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Abstract. Given an arbitrary category C, a category pro∗
f
-C is

constructed such that the known pro-C category may be considered as a

subcategory of pro∗
f
-C and that pro∗

f
-C may be considered as a subcat-

egory of pro∗-C. Analogously to the construction of the shape category
Sh(C,D) and the coarse category Sh∗

(C,D)
, an (abstract) finite coarse shape

category Sh∗
f

(C,D)
is obtained. Between these three categories appropriate

faithful functors are defined. The finite coarse shape is also defined by an
intrinsic approach using the notion of the ǫ-continuity. The isomorphism
of the finite coarse shape categories obtained by these two approaches is
constructed. Besides, an overview of some basic properties related to the
notion of the ǫ-continuity is given.

1. Introduction

The shape theory of metric compacta was founded in 1968 by K. Borsuk
([1, 2]). Later on, S. Mardešić and J. Segal ([7]) extended the shape theory to
the class of all compact Hausdorff spaces using the inverse systems approach.
Finally, the shape theory was extended to the class of all topological spaces
by S. Mardešić ([6]) and K. Morita ([8]). In [9], J. M. R. Sanjurjo gave
the reinterpretation of the shape theory of compact metric spaces. He used
an intrinsic approach – the basic objects of that theory are sequences of ǫ-
continuous functions. The component functions of the morphisms between
metric compacta X and Y are ǫ-continuous functions from X to Y , unlike in
the inverse systems approach where component functions of the morphisms are
continuous and, generally, have values in the neighbourhoods of Y . Further
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generalizations were made by N. K. Bilan and N. Uglešić in [4]. They founded
the coarse shape theory for all topological spaces using the inverse systems
approach. The coarse shape classification of topological spaces is generally
coarser then the shape classification. In the present paper the finite coarse
shape category is constructed. We show that the shape category is a proper
subcategory of the finite coarse shape category, which is a proper subcategory
of the coarse shape category. The finite coarse shape morphisms between two
topological spaces X and Y are equivalence classes of the sequences of the
finite sequences between the corresponding terms of the expansions of X and
Y . Furthermore, we give an intrinsic reinterpretation of the finite coarse shape
category of closed subsets of the Hilbert cube Q and establish an isomorphism
between the corresponding finite coarse shape categories of closed subsets of
the Hilbert cube Q obtained by both inverse systems and intrinsic approach.
Finally, the intrinsic finite coarse shape classification is extended to the class
of metric compacta MCpt.

2. The notion and some basic properties of ǫ-continuity

Definition 2.1. Let X be a topological space, (Y, d) metric space and
ǫ ∈ R

+. A function f : X → Y is said to be ǫ-continuous at a point x0 ∈ X
if there exists a neighbourhood U of x0 in X such that

f(U) ⊆ B(f(x0), ǫ).

A function f : X → Y is said to be ǫ-continuous provided that it is ǫ-
continuous at each point x0 ∈ X.

It is obvious that a function f is continuous if and only if it is ǫ-continuous
for every ǫ ∈ R

+. Function f : R → R, f(x) = sgn(x), is an example of a
4
3 -continuous function that is not continuous.

If f, g : X → Y are functions, the notation d(f, g) < ǫ means that

d(f(x), g(x)) < ǫ

for every x ∈ X .

Proposition 2.2. Let X be a topological space and let (Y, d) be a metric
space. Let f : X → Y be a continuous function and g : X → Y be a function
such that d(f, g) < ǫ, for some ǫ > 0. Then g is 3ǫ-continuous.

If both domain and codomain are metric spaces, ǫ-continuity can be char-
acterized in a way that a function f : X → Y is ǫ-continuous if and only if
for every point x ∈ X there exists a δx > 0 such that

f(B(x, δx)) ⊆ B(f(x), ǫ).

The composition of two ǫ-continuous functions f : X → Y and g : Y → Z
is not, in general, an ǫ-continuous function. Moreover, there doesn’t have to
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exist an ǫ′ ∈ R
+ such that the composition g ◦ f : X → Z is an ǫ′-continuous

function, as it is shown in the following example.

Example 2.3. Let f : R+
0 → Z

+
0 , f(x) = ⌊x⌋, be a function that associates

with every x ∈ R
+
0 the greatest integer less than or equal to x, let g : R+

0 → R
+
0 ,

g(x) = x2 and let h : R+
0 → Z

+
0 , h(x) = g(f(x)) = ⌊x⌋2. Functions f and g

are obviously 4
3 -continuous. On the other hand, for every n ∈ N, function h

is not ǫ-continuous at point n, for any ǫ ≤ 2n− 1. Since lim(2n− 1) = +∞,
there doesn’t exist an ǫ ∈ R

+ such that h is ǫ-continuous.

Proposition 2.4. Let f : X → Y be a continuous function and let
g : Y → Z be an ǫ-continuous function. Then g ◦ f : X → Z is an ǫ-
continuous function.

Proposition 2.5. Let X = X1 × · · · × Xn be a topological product and
Y = (Y1 × · · · × Yn, d∞) be a product of metric spaces. A function f =
(f1, . . . , fn) : X → Y is ǫ-continuous if and only if every function fi : Xi →
Yi, i = 1, . . . n, is ǫ-continuous.

Using the inequality dp ≤ p
√
n · d∞, p ∈ N, the following proposition can

easily be proved.

Proposition 2.6. Let X = X1 × · · · × Xn be a topological product and
Y = (Y1 × · · ·×Yn, dp), p ∈ N, be a product of metric spaces. Then, for every
p ∈ N, the following statements hold:

(i) if f = (f1, . . . , fn) : X → Y is ǫ-continuous, then every function
fi : Xi → Yi, i = 1, . . . , n, is ǫ-continuous;

(ii) if every function fi : Xi → Yi, i = 1, . . . , n, is ǫ-continuous, then
f = (f1, . . . , fn) : X → Y is p

√
n · ǫ-continuous.

The properties of ǫ-continuous functions are much better if considered
between the compact metric spaces.

Definition 2.7. Let (X, d′) and (Y, d) be compact metric spaces. A
function f : X → Y is said to be uniformly ǫ-continuous if there exists a
δ > 0 such that for every two points x, x′ ∈ X inequality d′(x, x′) < δ implies
d(f(x), f(x′)) < ǫ.

A number δ from Definition 2.7 is called the uniformity radius of the
function f . It is obvious that a function f : X → Y is uniformly continuous
if and only if it is uniformly ǫ-continuous for every ǫ ∈ R

+. Furthermore, if a
function f : X → Y is uniformly ǫ-continuous, than it is also ǫ-continuous.

The following theorem is an analogue of the Heine-Cantor theorem.

Theorem 2.8. Let (X, d′) be a compact metric space and (Y, d) be a
metric space. If f : X → Y is an ǫ-continuous function, then f is uniformly
2ǫ-continuous.
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Proof. Since f is ǫ-continuous, for every x ∈ X there exists a δx > 0
such that

f(B(x, δx)) ⊆ B(f(x), ǫ).

For every x ∈ X , we define the set

Ux = B

(

x,
δx
2

)

.

Then the collection U = {Ux : x ∈ X} is an open covering of X that, due to
the compactness, admits a finite subcovering U ′ = {Ux1 , . . . , Uxn

}. Let

δ = min

{

δx1

2
, . . . ,

δxn

2

}

> 0.

and let x, x′ ∈ X be arbitrary points such that d′(x, x′) < δ. Since U ′ is the
covering of X , there exists i ∈ {1, . . . , n} such that x ∈ Uxi

. Hence,

d′(x, xi) <
δxi

2
.

Now, by the triangle inequality it holds that

d′(xi, x
′) ≤ d′(xi, x) + d′(x, x′) <

δxi

2
+ δ ≤ δxi

2
+

δxi

2
= δxi

.

It means that x, x′ ∈ B(xi, δxi
) and, by the assumption,

f(x), f(x′) ∈ B(f(xi), ǫ).

Finally, it holds that

d(f(x), f(x′)) ≤ d(f(x), f(xi)) + d(f(xi), f(x
′)) < 2ǫ,

i.e., f is uniformly 2ǫ-continuous.

A consequence of Theorem 2.8 is the following proposition that describes
the composition of ǫ-continuous functions on compact metric spaces.

Proposition 2.9. Let X, Y and Z be compact metric spaces, g : Y → Z
an ǫ-continuous function and let δ be a uniformity radius of the uniformly
2ǫ-continuous function g. If f : X → Y is a δ-continuous function, then
g ◦ f : X → Z is 2ǫ-continuous.

Let us now define the known relation between ǫ-continuous functions.

Definition 2.10. Let X be a topological space and let Y be a metric
space. Every ǫ-continuous function H : X × I → Y is called an ǫ-homotopy.

Two functions f, g : X → Y are said to be ǫ-homotopic, denoted by

f
ǫ≃ g, if there exists an ǫ-homotopy H : X × I → Y such that H(·, 0) = f

and H(·, 1) = g.
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On can easily prove that the relation of ǫ-homotopy is an equivalence
relation on the set of all ǫ-continuous functions from X to Y . Furthermore,
ǫ-continuous and near functions are mutually ǫ′-homotopic for an appropriate
ǫ′. More precisely, the following proposition holds.

Proposition 2.11. Let X be a topological space and Y be a metric space.
Let f, g : X → Y be ǫ1-near functions such that f is ǫ2-continuous and g ǫ3-

continuous. Then f
2ǫ≃ g for ǫ = max{ǫ1, ǫ2, ǫ3}.

3. The categories of the finite coarse shape

3.1. Categories inv∗
f

-C and pro∗
f

-C.
Definition 3.1. Let C be a category and let X = (Xλ, pλλ′ ,Λ) and Y =

(Yµ, qµµ′ ,M) be inverse systems in C. A ∗f -morphism (f, fm
µ ) : X → Y

consists of a function f : M → Λ, called the index function, and of a set of
C-morphisms fm

µ : Xf(µ) → Yµ, m ∈ N, µ ∈ M , such that:

(1) for every related pair µ, µ′ ∈ M , µ ≤ µ′, there exist λ ∈ Λ, λ ≥
f(µ), f(µ′) and mµµ′ ∈ N such that, for every m ≥ mµµ′ ,

fm
µ pf(µ)λ = qµµ′fm

µ′ pf(µ′)λ;

(2) for every µ ∈ M inequality card({fm
µ : m ∈ N}) < ℵ0 holds.

If the index function f is increasing and, for every pair µ ≤ µ′, one may
put λ = f(µ′), then (f, fm

µ ) is said to be a simple ∗f -morphism. If, in addition,

M = Λ and f = 1Λ, then (1Λ, f
m
µ ) is said to be a level ∗f -morphism.

If ∗f -morphism (f, fm
µ ) : X → Y has a property that, for every µ ∈ M ,

fm
µ = fµ, for every m ∈ N, then (f, fm

µ ) is said to be induced by the morphism
(f, fµ) : X → Y.

Let (f, fm
µ ) : X → Y and (g, gmν ) : Y → Z = (Zν , rνν′ , N) be ∗f -

morphisms. Then (h, hm
ν ), where h = fg and hm

ν = gmν fm
g(ν), for every m ∈ N

and ν ∈ N , is a ∗f -morphism from X to Z. Now we can define the com-
position of ∗f -morphisms: if (f, fm

µ ) : X → Y and (g, gmν ) : Y → Z, then
(h, hm

ν ) = (g, gmν ) ◦ (f, fm
µ ), where h = fg and hm

ν = gmν fm
g(ν). Clearly, this

composition is associative.
Furthermore, for every inverse system X = (Xλ, pλλ′ ,Λ), the pair

(1Λ, 1
m
Xλ

), where 1mXλ
= idXλ

, for every m ∈ N, is a level ∗f -morphism
(1Λ, 1

m
Xλ

) : X → X that acts neutrally in the composition from the left and

from the right side. Thus, (1Λ, 1
m
Xλ

) may be called the identity ∗f -morphism

on X. Now, given a category C, by inv∗
f

-C we may denote a category which
object class consists of all the inverse systems in C and which morphism class

consists of all the sets inv∗
f

-C(X,Y) of all ∗f -morphisms from X to Y, to-
gether with the composition and identities described above.

We define a relation on each set inv∗
f

-C(X,Y) as follows.
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Definition 3.2. A ∗f -morphism (f, fm
µ ) : X → Y is said to be equivalent

to a ∗f -morphism (f ′, f
′m
µ ) : X → Y, denoted by (f, fm

µ ) ∼ (f ′, f
′m
µ ), if for

every µ ∈ M there exist λ ∈ Λ, λ ≥ f(µ), f ′(µ), and mµ ∈ N such that, for
every m ≥ mµ,

fm
µ pf(µ)λ = f

′m
µ pf ′(µ)λ.

Proposition 3.3. The relation ∼ is a congruence on the category inv∗
f

-
C.

Proof. The relation∼ is obviously reflexive and symmetric. Transitivity
follows from the commutative diagram and by the direction of the set Λ for
λ′′ ≥ λ, λ′, where λ ≥ f(µ), f ′(µ) and λ′ ≥ f ′(µ), f ′′(µ).

The quotient category inv∗
f

-C|∼ is denoted by pro∗
f

-C and its morphisms

[(f, fm
µ )] (the equivalence classes of ∗f -morphisms) are denoted by f∗

f

. The

composition in the category pro∗
f

-C is defined by the representatives, i.e., if
f = [(f, fm

µ )] : X → Y and g = [(g, gmν )] : Y → Z are two morphisms in

pro∗
f

-C, then

g ◦ f = [(g, gmν )] ◦ [(f, fm
µ )] =

[(

f ◦ g, gmν ◦ fm
g(ν)

)]

: X → Z.

The following Proposition 3.4 states that category pro-C may be consid-

ered as a subcategory of pro∗
f

-C and that pro∗
f

-C may be considered as a
subcategory of pro∗-C. Recall that category pro∗-C was defined in [4] as a
step in the construction of the coarse shape category.

Proposition 3.4. The mapping which holds inverse systems in C fixed
and with every morphism f = [(f, fµ)] : X → Y in pro-C associates a ∗f -
morphism f∗

f

= [(f, fm
µ )] : X → Y in pro∗

f

-C that is represented by the

∗f -morphism induced by the morphism (f, fµ), is well defined and determines

a faithful functor J∗f

C : pro-C → pro∗
f

-C which, in general, is not full.
Analogously, the mapping which holds inverse systems in C fixed and with

every ∗f -morphism f∗
f

= [(f, fm
µ )] : X → Y in pro∗

f

-C associates a ∗-
morphism f∗ = [(f, fm

µ )] : X → Y in pro∗-C that is represented by the

∗-morphism (i.e., ∗f -morphism) (f, fm
µ ), is well defined and determines a

faithful functor J∗
C : pro∗

f

-C → pro∗-C which, in general, is not full.

Proof. It is obvious that J∗f

C is a functor. Firstly, we prove that J∗f

C is
faithful, i.e., that for every pair X, Y of the inverse systems in C the function

J∗f

X,Y : pro-C(X,Y) → pro∗
f

-C(X,Y) is injective.

Let f , f ′ : X → Y be such that J∗f

C (f) = f∗
f

= J∗f

C (f ′), and let
(f, fµ), (f

′, f ′
µ) : X → Y be ∗-morphisms in inv-C such that f = [(f, fµ)]

and f ′ = [(f ′, f ′
µ)]. By the assumption, [(f, fm

µ )] = [(f ′, f
′m
µ )], where
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(f, fm
µ ), (f ′, f

′m
µ ) : X → Y are ∗f -morphisms in inv∗

f

-C induced by ∗-
morphisms (f, fµ) and (f ′, f ′

µ), respectively. Hence, fm
µ = fµ and f

′m
µ = f ′

µ,

for every µ ∈ M , m ∈ N and, since (f, fm
µ ) ∼ (f ′, f

′m
µ ), for every µ ∈ M there

exists λ ∈ Λ, λ ≥ f(µ), f ′(µ) such that

fm
µ pf(µ)λ = f

′m
µ pf ′(µ)λ, for every m ∈ N.

Previous relations mean that for every µ ∈ M there exists λ ∈ Λ, λ ≥
f(µ), f ′(µ) such that

fµpf(µ)λ = f ′
µpf ′(µ)λ.

So, (f, fµ) ∼ (f ′, f ′
µ), i.e., f = f ′ and the injectivity is proved. Hence, J∗f

C is
a faithful functor. The proof that J∗

C is faithful is analogous.

We show by counterexamples that, in general, functors J∗f

C and J∗
C are

not full. Let X,Y ∈ Ob(C) and let g, g′ : X → Y be morphisms in C such
that g 6= g′. The morphism

(fm) : (X) → (Y )

f2k = g, f2k−1 = g′, for every k ∈ N,

in inv∗
f

-C, between the rudimental systems (X) and (Y ), is not induced by

any morphism in inv-C and so [(fm)] /∈ J∗f

X,Y (pro− C((X), (Y ))), i.e., J∗f

C , in

general, is not full. Finally, let X,Y ∈ Ob(C) and let (gm) be a sequence of
morphisms gm : X → Y , m ∈ N, in C such that gm 6= gm′ , whenever m 6= m′.
The morphism

(fm) : (X) → (Y )

fm = gm, for every m ∈ N,

in inv∗-C, between the rudimental systems (X) and (Y ), is not induced by

any morphism in inv∗
f

-C and so [(fm)] /∈ J∗
X,Y (pro

∗f −C ((X), (Y ))), i.e., J∗
C ,

in general, is not full.

Especially, if C = HTop, then functors J∗f

HTop : pro-HTop → pro∗
f

-HTop

and J∗
HTop : pro∗

f

-HTop → pro∗-HTop are faithful and not full.

3.2. The category and morphisms of the finite coarse shape.
Let C be a category and let D ⊆ C be a dense (pro-reflective) and full

subcategory. We define a relation between pro∗
f

-D-morphisms as follows:

Definition 3.5. Let C be a category and D ⊆ C dense and full subcat-
egory. Let p : (X) → X, p′ : (X) → X′ be D-expansions of the object
X ∈ Ob(C) and let q : (Y ) → Y, q′ : (Y ) → Y′ be D-expansions of the object

Y ∈ Ob(C). A morphism f∗
f

: X → Y is said to be equivalent to a morphism

f
′∗f

: X′ → Y′ in pro∗
f

-D, denoted by f∗
f ∼ f

′∗f

, if

f
′∗f ◦ J∗f

D (i) = J∗f

D (j) ◦ f∗f

,
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where i : X → X′ and j : Y → Y′ are canonical isomorphisms between the
expansions of the same object.

The relation ∼ in pro∗
f

-D is an equivalence relation on the appropriate

subclass of all the pro∗
f

-D-morphisms between inverse systems in D that are

expansions of the objects X and Y from C. Moreover, if f∗
f ∼ f

′∗f

and

g∗f ∼ g
′∗f

, then g∗f

f∗
f ∼ g

′∗f

f
′∗f

whenever it is defined. An equivalence

class of the morphism f∗
f

is denoted by
〈

f∗
f
〉

. Furthermore, given p, p′, q,

q′ and f∗
f

: X → Y there exists a unique f
′∗f

: X′ → Y′ such that f∗
f ∼ f

′∗f

.
For an arbitrary category pair (C,D), where D is dense in C, we now define

the (abstract) finite coarse shape category Sh∗f

(C,D) as follows: the objects of

Sh∗f

(C,D) are all the objects of C and, for any pair X,Y of objects, a morphism

F ∗f ∈ Sh∗f

(C,D)(X,Y ) is the pro∗
f

-D equivalence class 〈f∗f 〉 of a morphism

f∗
f

: X → Y in pro∗
f

-D, for any choice of D-expansions p : (X) → X and
q : (Y ) → Y.

One can identify a finite coarse shape morphism F ∗f

: X → Y with a

morphism f∗
f

: X → Y, for any pair of fixed D-expansions of objects X and

Y . In other words, for every two objects X,Y in C, the set Sh∗f

(C,D)(X,Y ) is

bijectively correspondent with the set pro∗
f

-D(X,Y).

The composition of the finite coarse shape morphisms F ∗f

: X → Y ,

F ∗f

=
〈

f∗
f
〉

, and G∗f

: Y → Z, G∗f

=
〈

g∗f
〉

, is defined naturally by

the representatives, i.e., G∗f ◦ F ∗f

: X → Z, G∗f ◦ F ∗f

=
〈

g∗f ◦ f∗f
〉

.

Furthermore, for every objectX in C the identity finite coarse shape morphism

on X , 1∗
f

X : X → X , is the equivalence class
〈

1∗f

X

〉

of the identity morphism

1∗f

X in pro∗
f

-D. Thus, Sh∗f

(C,D) is a category.

To establish the connections between the observed categories, we define

the functors J∗f

(C,D) : Sh(C,D) → Sh∗f

(C,D) and J∗
(C,D) : Sh

∗f

(C,D) → Sh∗
(C,D) by:

J∗f

(C,D)(X) = J∗
(C,D)(X) = X, for every object X in C,

J∗f

(C,D)(F ) =
〈

J∗f

D (f)
〉

=
〈

f∗
f
〉

, for every shape morphism F = 〈f〉,

J∗
(C,D)

(

F ∗f
)

=
〈

J∗
D

(

f∗
f
)〉

= 〈f∗〉,

for every finite coarse shape morphism F ∗f

=
〈

f∗
f
〉

.

Proposition 3.6. The functors J∗f

(C,D) : Sh(C,D) → Sh∗f

(C,D) and J∗
(C,D) :

Sh∗f

(C,D) → Sh∗
(C,D) are faithful and, in general, not full.
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Proof. The functors J∗f

(C,D) and J∗
(C,D) are faithful because J∗f

D are J∗
D

faithful. The counterexamples which prove that J∗f

(C,D) and J∗
(C,D) are not full

are analogous to the counterexamples from the proof of Proposition 3.4.

By Proposition 3.6, the (abstract) shape category Sh(C,D) may be con-

sidered as a subcategory of the (abstract) finite coarse shape Sh∗f

(C,D) and

the (abstract) finite coarse shape category Sh∗f

(C,D) may be considered as a

subcategory of the (abstract) coarse shape category Sh∗
(C,D).

We denote the composition of the shape functor S(C,D) and the functor

J∗f

(C,D) by S∗f

(C,D), i.e., S
∗f

(C,D) = J∗f

(C,D) ◦ S(C,D).

Definition 3.7. The functor S∗f

(C,D) : C → Sh∗f

(C,D) is called the finite

coarse shape functor for pair (C,D).

The functor S∗f

(C,D) holds objects fixed, and associates with every C−
morphism f : X → Y a finite coarse shape morphism F ∗f

: X → Y which is

represented by a ∗f -morphism f∗
f

: X → Y in pro∗
f

-D that is induced by a
morphism f : X → Y in pro-D such that S(C,D)(f) = F = 〈f〉.

Definition 3.8. We say that objects X and Y in C have the same finite

coarse shape if they are isomorphic in Sh∗f

(C,D).

It is obvious that F ∗f

=
〈

f∗
f
〉

: X → Y is an isomorphism in Sh∗f

(C,D) if

and only if f∗
f

: X → Y is an isomorphism in pro∗
f

-D. In other words, X and
Y have the same finite coarse shape if and only if X and Y are isomorphic in

pro∗
f

-D. Moreover, since functors preserve isomorphisms, it holds that:

(1) if X and Y are isomorphic in C or in Sh(C,D), then they have the same
finite coarse shape;

(2) if X and Y have the same finite coarse shape, then they have the same
coarse shape.

Thus, (1) proves (ii) =⇒ (iii) and (2) proves (iii) =⇒ (iv) from the following
corollary. The remaining implications are known from [4].

Corollary 3.9. If P and Q are objects in D, then the following state-
ments are equivalent:

(i) P and Q are isomorphic in D;
(ii) P and Q have the same shape;
(iii) P and Q have the same finite coarse shape;
(iv) P and Q have the same coarse shape.

Since categories HPol and HANR are dense and full in HTop, one can

observe categories Sh∗f

(HTop,HPol) and Sh∗f

(HTop,HANR). For every two objects
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the sets of all morphisms (between these objects) of these categories are bi-
jectively correspondent and, hence, these categories are identified, called the

topological finite coarse shape category and denoted by Sh∗f

.

3.3. The ∗f -fundamental, ∗f -approximative and ∗f -proximate sequences.
For an arbitrary pair of topological spaces X and Y , let C(X,Y ) denote the
set of all the continuous functions from X to Y .

Definition 3.10. Let X and Y be closed subsets of the Hilbert cube Q.
A function Φ : N2 → C(Q,Q) is called a ∗f -fundamental sequence from X to
Y provided:

(1) for every neighbourhood V of Y in Q there exist a neighbourhood U of
X in Q and n0 ∈ N such that for every n ≥ n0 there exists mn ∈ N

such that

Φ(n,m)|U ≃ Φ(n+ 1,m)|U in V, for every m ≥ mn;

(2) for every n ∈ N the inequality card({Φ(n,m) : m ∈ N}) < ℵ0 holds.

Remark 3.11. If Φ is a ∗f -fundamental sequence from X to Y , the func-
tion Φ(n,m) : Q → Q will be denoted by Φm

n : Q → Q, i.e., Φ = (Φm
n ) : X →

Y .

Proposition 3.12. A function Φ : N2 → C(Q,Q) such that, for every
n ∈ N, the inequality card({Φm

n : m ∈ N}) < ℵ0 holds, is a ∗f -fundamental
sequence from X to Y if and only if for every neighbourhood V of Y in Q there
exist a neighbourhood U of X in Q and n0 ∈ N such that for all n, n′ ≥ n0

there exists mnn′ ∈ N such that

Φm
n |U ≃ Φm

n′ |U in V, for every m ≥ mnn′ .

The composition of ∗f -fundamental sequences is defined coordinatewise.
Such a composition is associative and for an arbitrary closed subset X of Q
the identity on X is a ∗f -fundametal sequence 1X = (1mn ) : X → X such that
1mn = idQ : Q → Q, for every n,m ∈ N. Hence, all the closed subsets of Q
taken as objects and all the ∗f -fundamental sequences taken as morphisms

form a category denoted by C∗f

f .

Definition 3.13. A ∗f -fundamental sequence Φ = (Φm
n ) : X → Y is said

to be homotopic to a ∗f -fundamental sequence Φ′ = (Φ
′m
n ) : X → Y provided

for every neighbourhood V of Y in Q there exist a neighbourhood U of X in
Q and n0 ∈ N such that for every n ≥ n0 there exists mn ∈ N such that

Φm
n |U ≃ Φ

′m
n |U in V, for every m ≥ mn.

In that case, we write: Φ ∼ Φ′. The relation ∼ is an equivalence relation
on the set of all ∗f -fundamental sequences from X to Y . An equivalence class
of a ∗f -fundamental sequence Φ = (Φm

n ) : X → Y is denoted by [Φ] = [(Φm
n )].
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Furthermore, the composition of the equivalence classes of ∗f -fundamental
sequences is defined by the representatives, [Ψ] ◦ [Φ] := [Ψ ◦ Φ], whenever
composition Ψ◦Φ makes sense. This composition is obviously well defined and
associative, with [1X ] being neutral in the composition from both sides. Thus,
all the closed subsets of Q taken as objects and all the equivalence classes of
∗f -fundamental sequences taken as morphisms form a category denoted by

Sh∗f

f .

We now introduce the notion of a ∗f -approximative sequence which will
be a crucial link between the finite coarse shape categories obtained by the
inverse systems approach and the intrinsic approach.

Definition 3.14. Let X and Y be closed subsets of Q. A function α :
N

2 → C(X,Q) is called a ∗f -approximative sequence from X to Y provided:

(1) for every neighbourhood V of Y in Q there exists n0 ∈ N such that for
every n ≥ n0 there exists mn ∈ N such that

α(n,m) ≃ α(n+ 1,m) in V, for every m ≥ mn;

(2) for every n ∈ N the inequality card({α(n,m) : m ∈ N}) < ℵ0 holds.

Remark 3.15. If α is a ∗f -approximative sequence from X to Y , the
function α(n,m) : X → Q will be denoted by αm

n : X → Q, i.e., α = (αm
n ) :

X → Y .

Proposition 3.16. A function α : N2 → C(X,Q) such that, for every
n ∈ N, the inequality card({αm

n : m ∈ N}) < ℵ0 holds, is a ∗f -approximative
sequence from X to Y if and only if for every neighbourhood V of Y in Q
there exists n0 ∈ N such that for all n, n′ ≥ n0 there exists mnn′ ∈ N such
that

αm
n ≃ αm

n′ in V, for every m ≥ mnn′ .

Definition 3.17. A ∗f -approximative sequence α = (αm
n ) : X → Y is

said to be homotopic to a ∗f -approximative sequence β = (βm
n ) : X → Y

provided for every neighbourhood V of Y in Q there exists n0 ∈ N such that
for every n ≥ n0 there exists mn ∈ N such that

αm
n ≃ βm

n in V, for every m ≥ mn.

In that case, we write: α ∼ β. The relation ∼ is an equivalence relation on
the set of all ∗f -approximative sequences from X to Y . An equivalence class
of a ∗f -approximative sequence α = (αm

n ) : X → Y is denoted by [α]=[(αm
n )].

Given a ∗f -approximative sequence α = (αm
n ) : X → Y , if one chooses

an arbitrary subsequence (nk) of the sequence of natural numbers, then one
obtains another ∗f -approximative sequence α′ = (αm

nk
) : X → Y such that

α ∼ α′.
Notice that if α = (αm

n ) : X → Y and β = (βm
n ) : Y → Z are ∗f -

approximative sequences, then, since αm
n : X → Q and βm

n : Y → Q, for
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every n,m ∈ N, any direct composition of the components of α and β is not
possible. Hence, to obtain composition [β] ◦ [α], we will need to involve ∗f -
fundamental sequences. The following proposition is proved straightforwardly
by the definitions.

Proposition 3.18. If Φ = (Φm
n ) : X → Y is a ∗f -fundamental sequence,

then Φ|X := (Φm
n |X) is a ∗f -approximative sequence from X to Y .

With each ∗f -approximative sequence is associated, up to the equivalence,
a unique ∗f -fundamental sequence as shown in the following Theorem 3.19 and
Proposition 3.20. The following theorem is a generalization of [5, Theorem
2’].

Theorem 3.19. Let α : X → Y be a ∗f -approximative sequence. Then
there exists a ∗f -fundamental sequence Φ : X → Y such that Φ|X ∼ α.

Proof. Let (Vk)k be a decreasing sequence of open neighbourhoods of
Y in Q such that ∩Vk = V. For every k ∈ N there exists n0(k) ∈ N such that
for every n ≥ n0(k) there exists mn(k) ∈ N such that

αm
n ≃ αm

n+1 in Vk, for every m ≥ mn(k).

Notice that one can choose the indices n0(k) increasingly, i.e., n0(k) < n0(k+
1), for every k ∈ N. Define nk := n0(k), for every k ∈ N. Hence we obtained
an increasing sequence of indices (nk)k and a ∗f -approximative sequence α0 =
(αm

nk
) : X → Y such that α0 ∼ α. By the definition of α0 it follows that for

every k ∈ N there exists mnk
∈ N such that

αm
nk

≃ αm
nk+1

in Vk, for every m ≥ mnk
.

We will now construct a decreasing sequence (Wk) of closed neighbourhoods
of X in Q and a ∗-fundamental sequence Φ = (Φm

k ) : X → Y such that

Φm
k |X = αm

nk
, for every k,m ∈ N

and, for every k ∈ N and every n ≥ k,

Φm
k |Wk

≃ Φm
n |Wk

in Vk, for almost all m.

The construction will be done inductively for all k ∈ N, successively extend-
ing, for almost all m ∈ N, functions αm

nk
from X , over the neighbourhoods

Wk,Wk−1, . . . ,W2,W1, up to the functions Φm
k from Q to Q.

For k = 1 there exists mn1 ∈ N such that, for every m ≥ mn1 , α
m
n1

≃ αm
n2

in V1 holds. Let, for every m ∈ N, Φm
1 : Q → Q be an arbitrary continu-

ous extension of αm
n1

: X → Q (which exists because Q is an AR). Thereat,

if m,m′ ≥ mn1 and αm
n1

= αm′

n1
, the extensions are chosen in a way that

Φm
1 = Φm′

1 (the same component functions αm
n1

are always extended by the
same extension). Notice that, for every m ≥ mn1 , α

m
n1

: X → V1 ⊆ Q and
hence, by the continuity of Φm

1 , there exists a neighbourhood Um
1 of X in Q

such that Φm
1 (Um

1 ) ⊆ V1, for every m ≥ mn1 . Thereat, if m,m′ ≥ mn1 and



THE FINITE COARSE SHAPE 101

Φm
1 = Φm′

1 , the neighbourhoods are chosen in a way that Um
1 = Um′

1 (the
same component functions are always associated with the same neighbour-
hood). Since card({Um

1 : m ≥ mn1}) < ℵ0, the intersection ∩
m≥mn1

Um
1 is a

neighbourhood of X . Let
W1 ⊆ ∩

m≥mn1

Um
1

be a closed neighbourhood of X (which exists because of the normality of Q).
Then Φm

1 (W1) ⊆ V1, for every m ≥ mn1 .
For k = 2 there exists mn2 ∈ N such that, for every m ≥ mn2 , α

m
n2

≃ αm
n3

in V2. Since, for every m ≥ mn1 , αm
n1

≃ αm
n2

in V1 holds and αm
n1

has a
continuous extension Φm

1 |W1 : W1 → V1, by homotopy extension property for

V1 there exists an extension Φ
′m
2 : W1 → V1 of αm

n2
such that

Φ
′m
2 ≃ Φm

1 |W1 in V1, for every m ≥ mn1 .

Thereat, if m,m′ ≥ mn1 and αm
n2

= αm′

n2
, the extensions are chosen in a way

that Φ
′m
2 = Φ

′m′

2 (the same component functions αm
n2

are always extended by
the same extension). Let, for every m ≥ mn1 , Φ

m
2 : Q → Q be an arbitrary

continuous extension of Φ
′m
2 : W1 → V1 ⊆ Q (paying attention that, as before,

the same component functions are always extended by the same extension)
and for m < mn1 let Φm

2 : Q → Q be an arbitrary continuous extension of
αm
n2

: X → Q. Since

αm
n2

: X → V2, for every m ≥ mn2 and Φm
2 |X = αm

n2
, for every m ≥ mn1 ,

by the continuity of Φm
2 , for every m ≥ m12 = max{mn1 ,mn2} there ex-

ists a neighbourhood Um
2 of X in Q such that Φm

2 (Um
2 ) ⊆ V2. Thereat, if

m,m′ ≥ m12 and Φm
2 = Φm′

2 , the neighbourhoods are chosen in a way that

Um
2 = Um′

2 (the same component functions are always associated with the
same neighbourhood). Since card({Um

2 : m ≥ m12}) < ℵ0, the intersection
∩

m≥m12

Um
2 is a neighbourhood of X . Let

W2 ⊆ ∩
m≥m12

Um
2 ∩W1

be a closed neighbourhood of X (which exists because of the normality of Q).
Then Φm

2 (W2) ⊆ V2, for every m ≥ m12. In this step we have achieved

Φm
1 |W1 ≃ Φm

2 |W1 in V1, for every m ≥ m12.

For an arbitrary k = n the construction is performed analogously.
We claim that the obtained Φ = (Φm

k ) is a ∗f -fundamental sequence from
X to Y . Let V be an arbitrary neighbourhood of Y in Q. Then there exists
k ∈ N such that Vk ⊆ V . By the construction there exists a neighbourhood
Wk of X in Q such that for every n ≥ k there exists an index mkn sufficiently
large such that

Φm
k |Wk

≃ Φm
n |Wk

in Vk ⊆ V, for every m ≥ mkn.
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Moreover, for every k ∈ N the inequality card({Φm
k : m ∈ N}) < ℵ0, holds

and, hence, Φ : X → Y is a ∗f -fundamental sequence. Finally, since

Φm
k |X = αm

nk
, for every n,m ∈ N,

we have α0 = (αm
nk
) = Φ|X and, because α0 ∼ α, Φ|X ∼ α holds. This

completes the proof.

Proposition 3.20. Let Φ,Φ′ : X → Y be ∗f -fundamental sequences.
Then Φ ∼ Φ′ if and only if Φ|X ∼ Φ′|X .

Proof. The necessity is trivial. Suppose that Φ|X ∼ Φ′|X and let V be
an arbitrary open neighbourhood of Y in Q. Then there exist neighbourhoods
U ′ and U ′′ of X in Q and n0 ∈ N such that for every n ≥ n0 there exists
mn ∈ N such that

Φm
n0
|U ′ ≃ Φm

n |U ′ in V, Φ
′m
n0

|U ′′ ≃ Φ
′m
n |U ′′ in V and

Φm
n |X ≃ Φ

′m
n |X in V, for every m ≥ mn.

By the homotopy extension theorem, since X is closed in Q and V is an ANR,
for every m ≥ mn0 there exists a neighbourhood Um of X in Q such that

Φm
n0
|Um ≃ Φ

′m
n0

|Um in V.

Thereat, if m,m′ ≥ mn0 and
(

Φm
n0
,Φ

′m
n0

)

=
(

Φm′

n0
,Φ

′m′

n0

)

, the neighbourhoods

are chosen in a way that Um = Um′

. Since

card
({(

Φm
n0
,Φ

′m
n0

)

: m ≥ mn0

})

≤ card
({

Φm
n0

: m ≥ mn0

})

· card
({

Φ
′m
n0

: m ≥ mn0

})

< ℵ0,

it holds that card({Um : m ≥ mn0}) < ℵ0 and so U ′′′ := ∩
m≥mn0

Um is a

neighbourhood of X in Q such that

Φm
n0
|U ≃ Φ

′m
n0

|U in V, for every m ≥ mn0 .

For U = U ′ ∩ U ′′ ∩ U ′′′ and for every n ≥ n0 we have

Φm
n |U ≃ Φm

n0
|U ≃ Φ

′m
n0

|U ≃ Φ
′m
n |U in V, for every m ≥ max{mn,mn0},

which means that Φ ∼ Φ′.

It is easy to check that the coordinatewise composition of a ∗f -approxi-
mative sequence α = (αm

n ) : X → Y and a ∗f -fundamental sequence Φ =
(Φm

n ) : Y → Z is a ∗f -approximative sequence Φ ◦ α = (Φm
n ◦ αm

n ) : X → Z.

Proposition 3.21. Let α, α′ : X → Y be ∗f -approximative sequences
such that α ∼ α′ and let Φ,Φ′ : Y → Z be ∗f -fundamental sequences such
that Φ ∼ Φ′. Then Φ ◦ α ∼ Φ′ ◦ α′.
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Hence, the composition of the equivalence class [α] : X → Y of ∗f -
approximative sequences with the equivalence class [Ψ] : Y → Z of ∗f -
fundamental sequences is well defined by the representatives, i.e., [Ψ] ◦ [α] :=
[Ψ ◦ α], and enables us to define the composition of the equivalence classes
of ∗f -approximative sequences. Let [α] and [β] be the equivalence classes of
∗f -approximative sequences α : X → Y and β : Y → Z. Then there exists a
unique equivalence class [Ψ] : Y → Z of ∗f -fundamental sequences such that
[Ψ|Y ] = [β]. We define:

[β] ◦ [α] = [Ψ|Y ] ◦ [α] := [Ψ] ◦ [α] = [Ψ ◦ α].

By the previous remarks and Proposition 3.21, the composition of the equiva-
lence classes of ∗f -approximative sequences is well defined. It is easy to prove
that the composition is associative and, for an arbitrary closed subset X of
Q, the identity on X is an equivalence class of the ∗f -approximative sequence
1X = (1mn ) : X → X such that 1mn = idX : X → X , n,m ∈ N. Hence,
all the closed subsets of Q taken as objects and all the equivalence classes of
∗f -approximative sequences taken as morphisms form a category denoted by

Sh∗f

a .
It remains to define a category of the equivalence classes of ∗f -proximate

sequences which will give a description of the intrinsic finite coarse shape.

Definition 3.22. Let X and Y be closed subsets of Q. A function a :
N

2 → Y X is called a ∗f -proximate sequence from X to Y provided:

(1) for every ǫ > 0 there exists n0 ∈ N such that for every n ≥ n0 there
exists mn ∈ N such that

a(n,m)
ǫ≃ a(n+ 1,m), for every m ≥ mn;

(2) for every n ∈ N the inequality card({a(n,m) : m ∈ N}) < ℵ0 holds.

Remark 3.23. If a is a ∗f -proximate sequence, the function a(n,m) :
X → Y will be denoted by amn : X → Y , i.e., a = (amn ) : X → Y .

Proposition 3.24. A function a : N2 → Y X such that, for every n ∈ N,
the inequality card({amn : m ∈ N}) < ℵ0 holds, is a ∗f -proximate sequence
from X to Y if and only if for every ǫ > 0 there exists n0 ∈ N such that for
all n, n′ ≥ n0 there exists mnn′ ∈ N such that

amn
ǫ≃ amn′ , for every m ≥ mnn′ .

Definition 3.25. A ∗f -proximate sequence a = (amn ) : X → Y is said
to be homotopic to a ∗f -proximate sequence b = (bmn ) : X → Y provided for
every ǫ > 0 there exists n0 ∈ N such that for every n ≥ n0 there exists mn ∈ N

such that

amn
ǫ≃ bmn , for every m ≥ mn.
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In that case, we write: a ∼ b. The relation ∼ is an equivalence relation on
the set of all ∗f -proximate sequences from X to Y . An equivalence class of a
∗f -proximate sequence a = (amn ) : X → Y is denoted by [a] = [(amn )]. Notice
that, due to the poor properties of the composition of ǫ-continuous functions
(as shown in Example 2.3), the composition of ∗f -proximate sequences cannot
be defined coordinatewise. Hence, the composition of ∗f -proximate sequences
a = (amk ) : X → Y and b = (bmn ) : Y → Z is defined in the following way:

Let (ǫn) be a decreasing sequence of positive real numbers such that
lim ǫn = 0 and that, for every n0 ∈ N and every n ≥ n0,

bmn0

ǫn0
2≃ bmn , for every m ≥ mn0n.

Let (δn) be a decreasing sequence of positive real numbers such that lim δn = 0
and that, for every n ∈ N, for every m ≥ mn and for all y, y′ ∈ Y such that
d(y, y′) < δn,

d(bmn (y), bmn (y′)) < ǫn.

It is easy to see that such sequence (δn) really exists. Namely, for every n ∈ N

and for every m ≥ mn, the function bmn yields a number δmn (the uniformity
radius of the uniformly ǫn-continuous function bmn ) such that d(y, y′) < δmn
implies d(bmn (y), bmn (y′)) < ǫn. Notice that for an arbitrary n ∈ N, by choosing

for all m,m′ ≥ mn, δmn = δm
′

n whenever bmn = bm
′

n (the same component
functions bmn are always associated with the same uniformity radius), one can
assure that card({δmn : m ≥ mn}) < ℵ0 and so there exists

δn = min({δmn : m ≥ mn} ∪ {δ1, . . . δn−1}) > 0

with the required property. Finally, let (kn) be a strictly increasing sequence
of indices such that, for every k ≥ kn,

amkn

δn
2≃ amk , for every m ≥ m′

knk
.

Now, for all n,m ∈ N we define cmn = bmn ◦ amkn
.

Proposition 3.26. If a = (amk ) : X → Y and b = (bmn ) : Y → Z are
∗f -proximate sequences, then c = (cmn ), cmn = bmn ◦ amkn

, is a ∗f -proximate
sequence from X to Z.

Proof. Given an arbitrary ǫ > 0, there exists n0 ∈ N such that ǫn0 < ǫ.
Fix any n ≥ n0. Then there exists a sequence of

ǫn0

2 -homotopiesHm
n : Y ×I →

Z such that

(1) Hm
n (·, 0) = bmn0

and Hm
n (·, 1) = bmn , for every m ≥ mn0n;

(2) card({Hm
n : m ≥ mn0n}) < ℵ0.

The property (2) is achievable because

card({(bmn0
, bmn ) : m ≥ mn0n})

≤ card({bmn0
: m ≥ mn0n}) · card({bmn : m ≥ mn0n}) < ℵ0.
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For every m ≥ mn0n, let δ
m
n be the uniformity radius of

ǫn0

2 -continuous func-
tion Hm

n . The property (2) allows card({δmn : m ≥ mn0n}) < ℵ0 and so there
exists δ = min{δmn : m ≥ mn0n} > 0. Let p ≥ n be an index such that δp < δ.
Then, by Propositions 2.5 and 2.9,

bmn0
◦ amkp

ǫn0≃ bmn ◦ amkp
, for every m ≥ max{mn0n,m

′
kp
}

by the ǫn0-homotopy Hm
n ◦ (amkp

, idI) : X × I → Z. Since kp ≥ kn, it follows

that

amkp

δn
2≃ amkn

, for every m ≥ m′
knkp

by the δn
2 -homotopy Gm

p : X × I → Y . By Proposition 2.9,

bmn ◦ ankp

ǫn≃ bmn ◦ amkn
, for every m ≥ max{mn,m

′
knkp

}
by the ǫn-homotopy bmn ◦Gm

p : X × I → Z. Furthermore, since

amkp

δn0
2≃ amkn0

, for every m ≥ m′
kn0kp

by the
δn0

2 -homotopy G
′m
p : X × I → Y , Proposition 2.9 implies that

bmn0
◦ ankp

ǫn0≃ bmn0
◦ amkn0

, for every m ≥ max{mn0 ,m
′
kn0kp

}

by the ǫn0-homotopy bmn0
◦G′m

p : X × I → Z. Finally, the transitivity of the
ǫn0-homotopy gives

bmn ◦ amkn

ǫn0≃ bmn0
◦ amkn0

,

for every

m ≥ m′′
n0n

= max{mn0 ,mn0n,m
′
kp
,m′

knkp
,m′

kn0kp
}

and ǫn0 < ǫ implies

cmn0

ǫ≃ cmn , for every m ≥ m′′
n0n

.

Moreover, for every n ∈ N, the inequality

card({bmn ◦ amkn
: m ∈ N}) ≤ card({bmn : m ∈ N}) · card({amkn

: m ∈ N}) < ℵ0

holds and c = (bmn ◦ amkn
) is a ∗f -proximate sequence from X to Z.

It is straightforward to prove that the equivalence class of the composition
of ∗f -proximate sequences does not depend either on the representatives of
the equivalence classes or on the choices of the sequences (ǫn), (δn) and (kn)
made in the composition.

The composition of the equivalence classes [a] = [(amk )] : X → Y and
[b] = [(bmn )] : Y → Z is defined by the representatives, i.e., [b] ◦ [a] := [b ◦ a] =
[(bmn ◦ amkn

)]. It is easy to prove that the composition is associative and, for an
arbitrary closed subset X of Q, the identity on X is an equivalence class of the
∗f -proximate sequence 1X = (1mn ) : X → X such that 1mn = idX : X → X ,
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n,m ∈ N. Hence, all the closed subsets of Q taken as objects and all the
equivalence classes of ∗f -proximate sequences taken as morphisms form a

category denoted by InSh∗f

.
In the following section we will prove the second main result of this paper

– the category InSh∗f

is isomorphic to the restriction on closed subsets of Q

of the topological finite coarse shape category Sh∗f

.

4. The isomorphisms of the finite coarse shape categories

4.1. The isomorphism of the categories Sh∗f |Q and Sh∗f

f .

Let Sh∗f |Q denote the restriction on closed subsets of Q of the topological

finite coarse shape category Sh∗f

. We shall associate an equivalence class of
a ∗f -fundamental sequence Φ = (Φm

n ) : X → Y with a finite coarse shape

morphism F ∗f

: X → Y .
Let (Xn) and (Yn) be a decreasing basis of open neighbourhoods of X

and Y in Q respectively such that ∩Xn = X and ∩Yn = Y . For every
pair n ≤ n′, let pnn′ : Xn′ → Xn and qnn′ : Yn′ → Yn be the inclusions
and X = (Xn, pnn′ ,N), Y = (Yn, qnn′ ,N) be the inverse systems of ANR-s.
Hence, the inclusions pn : X → Xn and qn : Y → Yn determine morphisms
p : X → X and q : Y → Y in pro− Top such that, by [7, Theorem 4, Ch. I,
§4.2], morphisms Hp : X → HX and Hq : Y → HY are HPol-expansions of
X and Y , respectively.

For n ∈ N and associated neighbourhood Yn of Y there exist a neighbour-
hood Un of X in Q and nYn

∈ N such that for every n′ ≥ nYn
there exists

mn′(n) ∈ N such that

Φm
n′ |Un

≃ Φm
nYn

|Un
in Yn, for every m ≥ mn′(n).

Let us now define a function f : N → N such that Xf(n) ⊆ Un, for every
n ∈ N. Obviously,

Φm
n′ |Xf(n)

≃ Φm
nYn

|Xf(n)
in Yn, for every n′ ≥ nYn

and for every m ≥ mn′(n).

By putting

fm
n = Φm

nYn
|Xf(n)

, for every m ∈ N,

we defined, for every n ∈ N, a sequence of mappings fm
n : Xf(n) → Yn, m ∈ N,

such that for every n ∈ N,

fm
n ≃ Φm

n′ |Xf(n)
in Yn, for every n′ ≥ nYn

and for every m ≥ mn′(n).

We will now prove that constructed (f, fm
n ) is a ∗f -morphism from X to

Y. For an arbitrary pair n ≤ n′ define λ = max{f(n), f(n′)}, n0 =
max{nYn

, nYn′
} and m0 = max{mn0(n),mn0(n

′)}. Notice that

qnn′ ◦ fm
n′ ◦ pf(n′)λ = qnn′ ◦ fm

n′ |Xλ
= qnn′ ◦ Φm

nY
n′

|Xλ
,
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and, by the construction,

Φm
nY

n′

|Xλ
≃ Φm

n0
|Xλ

in Yn′ , for every m ≥ m0

holds, so we have (because Yn′ ⊆ Yn)

qnn′ ◦ Φm
nY

n′

|Xλ
≃ qnn′ ◦ Φm

n0
|Xλ

in Yn, za svaki m ≥ m0.

Furthermore,

qnn′ ◦ Φm
n0
|Xλ

≃ Φm
n0
|Xλ

in Yn, for every m ≥ m0,

and, by the construction,

Φm
n0
|Xλ

≃
in Yn

Φm
nYn

|Xλ
= fm

n |Xλ
= fm

n ◦ pf(n)λ, for every m ≥ m0

holds. Therefore,

qnn′ ◦ fm
n′ ◦ pf(n′)λ ≃ fm

n ◦ pf(n)λ, for every m ≥ m0, i.e.,

[qnn′ ] ◦ [fm
n′ ] ◦ [pf(n′)λ] = [fm

n ] ◦ [pf(n)λ], for every m ≥ m0

in the category HPol.
Moreover, for every n ∈ N

card({[fm
n ] : m ∈ N}) ≤ card({Φm

nYn
: m ∈ N}) < ℵ0

holds and thus we proved that the homotopy classes ([fm
n ]) together with the

index function f form a ∗f -morphism (f, fm
n ) : X → Y in inv∗

f

-HPol. A

class f∗
f

= [(f, fm
n )] : X → Y of (f, fm

n ) is a morphism in pro∗
f

-HPol for

which there exists a unique finite coarse shape morphism F ∗f

: X → Y . Let
ω be a function which associates every ∗f -fundamental sequence Φ : X → Y
with a ∗f -morphism (f, fm

n ) : X → Y as in the previous construction. For
every pair of closed subsets X,Y of Q, we define a function

ΩX,Y : Sh∗f

f (X,Y ) → Sh∗f |Q(X,Y ),

ΩX,Y ([Φ]) := 〈[ω(Φ)]〉 = 〈[(f, fm
n )]〉 = F ∗f

.

The following proposition states that ΩX,Y is well defined.

Proposition 4.1. If Φ,Φ′ : X → Y are ∗f -fundamental sequences such
that Φ ∼ Φ′, then ΩX,Y ([Φ]) = ΩX,Y ([Φ

′]).

Proof. Let

ΩX,Y ([Φ]) = F ∗k = 〈[(f, fm
n )]〉 = 〈[ω(Φ)]〉 and

ΩX,Y ([Φ
′]) = F

′∗k = 〈[(f ′, f
′m
n )]〉 = 〈[ω(Φ′)]〉.

To prove that F ∗k = F
′∗k it suffices to prove that ∗f -morphisms (f, fm

n ) and

(f ′, f
′m
n ) are equivalent in inv∗

f

-HPol.
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For an arbitrary n ∈ N, (Φm
n ) ∼ (Φ

′m
n ) implies that the neighbourhood

Yn of Y admits a neighbourhood U1 of X in Q and n1 ∈ N such that for every
n′ ≥ n1 there exists m1

n′ such that

Φm
n′ |U1 ≃ Φ

′m
n′ |U1 in Yn, for every m ≥ m1

n′ .

Furthermore, there exists n0 ∈ N such that Xn0 ⊆ U1. Take

λ = max{f(n), f ′(n), n0} and n1 = max{n1, nYn
, n′

Yn
}.

For every m ∈ N, the relations

fm
n ◦ pf(n)λ = fm

n |Xλ
= Φm

nYn
|Xλ

and

f
′m
n ◦ pf ′(n)λ = f

′m
n |Xλ

= Φ
′m
n′

Yn

|Xλ

hold. Hence,

Φm
nYn

|Xλ
≃ Φm

n1
|Xλ

≃ Φ
′m
n1

|Xλ
≃ Φ

′m
n′

Yn

|Xλ
in Yn, i.e.,

fm
n ◦ pf(n)λ ≃ f

′m
n ◦ pf ′(n)λ, for almost all m ∈ N,

Thus, (f, fm
n ) ∼ (f ′, f

′m
n ) in inv∗

f

-HPol and F ∗k = F
′∗f

.

One can easily prove that the associated finite coarse shape morphism F ∗f

does not depend on the choice of the basis of neighbourhoods (Xn) and (Yn)
of X and Y in Q, respectively.

Proposition 4.2. Let X,Y, Z be closed subsets of Q and let

[Φ] ∈ Sh∗f

f (X,Y ), [Ψ] ∈ Sh∗f

f (Y, Z)

be arbitrary morphisms. Then

ΩX,Z([Ψ] ◦ [Φ]) = ΩY,Z([Ψ]) ◦ ΩX,Y ([Φ]).

Proof. Denote ΩX,Y ([Φ]) = F ∗f

, ΩY,Z([Ψ]) = G∗f

and ΩX,Z([Ψ]◦[Φ]) =
H∗f

. We need to prove that H∗f

= G∗f ◦F ∗f

. Let ∗f -fundamental sequences
(Φm

n ) : X → Y and (Ψm
n ) : Y → Z be the representatives of the classes [Φ]

and [Ψ], respectively. Now (Φm
n ), (Ψm

n ) and (Θm
n ) = (Ψm

n ) ◦ (Φm
n ) induce

∗f -morphisms (f, fm
n ) : X → Y, (g, gmn ) : Y → Z and (h, hm

n ) : X → Z,

respectively, in inv∗
f

-HPol such that

f∗
f

= [(f, fm
n )] : X → Y,

g∗f

= [(g, gmn )] : Y → Z,

h∗f

= [(h, hm
n )] : X → Z,

where f∗
f

, g∗f

and h∗f

are morphisms in pro∗
f

-HPol which induce finite

coarse shape morphisms F ∗f

, G∗f

and H∗f

, respectively. Define

(g, gmn ) ◦ (f, fm
n ) = (h′, h

′m
n ).
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To prove that H∗f

= G∗f ◦ F ∗f

it suffices to prove that (h, hm
n ) ∼ (h′, h

′m
n )

in inv∗
f

-HPol. For an arbitrary n ∈ N denote λ = max{h(n), h′(n)}. Notice
that the relations

h
′m
n ◦ ph′(n)λ = (gmn ◦ fm

g(n)) ◦ pf(g(n))λ = gmn ◦ (fm
g(n) ◦ pf(g(n))λ)

= gmn ◦ fm
g(n)|Xλ

= Ψm
nZn

◦Φm
nYg(n)

|Xλ
and

hm
n ◦ ph(n)λ = hm

n |Xλ
= Θm

n′

Zn

|Xλ
= Ψm

n′

Zn

◦ Φm
n′

Zn

|Xλ

hold for every m ∈ N. For n′ = max{nZn
, nYg(n)

, n′
Zn

},
Φm

nYg(n)
|Xλ

≃ Φm
n′ |Xλ

in Yg(n), for every m ≥ mn′(g(n)) and

Ψm
nZn

|Yg(n)
≃ Ψm

n′ |Yg(n)
in Zn, for every m ≥ m′

n′(n)

hold. Thus, for every m ≥ max{m′
n′(n),mn′(g(n))}, the compatibility of the

homotopy with the composition imply

Ψm
nZn

◦Φm
nYg(n)

|Xλ
≃ Ψm

n′ ◦ Φm
n′ |Xλ

in Zn.

Furthermore,

Θm
n′

Zn

|Xλ
≃ Θm

n′ |Xλ
in Zn, for every m ≥ m′′

n′(n), i.e.,

Ψm
n′

Zn

◦ Φm
n′

Zn

|Xλ
≃ Ψm

n′ ◦ Φm
n′ |Xλ

in Zn, for every m ≥ m′′
n′(n).

Finally, for m0 = max{m′
n′(n),mn′(g(n)),m′′

n′(n)}, the transitivity of the
relation of homotopy implies

Ψm
nZn

◦ Φm
nYg(n)

|Xλ
≃ Ψm

n′

Zn

◦ Φm
n′

Zn

|Xλ
in Zn, for every m ≥ m0.

Hence,

hm
n ◦ ph(n)λ ≃ h

′m
n ◦ ph′(n)λ, for every m ≥ m0,

i.e., (h, hm
n ) ∼ (h′, h

′m
n ).

By Proposition 4.2,

Ω : Sh∗f

f → Sh∗f |Q
Ω(X) = X, Ω([Φ]) := ΩX,Y ([Φ]) = F ∗f

,

is a functor.

Theorem 4.3. The functor Ω : Sh∗f

f → Sh∗f |Q is an isomorphism.

Proof. Let X and Y be closed subsets of Q. We shall prove that

Ω|(X,Y ) : Sh
∗f

f (X,Y ) → Sh∗f |Q(X,Y ) is a bijection.

Injectivity: Let [Φ], [Φ′] ∈ Sh∗f

f (X,Y ) be such that

F ∗f

= Ω([Φ]) = Ω([Φ′]) = F
′∗f

and let (Φm
n ), (Φ

′m
n ) : X → Y be ∗f -fundamental sequences such that

[Φ] = [(Φm
n )] and [Φ′] = [(Φ

′m
n )]. There exists a unique f∗

f

: X → Y in
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pro∗
f

-HPol such that F ∗f

= 〈f∗f 〉 = F
′∗f

and [(f, fm
n )] = f∗

f

= [(f ′, f
′m
n )],

where (f, fm
n ), (f ′, f

′m
n ) : X → Y are ∗f -morphisms in inv∗

f

-HPol such that

ω(Φm
n ) = (f, fm

n ) and ω(Φ
′m
n ) = (f ′, f

′m
n ). We claim that [Φ] = [Φ′], i.e.,

(Φm
n ) ∼ (Φ

′m
n ). For an arbitrary n ∈ N, the relations

fm
n ≃ Φm

n′ |Xf(n)
in Yn, for every n′ ≥ nYn

and for every m ≥ mn′(n) and

f
′m
n ≃ Φ

′m
n′ |Xf′(n)

in Yn, for every n′ ≥ n′
Yn

and for every m ≥ m′
n′(n)

hold. Define n1 = max{f(n), f ′(n)}, n′′
Yn

= max{nYn
, n′

Yn
} and

m1
n = max{mn′(n),m′

n′(n)}. Now

fm
n |Xn1

≃ Φm
n′ |Xn1

in Yn, for every n′ ≥ n′′
Yn

and for every m ≥ m1
n and

f
′m
n |Xn1

≃ Φ
′m
n′ |Xn1

in Yn, for every n′ ≥ n′′
Yn

and for every m ≥ m1
n

hold. Furthermore, by the assumption (f, fm
n ) ∼ (f ′, f

′m
n ) and so for every

n ∈ N there exist λn ≥ max{f(n), f ′(n)} = n1 and m2
n ∈ N such that

fm
n ◦ pf(n)λ ≃ f

′m
n ◦ pf ′(n)λ, for every m ≥ m2

n, i.e.,

fm
n |Xλn

≃ f
′m
n |Xλn

in Yn, for every m ≥ m2
n.

For any neighbourhood V of Y in Q there exist n ∈ N such Yn ⊆ V . Define
U = Xλn

and mn = max{m1
n,m

2
n} and let n′ ≥ n′′

Yn
be arbitrary. Then

Φm
n′ |U ≃ fm

n |U ≃ f
′m
n |U ≃ Φ

′m
n′ |U in V, for every m ≥ mn,

i.e., (Φm
n ) ∼ (Φ

′m
n ) and so [Φ] = [Φ′].

Surjectivity: Let F ∗f

: X → Y be an arbitrary finite coarse shape mor-

phism. Then there exist f∗
f

: X → Y in pro∗
f

-HPol and (f, fm
n ) : X → Y in

inv∗
f

-HPol such that 〈f∗f 〉 = 〈[(f, fm
n )]〉 = F ∗f

. Since the index set N is cofi-
nite, one may assume that (f, fm

n ) is simple and so the index function f is in-
creasing. Let, for every n ∈ N, f ′(n) ≥ f(n) be such that Cl(Xf ′(n)) ⊆ Xf(n).
Define X ′

n = Cl(Xf ′(n)). Hence the index function f ′ : N → N is defined and
one may assume that f is increasing, i.e., that X ′

n+1 ⊆ X ′
n, for every n ∈ N.

It is obvious that (X ′
n) is a decreasing sequence of closed neighbourhood of

X in Q (which exists due to the normality of Q) such that ∩X ′
n = X . Let

f
′m
n := fm

n ◦ pf(n)f ′(n) = fm
n |Xf′(n)

: Xf ′(n) → Yn

It is easy to see that (f ′, f
′m
n ) ∼ (f, fm

n ) in inv∗
f

-HPol and so these two
∗f -morfisms induce the same finite coarse shape morphism

〈[(f, fm
n )]〉 = F ∗f

= 〈[(f ′, f
′m
n )]〉.

Using techniques demonstrated in the proof of Theorem 3.19, we obtain a ∗f -
fundamental sequence Φ = (Φm

n ) : X → Y associated with the ∗f -morphism
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(f ′, f
′m
n ), i.e., ω(Φ) = (f, f

′m
n ). The construction is carried out successively by

extending, for every n ∈ N, functions fm
n |X′

n
over the closed neighbourhoods

X ′
n ⊆ · · · ⊆ X ′

2 ⊆ X ′
1 ⊆ Q

of X up to the functions Φm
n : Q → Q. Hence, Ω([Φ]) = 〈[(f ′, f

′m
n )]〉 = F ∗f

and the proof is completed.

4.2. The isomorphism of the categories Sh∗f

f and Sh∗f

a .

Let π be a function which associates every ∗f -approximative sequence
α : X → Y with some ∗f -fundamental sequence Φ : X → Y such Φ|X ∼ α.
By Theorem 3.19 such a ∗f -fundamental sequence Φ exists and by Proposition
3.20 the equivalence class [Φ] of Φ = π(α) does not depend on the choice of
the function π.

Therefore it makes sense to define, for every pair of closed subsets X,Y
of Q, the mapping

ΠX,Y : Sh∗f

a (X,Y ) → Sh∗f

f (X,Y ),

ΠX,Y ([α]) = [π(α)].

Theorem 4.4. The function ΠX,Y is a bijection, for every pair of closed
subsets X,Y of Q.

Proof. Firstly, we prove that ΠX,Y is well defined. Let α, α′ : X → Y
be ∗f -approximative sequences such that α ∼ α′ and Φ = π(α), Φ′ = π(α′).
Since Φ|X ∼ α ∼ α′ ∼ Φ′|X , by Proposition 3.20 it follows that Φ ∼ Φ′.

Injectivity: Let α, α′ : X → Y be ∗f -approximative sequences such that

π(α) = Φ ∼ Φ′ = π(α′).

Since Φ|X ∼ α and Φ′|X ∼ α′, Proposition 3.20 implies α ∼ α′.

Surjectivity: Let [Φ] ∈ Sh∗f

f (X,Y ) be an arbitrary equivalence class of ∗f -
fundamental sequences and let Φ = (Φm

n ) : X → Y be its representative. By
Proposition 3.18, putting α = Φ|X : X → Y one obtains a ∗f -approximative
sequence α such that ΠX,Y ([α]) = [π(α)] = [Φ].

Lemma 4.5. Let α : X → Y and β : Y → Z be ∗f -approximative se-
quences and let Φ : X → Y , Θ : Y → Z and Ψ : X → Z be ∗f -fundamental
sequences such that

[Φ|X ] = [α], [Θ|Y ] = [β] and [Ψ|X ] = [β] ◦ [α] = [Θ ◦ α].
Then [Ψ] = [Θ ◦ Φ].

Proof. The proof is straightforward using the definitions of the compo-
sitions between equivalence classes of ∗f -approximative and ∗f -fundamental
sequences.
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We shall now define the mapping Π : Sh∗f

a → Sh∗f

f between the objects and

between the morphisms of the categories Sh∗f

a and Sh∗f

f as follows. Let

• for every closed subset X ⊆ Q, Π(X) = X ;
• for every pair of closed subsets X,Y ⊆ Q and for every [α] ∈
Sh∗f

a (X,Y ),

Π([α]) := ΠX,Y ([α]) = [π(α)].

Theorem 4.6. The mapping Π : Sh∗f

a → Sh∗f

f is a functor.

Proof. The theorem follows from Lemma 4.5.

Corollary 4.7. The functor Π : Sh∗f

a → Sh∗f

f is an isomorphism.

Proof. This is the direct consequence of Theorems 4.4 and 4.6.

4.3. The isomorphism of the categories Sh∗f

a and InSh∗f

.

Lemma 4.8 ([3], Ho). If X is a paracompact topological space, then every
ǫ-continuous function f : X → Q admits a continuous 2ǫ-near approximation
f ′ : X → Q.

By the virtue of Lemma 4.8, it is possible to associate every ∗f -proximate
sequence with a ∗f -approximative sequence such that the distance between
the corresponding component functions tends to 0 as indices n tend to +∞,
for all the indices m sufficiently large.

Definition 4.9. A ∗f -approximative sequence α = (αm
n ) : X → Y is said

to be a continuous approximation of a ∗f -proximate sequence a = (amn ) : X →
Y provided for every ǫ > 0 there exists n0 ∈ N such that for every n ≥ n0

there exists mn ∈ N such that d(amn , αm
n ) < ǫ, for every m ≥ mn.

Theorem 4.10. Let a = (amn ) : X → Y be a ∗f -proximate sequence.
Then the following statements hold:

(i) there exists a ∗f -approximative sequence α = (αm
n ) : X → Y which is

a continuous approximation of a,
(ii) every two continuous approximations α, α′ : X → Y of a are homo-

topic, i.e., α ∼ α′.

Proof. (i) Let a = (amn ) : X → Y be a ∗f -proximate sequence and let
(ǫn) be a decreasing sequence of positive real numbers such that lim ǫn = 0
and that, for every n0 ∈ N and for every n ≥ n0,

amn0

ǫn0
2≃ amn , for every m ≥ mn0n.

For every n ∈ N define

αm
n =

{

fm
n : X → Q, m < mnn

a
′m
n : X → Q, m ≥ mnn

,
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where every fm
n is an arbitrary continuous function and every a

′m
n is a con-

tinuous ǫn-near approximation of ǫn
2 -continuous function amn . The existance

of the functions a
′m
n follows from Lemma 4.8. Thereat, if m,m′ ≥ mnn and

amn = am
′

n , continuous approximations are chosen in a way that a
′m
n = a

′m′

n

(the same component functions amn are always approximated by the same
continuous approximation). One can easily check that α = (αm

n ) is a ∗f -
approximative sequence from X to Y which is a continuous approximation of
a.

(ii) Let α = (αm
n ), α′ = (α

′m
n ) : X → Y be continuous approximations of

a : X → Y . Let V be an arbitrary open neighbourhood of Y in Q and let
ǫ > 0 be such that B(Y, ǫ) ⊆ V and that every two ǫ-near mappings in V
are homotopic (V is an ANR). Then there exists n0 ∈ N such that for every
n ≥ n0 there exists mn ∈ N such that

d(amn , αm
n ) <

ǫ

2
and d(amn , α

′m
n ) <

ǫ

2
for every m ≥ mn.

Now, for every n ≥ n0 and for every m ≥ mn

d(αm
n , α

′m
n ) ≤ d(αm

n , amn ) + d(amn , α
′m
n ) <

ǫ

2
+

ǫ

2
= ǫ

hold. Since d(amn , αm
n ), d(amn , α

′m
n ) < ǫ

2 , the inclusions

αm
n (X), α

′m
n (X) ⊆ B

(

Y,
ǫ

2

)

⊆ V

hold and so αm
n ≃ α

′m
n in V , for every n ≥ n0 and every m ≥ mn. Hence,

α ∼ α′.

Let λ be a function which associates every ∗f -proximate sequence a : X →
Y with some continuous approximation α : X → Y of a. By the claim (ii)
of Theorem 4.10, the equivalence class [α] of the ∗f -approximative sequence
α = λ(f) does not depend on the choice of the function λ. Hence, for an
arbitrary pair of closed subsets X,Y of Q, we define a function

ΛX,Y : InSh∗f

(X,Y ) → Sh∗f

a (X,Y ),

ΛX,Y ([a]) = [λ(a)].

Theorem 4.11. The function ΛX,Y is a bijection, for every pair of closed
subsets X,Y of Q.

Proof. Firstly, we prove that ΛX,Y is well defined. Let a, a′ : X → Y be
∗f -proximate sequences such that a ∼ a′ and α = λ(a), α′ = λ(a′). Let V be
an arbitrary open neighbourhood of Y in Q and let ǫ > 0 be a number such
that B(Y, ǫ) ⊆ V and that every two ǫ-near mappings in V are homotopic.

Then there exists n0 ∈ N such that for every n ≥ n0 there exists mn ∈ N

such that

d(amn , αm
n ) <

ǫ

2
, d(a

′m
n , α

′m
n ) <

ǫ

2
and amn

ǫ
4≃ a

′m
n , for every m ≥ mn.
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For arbitrary n ≥ n0 and m ≥ mn there exists ǫ
4 -homotopy Hm

n : X × I → Y

such that Hm
n (·, 0) = amn i Hm

n (·, 1) = a
′m
n . By Lemma 4.8, there exists a

continuous function H
′m
n : X × I → Q such that d(Hm

n , H
′m
n ) < ǫ

2 . Notice

that H
′m
n (X × I) ⊆ B(Y, ǫ

2 ) ⊆ V . Furthermore,

d(αm
n , H

′m
n (·, 0)) ≤ d(αm

n , Hm
n (·, 0)) + d(Hm

n (·, 0), H ′m
n (·, 0))

= d(αm
n , amn ) + d(Hm

n (·, 0), H ′m
n (·, 0))

<
ǫ

2
+

ǫ

2
= ǫ,

d(α
′m
n , H

′m
n (·, 1)) ≤ d(α

′m
n , Hm

n (·, 1)) + d(Hm
n (·, 1), H ′m

n (·, 1))
= d(α

′m
n , a

′m
n ) + d(Hm

n (·, 1), H ′m
n (·, 1))

<
ǫ

2
+

ǫ

2
= ǫ

hold and so αm
n ≃ H

′m
n (·, 0) ≃ H

′m
n (·, 1) ≃ α

′m
n in V . Hence, α ∼ α′.

Injectivity: Let a, a′ : X → Y be ∗f -proximate sequences such that

λ(f) = α ∼ α′ = λ(f ′).

For an arbitrary ǫ > 0 put V = B(Y, ǫ
3 ). Then there exists n0 ∈ N such that

for every n ≥ n0 there exists mn ∈ N such that

αm
n ≃ α

′m
n in V, d(amn , αm

n ) <
ǫ

3

and
(a

′m
n , α

′m
n ) <

ǫ

3
, for every m ≥ mn.

For arbitrary n ≥ n0 and m ≥ mn there exists a homotopy Hm
n : X × I → V

such that Hm
n (·, 0) = αm

n and Hm
n (·, 1) = α

′m
n . By Proposition 2.2, functions

amn and a
′m
n are ǫ-continuous. Let Gm

n : X × I → Y be a function such that

d(Gm
n , Hm

n ) <
ǫ

3
, Gm

n (·, 0) = fm
n and Gm

n (·, 1) = f
′m
n .

By Proposition 2.2, function Gm
n is ǫ-continuous and so amn

ǫ≃ a
′m
n . Hence,

a ∼ a′.
Surjectivity: Let [α] ∈ Sh∗f

a (X,Y ) be an arbitrary equivalence class of
∗f -approximative sequences and let α = (αm

n ) : X → Y be its representative.
For every k ∈ N define Vk = B(Y, 1

k
). For every k ∈ N there exists n0(k) ∈ N

such that for every n ≥ n0(k) there exists mn(k) such that

αm
n ≃ αm

n+1 in Vk, for every m ≥ mn(k).

It means that αm
n0(k)

: X → Vk, for every m ≥ m′
k := mn0(k)(k).

For all k, m ∈ N define α
′m
k = αm

n0(k)
. Hence, we obtained a ∗f -

approximative sequence α′ = (α
′m
k ) : X → Y such that [α′] = [α].

For every k ∈ N let:
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• amk : X → Y be a 3
k
-continuous function such that d(amk , α

′m
k ) < 1

k
, for

every m ≥ m′
k. Thereat, if m,m′ ≥ m′

k and α
′m
k = α

′m′

k , 3
k
-continuous

functions are chosen in a way that amk = am
′

k (the same component
functions are always associated with the same 3

k
-continuous function);

• amk : X → Y be an arbitrary function, for every m < m′
k.

It is straightforward to prove that a = (amk ) : X → Y is a ∗f -proximate
sequence for which α′ is a continuous approximation, i.e., λ(a) = α′. Hence,
ΛX,Y ([a]) = [λ(a)] = [α′] = [α] and the proof is completed.

We shall now define the mapping Λ : InSh∗f → Sh∗f

a between the objects

and between the morphisms of the categories InSh∗f

and Sh∗f

a as follows. Let

• for every closed subset X ⊆ Q, Λ(X) = X ;
• for every pair of closed subsets X,Y ⊆ Q and for every

[a] ∈ InSh∗f

(X,Y ),Λ([a]) := ΛX,Y ([a]) = [λ(a)].

Theorem 4.12. The mapping Λ : InSh∗f → Sh∗f

a is a functor.

Proof. Let a : X → Y and b : Y → Z be ∗f -proximate sequences,
the representatives of the equivalence classes [a] and [b], respectively, and let
β : X → Y be a continuous approximation of b. Then there exists a ∗f -
fundamental sequence Ψ : Y → Z such that Ψ|Y ∼ β. Let b′ : Y → Z be a
∗f -proximate sequence such that Ψ|Y is its continuous approximation. The
injectivity of ΛY,Z and Ψ|Y ∼ β implies b ∼ b′.

Let (ǫn) be a decreasing sequence of positive real numbers such that
lim ǫn = 0 and that

(1) for every n0 ∈ N and for every n ≥ n0,

bmn0

ǫn0
2≃ bmn , for every m ≥ mn0n;

(2) for every n ∈ N, for every m ≥ mnn and for every y ∈ Y ,

d(Ψm
n (y), b

′m
n (y)) <

ǫn
2
.

Let (δn) be a decreasing sequence of positive real numbers such that lim δn = 0
and that

(1′) for every n ∈ N, for every m ≥ mnn and for all y, y′ ∈ Y such that
d(y, y′) < δn,

d(bmn (y), bmn (y′)) < ǫn,

(2′) for every n ∈ N, for all m ≥ mnn and for all y, y′ ∈ Q such that
d(y, y′) < δn,

d(Ψm
n (y),Ψm

n (y′)) <
ǫn
2
.
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Notice that the conditions (2′) and (3′) can be fulfilled because

card({bmn : m ≥ mn}) < ℵ0, for every n ∈ N,

card({Ψm
n : m ≥ mn}) < ℵ0, for every n ∈ N

and due to the compactness of Y . Finally, let (kn) be a strictly increasing
sequence of indices such that, for every k ≥ kn,

amkn

δn
2≃ amk , for every m ≥ m′

knk
.

Lemma 4.8 yields mappings α
′m
n : X → Q such that, for every n ∈ N,

d(α
′m
n , amkn

) < δn, for every m ≥ m′
knkn

.

Thereat, if m,m′ ≥ m′
knkn

and amkn
= am

′

kn
, the approximations are chosen in

a way that α
′m
n = α

′m′

n .

For every n ∈ N and for every m < m′
knkn

, let α
′m
n : X → Q be an

arbitrary mappings. It is obvious that α′ = (α
′m
n ) is a ∗f -approximative

sequence from X to Y and a continuous approximation of a′ = (amkn
). Now

a ∼ a′ implies

Λ([a]) = Λ([a′]) = [α′].

Moreover, for a ∗f -approximative sequence Ψ ◦α′ and for every x ∈ X , n ∈ N

and m ≥ max{m′
knkn

,mnn}, the inequality

d(Ψm
n α

′m
n (x), b

′m
n amkn

(x))

≤ d(Ψm
n α

′m
n (x),Ψm

n amkn
(x)) + d(Ψm

n amkn
(x), b

′m
n amkn

(x)) < ǫn

holds and thus Ψ ◦ α′ is a continuous approximation of b′ ◦ a′. Hence,
Λ([b] ◦ [a]) = Λ([b′] ◦ [a′]) = Λ([b′ ◦ a′]) = [Ψ ◦ α′]

= [Ψ|Y ] ◦ [α′] = Λ([b′]) ◦ Λ([a′]) = Λ([b]) ◦ Λ([a]),

and the theorem is proved.

Corollary 4.13. The functor Λ : InSh∗f → Sh∗f

a is an isomorphism.

Proof. This is the consequence of Theorems 4.11 and 4.12.

At last, let Υ denote the composition of the functors Λ, Π and Ω, i.e.,

Υ = Ω ◦Π ◦ Λ.

Theorem 4.14. The functor Υ : InSh∗f → Sh∗f |Q is an isomorphism.

Proof. The composition of isomorphisms is an isomorphism.
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By Theorem 4.14. the finite coarse shape category of closed subsets of Q is

described using an intrinsic approach through the category InSh∗f

. It can
be shown that every two embeddings in Q of a compact metric space M are

isomorphic in InSh∗f

. Since every compact metric space can be embedded
in the Hilbert cube as a closed subset, the classification by the intrinsic finite
coarse shape is actually given for all compact metric spaces.

The question is: can the coarse shape category Sh∗ be described using
an intrinsic approach in the compact metric case? So far, the authors of this
article have encountered some severe technical difficulties while solving that
problem, which still remains open.
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