i = 1, . . . , q we use clustering of fk(W ). In particularly let
U ′
1, . . . , U

′
i be a clustering of fk(W ) with diameters less than ri − 2δ.

Note that d
(
fk+1(xn), f

k(xn)
)
< δ. It is clear that we can construct

U1, . . . , Ui on the following way. For all xn: if fk(xn) ∈ U ′
j , then

{fk(xn), f
k+1(xn)} ⊆ Uj . It follows that diameter of each Uj is less

than ri.
• For i = q + 1, . . . , 2q we define clustering on the following way:

1. Un = {fk(xn)} for n = 1, . . . , i− q,
2. Un = {fk(xn), f

k+1(xn)} for n = i− q + 1, . . . , q,
3. Uq+n = {fk+1(xn)} for n = 1, . . . , i− q.

Note that Diam(Uj) < r2q ≤ ri for all j = 1, . . . , i

We have shown that U ∈ sRips (X ; r1, r2, . . .) which implies that fk and
fk+1 are contiguous. Therefore fp = j and f0 are in the same contiguity
class

(
rel sRips

(
L; r1 − 2δ, . . .

))
. This implies that j and f0 are homotopic(

rel sRips
(
L; r1 − 2δ, . . .

))
. After composing with h, this proves that h is

homotopic (rel L) to h ◦ f0 which sends K to sRips (A; r1, r2, . . .).

Corollary 2.6. Let X be a crushable metric space, then for each choice
of positive scales r1 ≥ r2 ≥ r3 ≥ · · · , the space sRips (X ; r1, r2, . . .) is con-
tractible.

3. Selective Rips complex of a closed Riemannian manifold

In this section we prove the main reconstruction result for selective Rips
complexes built upon a geodesic space. Our argument is based on the use of
the Nerve Theorem.

A cover U of a metric space is good if each finite intersection of elements
from U is either empty or contractible. The nerve of U is the simplicial
complex Nerve(U) defined by the following declarations:
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• Vertices are elements of U .
• σ is a simplex iff

⋂

U∈σ

U 6= ∅.

For our purposes we will be using the Functorial Nerve Theorem as pre-
sented in [11].

Theorem 3.1 (Functorial Nerve Theorem, an adaptation of Lemma 5.1
of [11]). Suppose U is a good open cover of a metric space X. Then X ≃
Nerve(U).

If V is another good open cover of Y ⊂ X subordinated to U (i.e., if
∀V ∈ V ∃UV ∈ U : V ⊆ UV ), then the diagram

X
≃

// Nerve(U)

Y
?�

OO

≃
// Nerve(V)

OO

commutes up to homotopy, with Nerve(V) → Nerve(U) being the simplicial
map mapping V 7→ UV and the horizontal homotopy equivalences arising from
partitions of unity corresponding to the involved covers as in the previous
paragraph.

Given a metric space X , x ∈ X , and q > 0, let N(x, q) denote the open
q-neighborhood (equivalently, open q-ball) of x. A metric space (X, d) is
geodesic, if for each x, y ∈ X there exists a path, called geodesic, from x to
y of length d(x, y). In particular, for each x, y ∈ X there exists an isometric
embedding of [0, d(x, y)] into X with 0 7→ x and d(x, y) 7→ y. When necessary
we will consider • ∈ X to be the basepoint of X .

Definition 3.2 (Hausmann [7]). Let X be a geodesic space. Define
r(X) ≥ 0 as the least upper bound of the set of real numbers r satisfying
the following conditions:

1. For all x, y ∈ X such that d(x, y) < 2r there exists a unique geodesic
joining x to y of length 2r.

2. Let x, y, z, u ∈ X with d(x, y) < r, d(u, x) < r, d(u, y) < r and z
be a point on the shortest geodesic joining x to y. Then d(u, z) ≤
max{d(u, x), d(u, y)}.

3. If γ and γ′ are arc-length parametrized geodesic such that γ(0) = γ′(0)
and if 0 ≤ s, s′ < r and 0 ≤ t < 1, then d(γ(ts), γ′(ts′)) ≤
d(γ(s), γ′(s′)).

As was stated in [7], r(X) > 0 if X is a Riemannian manifold that admits
a strictly positive radius and an upper bound on its sectional curvature. In
particular, each compact Riemannian manifold has r(X) > 0. We will denote
r(X) by ρ, and we call it a star radius.
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For the following results we fix a geodesic space X with star radius ρ > 0
and scales r1, r2, . . . with ρ/2 ≥ r1 ≥ r2 ≥ r3 ≥ · · · . Let A ⊆ X . We say that
A is a star-shaped with center at x0 ∈ A if for all x ∈ A the geodesic from
x0 to x is in A.

Lemma 3.3. Let x0 ∈ X and let A ⊆ N(x0, ρ) be a star-shaped subset
centered at x0 ∈ A. Then A is crushable.

Proof. Since d(x0, x) < ρ Definition 3.2 (1.) implies that for each x ∈ A
the geodesic joining x and x0 is unique. Note that the mentioned geodesic is a
part of A because it is star-shaped at x0. By Definition 3.2 (3.) the homotopy
sliding each point of A towards x0 along the unique geodesic is a crushing.

Lemma 3.4. Let z ∈ X and assume A ⊆ N(x, ρ/2) is star-shaped with
center at x. Then sRips (A; r1, r2, . . .) is contractible for each choice of positive
scales r1 ≥ r2 ≥ r3 ≥ · · · .

Proof. Let a ∈ A and note that A ⊂ N(a, ρ). By Lemma 3.3, A is
crushable to a. The statement of the lemma follows from Corollary 2.6.

Lemma 3.5. For each α ≤ ρ/2 the collection U = {N(x, α) | x ∈ X} is a
good cover of X.

Proof. Suppose there exists x ∈
⋂k

i=1 N(xi, ρ/2) for some xi ∈ X . Ob-
serve that

k⋂

i=1

N(xi, ρ/2) ⊆ N(x, ρ)

is geodesically convex and crushable by Lemma 3.3, thus contractible.

Lemma 3.6. For each collection of subsets A1, A2, . . . , Ak ⊂ X we have

k⋂

i=1

sRips (Ai; r1, r2, . . .) = sRips

(
k⋂

i=1

Ai; r1, r2, . . .

)
.

Proof. Let σ be a simplex in sRips (X ; r1, r2, . . .). Note that

σ ⊂ Ai, ∀i ⇐⇒ σ ⊂
k⋂

i=1

Ai.

Lemma 3.7. W ′ = {sRips (N(x, ρ/2); r1, r2, . . .) | x ∈ X} is a cover of
sRips (X ; r1, r2, . . .).

Proof. Let σ = {x0, x1, . . . , xq} be a simplex in sRips (X ; r1, r2, . . .).
Then for each i = 0, . . . , q containment xi ∈ N(x0, r1) holds and since ρ/2 ≥
r1, we have xi ∈ N(x0, ρ/2). It follows that σ ∈ sRips (N(x0, ρ/2); r1, r2, . . .).
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Remark 3.8 (Open covers). Let

W ′ = {sRips (N(x, ρ/2); r1, r2, . . .) | x ∈ X}

be a (closed) cover of sRips (X ; r1, r2, . . .). We next describe how to slightly
thicken the elements of W ′ to obtain an open cover W with the same in-
tersection pattern, as was described in [11, Theorem 5.2]. Simplicial complex
sRips (X ; r1, r2, . . .) can be equipped with a metric dℓ1 arising from the ℓ1 met-
ric on the barycentric coordinates, see [11] for details. This metric simplicial
complex turns out to be homotopy equivalent to the standard simplicial com-
plex (weak) topology. In this metric each simplex of σ ∈ sRips (X ; r1, r2, . . .)
is isometric to the standard simplex. Let w′

x = sRips (N(x, ρ/2); r1, r2, . . .).
We enlarge each w′

x to the open neighborhood wx = N(w′
x, 0.1) so that for

each simplex σ ∈ sRips (X ; r1, r2, . . .)

wx ∩ σ = N(w′
x, 0.1) ∩ σ,

i.e., we thicken the sets by 0.1 in each adjacent simplex. Sets wx are open in
metric and weak topology. Note that for each finite A ⊂ X the intersection⋂

x∈Awx deformation contracts to
⋂

x∈Aw′
x. Furthermore,

⋂
x∈Awx = ∅ if

and only if
⋂

x∈Aw′
x = ∅. It follows that W = {wx | x ∈ X} is an open cover

of sRips (X ; r1, r2, . . .) in dℓ1 and Nerve(W) ∼= Nerve(W ′).

Lemma 3.9. An open cover W of sRips (X ; r1, r2, . . .) described in 3.8 is
a good open cover in dℓ1 .

Proof. Previous statements imply that W is an open (Remark 3.8) good
(Lemma 3.4, Lemma 3.6, and Remark 3.8) cover (Lemma 3.7).

Proposition 3.10. Let U = {N(x, ρ/2) | x ∈ X} and let W be an open
cover of sRips (X ; r1, r2, . . .) described in 3.8. Then

Nerve(U) ∼= Nerve(W).

Proof. For each x ∈ X we map N(x, ρ/2) to wx. Let

σ = {N(x0, ρ/2), . . . , N(xq, ρ/2)}

be a simplex in Nerve(U). We map such a simplex to

{sRips (N(xi, ρ); r1, . . .) , . . . , sRips (N(xi, ρ/2); r1, . . .)}

in Nerve(W). One can easily see that such defined map is an isomorphism by
Remark 3.8 and Lemma 3.6.

The following result is generalization of Hausmann’s Theorem [7, Theo-
rem 3.5] to selective Rips complexes and a functorial setting.

Theorem 3.11. Let X be a geodesic space with star radius ρ > 0 and
let r1, r2, . . . be a sequence of scales where ρ/2 ≥ r1 ≥ r2 ≥ r3 ≥ · · · . Then
X ≃ sRips (X ; r1, r2, . . .).
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Furthermore, if r̂1 ≥ r̂2, . . . is another sequence of scales with r̂i ≤ ri, ∀i,
then the natural inclusion

sRips (X ; r̂1, r̂2, . . .) →֒ sRips (X ; r1, r2, . . .)

is a homotopy equivalence.

Proof. By the Nerve theorem, Lemma 3.5, Proposition 3.10, Re-
mark 3.8, and Lemma 3.9 we have X ≃ Nerve(U) ∼= Nerve(W) ≃
sRips (X ; r1, r2, . . .), where U is the open cover of X from Lemma 3.5 and
W is the open cover of sRips (X ; r1, r2, . . .) from Remark 3.8. The last ho-
motopy equivalence uses the fact that the weak topology and dℓ1 metric on
sRips (X ; r1, r2, . . .) result in homotopy equivalent spaces.

The second part follows from Theorem 3.1 and the fact that the argument
of the previous paragraph for the smaller sequence of scales generates covers

Û and Ŵ , subordinated to U and W . In fact, Û = U and each wx ∈ W of
Remark 3.8 corresponds to analogously defined subset ŵx. Theorem 3.1 now
implies that the following diagram commutes up to homotopy with the vertical

map Nerve(Û) → Nerve(U) being identity and the vertical map Nerve(Ŵ) →
Nerve(W) mapping wx 7→ ŵx:

X
≃

// Nerve(U) oo
∼=

// Nerve(W) sRips (X ; r1, r2, . . .)
≃

oo

X
≃

//

id

OO

Nerve(Û) oo
∼=

//

OO

Nerve(Ŵ)

OO

sRips (X ; r̂1, r̂2, . . .)
?�

OO

≃
oo

4. One-dimensional persistence

In this section we completely classify one-dimensional persistence of geo-
desic spaces arising from selective Rips complexes. In particular, we describe
the fundamental groups of selective Rips complexes of a geodesic space along
with the inclusion-induced maps corresponding to increases in the scale pa-
rameters. We then derive analogous results for first homology groups with
arbitrary coefficients. The results are obtained by adapting approach of [12]
and utilizing some of the results therein.

Throughout this section X is a geodesic space with basepoint • ∈ X , r̃ is
a sequence of positive scales r1 ≥ r2 ≥ r3 ≥ · · · potentially converging to 0,
and we define r = r1. The concatenation of loops or paths α and β is denoted
by α ∗ β. We naturally require that the endpoint of α is the initial point of
β. For a path α : [0, a] → X , the inverse path α− : [0, a] → X is defined by
α−(t) = α(a− t).
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Definition 4.1. We define

1. r-loop L: a simplicial loop in sRips(X ; r1, r2, . . .) considered as a se-
quence of points (x0, x1, . . . , xk, xk+1 = x0) in X with d(xi, xi+1) < r,
∀i ∈ {0, 1, . . . , k};

2. filling of an r-loop L: any loop in X obtained from L by connecting
xi to xi+1 by a geodesic for all i ∈ {0, 1, . . . , k};

3. size(L)=|L| = k + 1;
4. r-sample of a loop α : [0, a] → X: a choice of 0 ≤ t0 ≤ t1 ≤ · · · ≤

tm ≤ a with Diam (α([ti, ti+1])) < r, ∀i ∈ {0, 1, . . . ,m − 1} and
Diam (α([0, t0] ∪ [tm, a])) < r. By an r-sample we usually consider
the introduced r-loop (α(t0), α(t1), . . . , α(tm), α(t0)). If α is based at
point, we will assume t0 = 0.

An r-loop is r̃-null if it is contractible in sRips(X ; r̃). Two r-loops are r̃-
homotopic, if they are homotopic in sRips(X ; r̃). The corresponding simpli-
cial homotopy in sRips(X ; r̃) is referred as r̃-homotopy. The concatenation
L ∗ L′ of r-loops L and L′ is defined in the obvious way by concatenating the
defining sequences and note that the concatenation of fillings of r-loops is a
filling of the concatenation.

Lemma 4.2. Let α : [0, a] → X be a loop in a geodesic space X. Then
any two r-samples of α are r̃-homotopic.

Proof. It suffices to show that any given r-sample 0 ≤ t0 ≤ t1 ≤ · · · ≤
tm ≤ a is r̃-homotopic to any r2-sample of α containing all ti. Indeed, given
two r-samples it is clear that there exists an r2-sample containing both of the
r-samples as subsequences.

We provide a formal proof by induction. Suppose an r-sample is given
as 0 ≤ t0 ≤ t1 ≤ · · · ≤ tm ≤ a. The inductive step is performed by adding
a point τ ∈ [0, a] with |τ − ti| < r2 for some ti. The resulting r-sample is
r2-homotopic to the original r-sample by the following argument:

ti + 1 ti

✁

< r2

Figure 1. An excerpt of r̃-homotopy of Lemma 4.2.

• if τ ∈ (ti, ti+1) then the r2-homotopy between the changed segment
{ti, ti+1} and its new version {ti, τ, ti+1} is given by the triangle
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[ti, τ, ti+1] in sRips(X ; r̃), see Figure 1. In a similar way we treat
the case τ ∈ (ti−1, ti).

• If τ ∈ [0, t0]∪ [tm, a] the r2-homotopy is given by the triangle [tm, τ, t0]
in sRips(X ; r̃).

Proposition 4.3. Let α : [0, a] → X be a loop in a geodesic space X of
length less than 2r1 + r2. Then any r-sample of α is r̃-null.

Proof. There exists an r-sample 0 = t0 < t1 < t2 ≤ a of α satisfying
Diam (α([t0, t1])) < r2, Diam (α([t1, t2])) < r1, and Diam (α([t2, t0])) < r1.
Such an r-sample is obviously r̃-null as it is the boundary of a simplex in
sRips(X ; r̃). Proposition 4.2 implies that each r-sample of α is r̃-null.

Proposition 4.4. Assume α, α′ : S1 → X are loops in a geodesic space
X, and let L and L′ denote their r-samples. If α and α′ are homotopic, then
L and L′ are r̃-homotopic.

Proof. Consider a homotopy H : S1 × [0, 1] → X , where α = H |S1×{0}

and α′ = H |S1×{1}. Let △ be a triangulation of S1× [0, 1] subordinated to the

open cover {H−1(B(x, r2/2))}x∈X. Each triangle of ∆ determined by points
(x1, t1), (x2, t2), (x3, t3) induces a triple

H(x1, t1), H(x2, t2), H(x3, t3),

which is of diameter less than r2 and thus forms a triangle in sRips(X ; r̃).
In this way the triangulation △ induces a simplicial r̃-homotopy H ′ : (S1 ×
[0, 1],△) → sRips(X ; r̃) between r2-samples of α and α′, by mapping vertex
(xi, ti) ∈ ∆ to H(xi, ti). The statement now follows by Proposition 4.2.

Corollary 4.5. Let α : [0, a] → X be a contractible loop in a geodesic
space X. Then any of its r-sample is r̃-null.

Proof. It follows by Proposition 4.4.

4.1. The size of holes. In this section we introduce the subgroup gener-
ated by length of a loop. We use notation from [12].

Definition 4.6. Let l > 0. An l-lasso is a based loop of the form α ∗β ∗
α−, where α is a path of finite length based at the point • and β is a loop of
length l based at the endpoint of α. The size of a lasso α∗β ∗α− is defined as
the length of β. L(X, r, π1) ≤ π1(X, •) is generated by all l-lassos with l < r.
We also define L(X, fin, π1) =

⋃
n∈N

L(X,n, π1), which coincides with the
subgroup of all homotopy classes admitting a representative of finite length.

Remark 4.7. The condition in Definition 4.6 that α is of finite length is
crucial in spaces, which are not semi-locally simply connected. In such spaces
there are paths which are not homotopic (rel the endpoints) to a path of finite
length.
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The mentioned condition is inadvertently missing from Definition 4.1 of
[12], which introduces the notation above. However, the proofs and results of
[12] as stated hold for the definition of lassos as stated in Definition 4.6.

Proposition 4.8. Let L be an r-loop based at • and let α be a filling of
L. Then L is r̃-null if and only if [α] ∈ L(X, 2r1 + r2, π1).

Proof. Suppose that L given by • = x0, x1, . . . , xk is r̃-null. An r̃-
nullhomotopy can be thought of as a simplicial map f : △ → sRips(X ; r̃)
from a triangulation △ of a closed disk D, whose restriction to the bound-
ary coincides with L. Note that for each triangle [z1, z2, z3] ∈ △ the image
[f(z1), f(z2), f(z3)] spans a triangle in sRips(X ; r̃). We define a function
ϕ : △(1) → X as follows (see Figure 2):

• ϕ coincides with f on the vertex set V ;
• edge of △ with endpoints x, y is mapped to a geodesic between f(x)

and f(y);
• when connecting consecutive points of L take the appropriate geodesic

so that the induced filling on L is α.

One can easily see that the decomposition into triangles △ corresponds to
the decomposition of α into loops of length less than 2r1 + r2 in the unbased
setting and to (2r1 + r2)-lassos in the based setting (as in [12, Proposition
4.8]). If follows that α ∈ L(X, 2r1 + r2, π1).

Now suppose that α ∈ L(X, 2r1 + r2, π1). By Proposition 4.4 we may
assume that α is a concatenation of (2r1 + r2)-lassos. It suffices to prove that
any lasso of size less than 2r1 + r2 is r̃-null, which follows from Proposition
4.3.

Lemma 4.9. Let α : [0, a] → X be a loop of finite length in a geodesic
space X and suppose an r-sample L of α is given as 0 = t0 ≤ t1 ≤ · · · ≤ tk.
Furthermore assume that for each i the length of α|[ti,ti+1] is less than r. Then

for any filling β of L we have α ∗ β− ∈ L(X, 2r, π1).

Proof. According to Figure 3 loop α ∗ β− can be ”decomposed” into
2r-lassos, a similar decomposition was used in Proposition 4.8.

Definition 4.10. Map

λr̃ : π1(sRips(X ; r̃), •) → L(X, fin, π1)/L(X, 2r1 + r2, π1)

is defined by mapping an r-loop to its filling.

The following is an adaptation of [12, Proposition 5.6] to selective Rips
complexes.

Proposition 4.11. Map λr̃ is a well defined isomorphism. Moreover,
map λr̃ commutes with the inclusion ir̃,r̃′ : sRips(X ; r̃) → sRips(X ; r′1, r

′
2, . . .)

induced maps on the fundamental groups and the quotient map

L(X, fin, π1)/L(X, 2r1 + r2, π1) → L(X, fin, π1)/L(X, 2r′1 + r′2, π1)
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r2

r2

r2

r2

r1

r1

r1r1

r1

Figure 2. A sketch of a map ϕ of Proposition 4.8. Edges of
a simplicial nullhomotopy in sRips(X ; r̃) (upper left) induce
a system of geodesics in X (upper right, labels ri indicate the
length of the corresponding segment is less than ri), which
results in a decomposition into lassos (below). The square de-
notes the basepoint and all loops are oriented in the negative
(clockwise) direction.

α

β

Figure 3. A sketch of the proof of Lemma 4.9. Solid loop
represents α while dashed portions constitute β. Their dif-
ference consists of small loops of length less than 2r.

provided ri ≤ r′i, ∀i. In particular, the following diagram commutes:

π1(sRips(X ; r̃′), •)
λ ˜
r′

// L(X, fin, π1)/L(X, 2r′1 + r′2, π1)

π1(sRips(X ; r̃), •)
λr̃

//

OO

L(X, fin, π1)/L(X, 2r1 + r2, π1)

OO
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Proof. Map λr̃ is independent from the choice of fillings by Lemma 4.9
and well defined on homotopy classes in the fundamental groups by Propo-
sition 4.8. Map is injective by Proposition 4.8. We next show that it is also
surjective.

Let γ : [0, a] → X be a lasso in X of finite length. Let L be an r-sample
0 = t0 ≤ t1 ≤ · · · ≤ tm = a of γ such that for each i the length of γ|[ti,ti+1]

is less than r1. Lemma 4.9 implies that for each filling γ̃ of L we have [γ ∗
γ̃−] ∈ L(X, 2r1, π1). Hence L is mapped to the equivalence class of γ in
L(X, fin, π1)/L(X, 2r1 + r2, π1) by λr̃.

Map λr̃ is apparently a homomorphism. Commutativity follows from the
definitions of maps.

Proposition 4.11 is the main technical result of this section. In the fol-
lowing theorem we rephrase this result using the notation of isomorphism be-
tween r̃-indexed groups equipped with bonding maps. Such an isomorphism
consists of level-wise isomorphisms that commute with the bonding maps as
was demonstrated in Proposition 4.11. This presentation is also compatible
with general (including multi-parameter) filtrations and persistence modules
used in the context of persistent homology, and will be used below to describe
related results. In this spirit we refer to {π1 (sRips(X ; r̃) , •)}r1≥r2≥···>0 as

persistent fundamental group and to {H1 (sRips(X ; r̃) , G)}r1≥r2≥···>0 as per-
sistent H1. They represent different constructions of 1-dimensional persis-
tence.

Theorem 4.12 (Persistence-circumference correspondence Theorem for
selective Rips complexes). Let X be a geodesic space. Maps λr̃ provide an
isomorphism

{π1 (sRips(X ; r̃) , •)}r1≥r2≥···>0
∼= {L(X, fin, π1)/L(X, 2r1 + r2, π1)}r1≥r2>0 .

Moreover if X is semi-locally simply-connected (see [12, Definition 2.4])
then

{π1 (sRips(X ; r̃), •)}r1≥r2≥···>0
∼= {π1(X, •)/L(X, 2r1 + r2, π1)}r1≥r2>0 .

Proof. Follows from Proposition 4.11.

Definition 4.13. Let r > 0. An Ud-lasso is a based loop of the form
α ∗ β ∗ α−, where α is a path with starting at the point • and β is a loop in
some B̃(x, d). S(X, r, π1) ≤ π1(X, •) is generated by all Ud-lassos with d < r.
We also define S(X, π1) =

⋃
r>0 S(X, r, π1).

Moreover, recall that diameter of a loop α in X is defined as Diam(α) =
maxy,x∈α d(x, y). D(X, r, π1) ≤ π1(X, •) is generated by all lassos α ∗ β ∗ α−

with Diam(β) < r.

Remark 4.14. Combining results from [12, Theorem 5.4, Theorem 5.7,
Theorem 5.9] and Theorem 4.12 we get the following results:
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if X is semi-locally simply connected then

{π1 (sRips(X ; r̃), •)}r1≥r2≥···>0
∼= {π1(X, •)/S (X, (2r1 + r2)/2, π1)}r1≥r2>0

and

{π1 (sRips(X ; r̃), •)}r1≥r2≥···>0
∼= {π1(X, •)/D(X, (2r1 + r2)/2, π1)}r1≥r2>0 .

Note that similar results (as in [12, Theorem 5.4, Theorem 5.7, Theorem
5.9]) also holds for homology groups by the Hurewitcz theorem. Let G be
an Abelian group and let X be G-semi locally simply connected (see [12,
Definition 2.4])) then the following holds:

{H1 (sRips(X ; r̃), G)}r1≥r2≥···>0
∼= {H1(X,G)/L(X, 2r1 + r2, G)}r1≥r2>0 ,

{H1 (sRips(X ; r̃), G)}r1≥r2≥···>0
∼= {H1(X,G)/S (X, (2r1 + r2)/2, G)}r1≥r2>0

and

{H1 (sRips(X ; r̃), G)}r1≥r2≥···>0
∼= {H1(X,G)/D(X, (2r1 + r2)/2, G)}r1≥r2>0 .

These results can be further combined with the structural results proved
in [12]. For example, if r̃(t) is a collection of non-decreasing continuous func-
tions ri(t) : R → (0,∞) satisfying r1(t) ≥ r2(r) ≥ · · · , ∀t and X is compact,
then

• The collection of critical values of the fundamental group (i.e., the val-
ues of t ∈ R at which group π1 (sRips(X ; r̃(t)), G) changes) is discrete;

• for each critical value tc there exists a geodesic circle in X of length
r1(tc) + r2(tc).
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