
2022 | 75/2 | 235–247 | 9 Figs. | 9 Tabs. | www.geologia-croatica.hr
 Journal of the Croatian Geological Survey 
and the Croatian Geological Society 

1. INTRODUCTION
Groundwater is one of the primary sources of water for various 
uses. The demand for groundwater will steadily rise in the future. 
This is a growing problem and more and more attention will be 
devoted to seeking out methods and strategies for progressively 
efficient groundwater management. In practice, the water supply 
for a particualr area is often provided by developing groundwater 
sources that deliver sufficient water quantities of a satisfactory 
quality.

Effective groundwater source management largely depends 
on local natural conditions, the amount and quality of collected 
operational data, and the efficient and reliable forecasting of the 
future water demand and the ability of the hydrogeological set-
ting to meet that demand. Roughly 75% of the water demand in 
Serbia relies on groundwater. However, there has been no regular 
monitoring of surface water and groundwater dynamics during 
a period of economic crisis in the country, which resulted in an 
underdeveloped observation network. At groundwater sources, 
regular monitoring was hindered by poor organization and lack 
of instrumentation and human resources. More recently, the sur-
face water and groundwater observation network has been ex-
panded based on European Union recommendations and the 
scope and extent of monitoring are now satisfactory.

The need to develop methods that will forecast sustainable 
rates of groundwater abstraction is becoming increasingly pro-
nounced. Sufficiently reliable prognostic methods would create 
conditions for effective conservation of groundwater resources, 
addressing problems such as inefficient use and over-exploitation, 
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Abstract
Groundwater management is one of today’s important tasks. It has become necessary to seek 
out increasingly reliable methods to conserve groundwater resources. Dependable forecasting 
of the amounts of groundwater that can be abstracted in a sustainable manner requires long-
term monitoring of the groundwater regime (rate of abstraction and groundwater levels). Moni-
toring of the groundwater source for the town of Bečej, Serbia had been disrupted for multiple 
years. The objective of the paper is to assess the possibility of reinterpreting the missing data 
or, in other words, to reconstruct the operation of the groundwater source and its effect on 
groundwater levels. At the Bečej source, groundwater is withdrawn from three water-bearing 
strata comprised of fine- to coarse-grained sands. Historic data are used to reconstruct the 
ope ration of the Bečej source between 1st of October 1980 to 1st of May 2010. The monitored 
parameters are total source yield and piezometric head at seven observation wells and 14 pump-
ing wells. A data reconstruction methodology was developed, which included the use of an 
autoregressive (AR) model, a grey model (GM), and the biplot method. The methodology is ap-
plied to fill the data gaps during the considered period. The paper also describes the criteria for 
evaluating the accuracy of the AR model, GM, and biplot method. The proposed data recon-
struction approach yielded satisfactory results and the methodology is deemed useful for the 
Bečej source data, as well as other historic data not necessarily associated with groundwater 
sources, but also groundwater control and protection systems, as well as hydrometeorological, 
hydrological and similar uses.

which impairs groundwater quality. Reliable forecasts of ground-
water levels, groundwater balance, and the velocity and direction 
of groundwater flow play a major role, in view of the fact that they 
provide important information about the characteristics of the 
tapped aquifer. With the exception of groundwater quality, fore-
casting basically focuses on groundwater levels at a particular 
rate of abstraction.

Today, many methods are used to forecast groundwater lev-
els, such as Nonlinear Autoregressive Networks (NARX) (GUZ-
MAN et al., 2017; WUNSCH et al., 2018), Artificial Neutral Net-
works (ANN) (NOURANI et al., 2008; RAKHSHANDEHROO 
et al., 2012; CHITSAZAN et al., 2015; MOHANTY et al., 2015), 
Time Series Methods (MIRZAVAND & GHAZAVI, 2015), 
ARIMA and RBF networks (YAN & MA, 2016), Adaptive 
Neuro-Fuzzy Inference System (ANFIS) (GULDAL & TON-
GAL, 2009; EMAMGHOLIZADEH et al., 2014), fuzzy neural 
networks (ALVISI & FRANCHINI, 2011), Fuzzy C-Mean Clus-
tering and Singular Spectrum Analysis (POLOMČIĆ et al., 
2017), and hydrodynamic modeling (POLOMČIĆ et al., 2011; 
POLOMČIĆ et al., 2014).

The objective of the paper is to present a case study of the 
Bečej groundwater source for drinking water supply (Serbia) and 
demonstrate the reconstruction of missing data (over a 10-year 
period), using the autoregressive model, the grey system theory 
and biplot method, in order to improve decision-making related 
to groundwater management.

Autoregressive modeling was used as a supplementary 
method to extract the points in time (dates) of no monitoring. It 
has been implemented by many other researchers in the fields of 
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hydrology (CHAKRABORTY et al, 2009; MEHDIZADEH, 
2020), seismology (XIAOJUN et al., 2015), exodynamics 
(YONGPING et al., 2020), and hydrogeology (RISTIĆ VAKA-
NJAC et al., 2018).

Many researchers in hydrogeology and similar disciplines 
have applied the grey system theory to address diverse problems, 
such as predicting earthquakes (DAOGONG et al., 1999), fore-
casting of pore pressure changes (MOHAMMED et al., 2010), 
projecting land subsidence to prevent hazards (TANG et al., 
2008), sustainable groundwater management for drinking water 
supply (JIANFEI et al., 2012), estimating the amount of rainfall 
and runoff to prevent flooding (YU et al., 2001; KANG et al., 
2006), forecasting groundwater levels (MAHMOD et al., 2013; 
KANG & MAENG, 2016) and predicting and analyzing spring 
discharges (HAO et al., 2010).

The biplot method is also applied by many researchers in dif-
ferent fields. For example, this statistical method has been very 
useful in addressing environmental protection issues, to predict 
the evolution of air pollution (GONZALEZ CABRERA et al., 
2006; ZHANG et al., 2018); in mechanics, to solve problems ap-
plying SVD (singular value decomposition, which is the basis of 

the biplot method) (MEIJAARD, 1993; GAI & HU, 2018); in geo-
physics, to improve the quality of seismic data (MARTINS et al., 
2016) and to determine the spatial relationship between deep ge-
ologic structures and gold (ZHAO & CHEN, 2010).

Upon reconstruction of the missing piezometric head data 
and total groundwater source yields, the gaps in the Bečej ground-
water source (Bečej GS) data were filled over the study period. 
Sufficiently reliable input data were provided to assess the feasi-
bility of Bečej GS expansion, predict the long-term effect of 
groundwater abstraction, and propose optimal solutions for fu-
ture production wells. 

2. STUDY AREA
The study area is the extended area of Bečej GS, Serbia, as shown 
in Fig. 1. The groundwater source is located west of the city of 
Bečej. Groundwater from the tapped aquifers is used for both the 
municipal and industrial water supplies. Between 1980 and 2010, 
25 production wells and seven observation wells were drilled at 
Bečej GS. Fourteen production wells are currently in service (Fig. 
1). The others have been decommissioned. The wells tap several 
aquifers. Their individual discharge capacities are 3 – 16 l/s.

Figure 1. Location map of the study area.
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Table 1. includes the designations of the wells and shows the 
aquifers they capture.

The extended study area is located within the Pannonian 
Plain and is composed of Precambrian/Palaeozoic, Mesozoic, Mi-

ocene, Pliocene and Quaternary rocks. The oldest rocks are crys-
talline schists and Precambrian/Palaeozoic granites. The youngest 
rocks are Quaternary in age, with alternating lithological units 
(gravels and coarse sands underlie sandy silts, silts and clays) 
(MALEŠEVIĆ, 1984; TERZIN, 1994). Vertically, there are two 
types of aquifers down to a depth of about 130 m: an unconfined 
intergranular aquifer in the alluvial and terrace deposits (from the 
land surface to roughly 30 m – aquifer I) and three confined in-
tergranular aquifers in deeper geological formations (from 60 m 
to 130 m – aquifers II, III and IV). Bečej GS taps the deeper aq-
uifers of Quaternary age: the first is at a depth of 60 to 80 m, the 
second at 83 to 100 m, and the third from 110 to 130 m (Fig. 2).

The unconfined aquifer is composed of sands in the upper 
part and fine-grained, partly clayey sands in the lower part. The 
bottom of this layer comprises sandy clay. The three deeper aq-
uifers are composed of fine- to medium-grained sands, with some 
gravel. The sands include a pelitic component, which hinders 
production/causes well ageing.  The aquifers are separated by 
relatively thin layers of clay, sandy clay and clayey sand. Their 
thickness ranges from 5 to 20 m. These three aquifers constitute 
a hydrogeologic complex, which evolved during the Lower and 
Middle Pleistocene. On a regional scale, they are considered as a 
single, confined aquifer (MALEŠEVIĆ, 1984; TERZIN, 1994).

Table 1. Well designations and tapped aquifers.

Active wells Tapped aquifers

B0-1 second, third

B0-2 first, second

BI-2/1 second, third

BI-3/1 first, second, third

BI-5 second, third

BI-6 second, third

BIII-1 first, second, third

BIII-2 first, second, third

BIII-3 first, second, third

BIII-4/1 first, second, third

BIII-5 third

BIII-6 second, third

BS-5 first, second, third

BS-6 first, second, third

Figure 2. A hydrogeological section through the Bečej Groundwater Source. Legend: 1. surface decomposed material; 2. clay; 3. sand; 4. clayey sand; 5. unconfined 
aquifer; 6. confined aquifer; 7. semi-permeable sediments; 8. confined aquifer head; 9. well; and 10. position of well screen.
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3. METHODOLOGY – THE FORECASTING MODEL 
BUILDING PROCESS
3.1. Problem statement
The study period involving groundwater levels and groundwater 
abstraction rates at Bečej GS is from 1 October 1980 to 1 May 
2010. However, piezometric head was not monitored from 1 Feb-
ruary 1989 to 1 June 1998 and total source yield from 1 October 
1980 to 1 June 1998. The monitoring network comprised seven 
observation wells (P1, P2, P3, P4, P5, P6, P7/2), at depths from 
120 m to 150 and 14 pumping wells (B0-1, B0-2, BI-2/1, BI-3/1, 
BI-5, BI-6, BIII-1, BIII-2, BIII-3, BIII-4/1, BIII-5, BIII-6, BS-5, 
BS-6), at which total groundwater source capacity was gauged 
(Fig. 3). Based on the data, groundwater levels were observed 
much more frequently than the total source yield. These two pa-
rameters were recorded periodically, but slightly more often in 
2006 to assess the water balance and determine groundwater re-
serves. The present research considers mean monthly values of 
the parameters, which were the only available data (Fig. 3).

As part of the reported research, a methodology was develo-
ped to reconstruct the missing data (10-year period) due to the 
lack of continuous monitoring. It is shown in Fig. 4 in the form 
of an algorithm.

In the first step, input data comprising values observed dur-
ing the course of monitoring were analyzed. The objective of the 
proposed methodology was to reconstruct the missing data ap-
plying the methods indicated in the algorithm. The AR model  was 

used to reconstruct the dates (observation positions) on which 
piezometric head and source yield were not observed. The accu-
racy of the AR model was determined on the basis of AIC (Akaike 
information criterion), according to which the lowest value was 
assumed to be accurate. After the observation dates were recon-
structed, the grey method was applied to arrive at piezometric 
head values for the period during which there was no monitoring. 
The input data for the GM were the original and reconstructed 
dates of observation and the observed piezometric heads. First 
the GM was tested against the (original) data observed during the 
study period. If a comparison of the original and reconstructed 
piezometric head data and MAPE criterion (Table 2) indicated 
that the accuracy of the model was satisfactory, the approach was 
acceptable for reconstructing the missing data. If not, the pro-
posed methodology was not suitable for further reconstruction. 
Given that calculations and the MAPE criterion (Table 2) indi-
cated that the accuracy of GM was satisfactory, it was applied to 
fill the data gaps. The above methods used to determine the miss-
ing observation dates and piezometric heads produced a com-
pleted matrix for the biplot method, which was applied to recon-
struct the total source yields during the period of no observations. 
The accuracy of the total source yields derived by the biplot 

method was determined based on the condition 
d
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Figure 3. Piezometric head recorded at Bečej GS observation wells from 1 October 1980 to 1 May 2010 and total source yield.
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solution was acceptable, the model was deemed suitable for re-
constructing the total source yields. If not, it would have been 
necessary to look for other, more accurate models. All the calcu-
lations were made in Microsoft Excel  (AR model, grey theory 
and biplot method) and MathLab (biplot method). The figures 
were produced in CorelDraw (Figs. 1, 2, 4) and Microsoft Excel 
(Figs. 3, 5, 6, 7, 8, 9).

A brief theoretical background of the models used in this re-
search is provided below.

3.2. Autoregressive (AR) model
The AR model is commonly applied to process statistical time-
series. The AR model was used for predicting missing observa-
tion positions. More specifically, it is used to forecast the values 
of current and future variables, based on the values of the same 
variable at different times. The variable is described as a function 
of its values in previous periods Zt-1, Zt-2.

The mathematical expression is (DAI et al., 2015):

 X X Zt i i t
i

t p

= +
=

−

∑a
1

 (1)

where p is the AR model order and Zt is the constant.

In order to construct the AR model, first its order (p) needs 
to be determined. The principle is as follows: for the original (ob-
served) data (x1,x2,...,xn) of order p, the AR model is:

 X X Zt t t
i

p

= +−
=
∑a 1

1

 (2)

If the original time-series is stationary, the AR process is ap-
plied directly to the original dataset. If not, the time-series needs 
to be transformed into a stationary time-series (sequence). The 
common transformation approach is first-order differentiation, as 
was required in the present case.

First-order differentiation is implemented as:

 DX X Xt t t= − −1  (3)

Then the AR model can be applied to the differentiated time-
series. The ultimate forecasted values are derived from:

 1
ˆ ˆ

−= +t t tX X XD  (4)

where ˆ
tXD  is the value resulting from the AR process.

The AR model order is defined (determined) applying AIC. 
AIC is calculated as  (CHAKRABORTY et al., 2009):
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where N is the length of the sample, p is the number of estimated 
coefficients (p-order, AR model order) and ˆiu are the residuals. 
The model where the AIC is the lowest is selected as optimal 
(most suitable).

Using the AR model, the observation positions (dates) are 
reconstructed and then used as input data for the GM. 

3.3. Grey model (GM)
The theory provides an effective solution for the data uncertainty 
and discretization problem. GMs predict the future values of a 
time-series, based solely on a set of observed data (recorded, 
original values in the present case). According to the grey system 
theory, a general grey model GM(h,N) is the GM in which h is 
the order of the differential equation and N is the number of pa-
rameters. 

GM(h,N) is defined by the following differential equation 
(YU et al., 2001):
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d x k
dt

b x k k ni

i
l
i

i

h

j j
j

N( ) ( )

( )

( )( )
( ), , ,...,

1

0

1

2

1 2

= =
∑ ∑= =  (6)

where ai and bj are the determined coefficients, x kl
( ) ( )1  is the se-

quence of the main factor, x kj
( ) ( )1  are the sequences of the in-

fluential factors, and k is the time sequence variable. 
A single-variable first-order grey model GM(1,1) was used 

in the present research because there was a single time-series of 
observations.

The original time-series was represented as (ZHAO-HUI & 
JING, 2016):

X x t x t x t j
( ) ( ) ( ) ( )( ), ( ),..., ( )0 0

1
0

2
0=   , j = 1,..., n, if: 

 Dtj = tj – tj–1 ≠ const

Figure 4. Operational research algorithm – the forecasting model building 
 process.
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Before proceeding with the GM equation, the accumulating 
generation operator (AGO) will be defined. AGOs are used in GM 
to reduce data randomness.

The first-order AGO for X(0) is defined as (ZHAO-HUI & 
JING, 2016):

 X(1) (tj) = X(1) (tj–1) + X(0) (tj) * Dtj (7)

where (1) (0)

1

( ) ( )
=

=∑
n

j j
j

x t x t .

The sequence of the generated averages of the neighbor-
ing values of sequence (1) ( )jX t  is   

(1) ( ) =jZ t  (1) (1) (1)(1), (2),..., ( )  jz z z t , where:

 (1) (1) (1)1( ) ( )( ( ) ( 1)), 1, 2,...,
2

= + − =j j j jz t x t x t t n  (8)

The grey differentiated first-order equation GM(1,1) is 
(ZHAO-HUI & JING, 2016):

 
(1)

(1)( ) ( )= +
dx t ax t b

dt
 (9)

The first term (1)
1( )x t  of the sequence  (1) ( )( 1, 2,..., )=jx t j n  

is used as the initial condition of the grey differentiated equation. 
The solution to Eq. (9) is a time-dependent function:

 x(1)(t) = eat x(1) (t1) + a–1(eat – I)b (10)

To distinguish between a and b, Eq. (9) is discretized. In 
other words, the difference in grey derivative I of interval 

1,−  j jt t  yields (0) (1)( ) ( )= +j jx t az t b

and thus:

x(0)(tj) = 

a(z(1) (tj) + z(1) (tj–1)) + b   (i = 1,2,..., n; k = 2,3,..., m) (11)

Coefficients a and b are obtained by the least squares method:

 (a,b)T = (BTB)–1BTY (12)
where: 
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The time sequence response formula, that is, the solution of 
(9) is:

1 1a(t ) a(t )(1) (1) 1
1( ) ( ) ( )*b− −−= +j jt t

jx t e x t a e I  j= 1,2,..., n (14)

The fitting forecast value of xj(0) can be obtained by the in-
verse AGO, as follows (LIU &LUO, 2010):
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The accuracy of the model is represented by the mean abso-
lute percentage error (MAPE) (ZHAO-HUI & JING, 2016):
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In the present case, MAPE was used to assess model accu-
racy. The model accuracy criterion is shown in Table 2 (WANG 
& PHAN, 2016):

The GM (1,1) was used to reconstruct piezometric head data 
during the 10-year period of discontinued observations (from 1 
February 1989 to 1 June 1998, Fig. 3). The completed observation 
positions (dates) and piezometric heads represented input data for 
the biplot method. 

3.4. Biplot method
The biplot method involves the imputing of arbitrary values to 
missing data in order to complete the matrix, and then calculat-
ing SVD using only two components (ARCINIEGAS-ALAR-
CON et al., 2014). SVD is the basis of the biplot method. In the 
reported case study, the biplot method was used to forecast miss-
ing data on total source yields from 1 October 1980 to 1 June 
1998.

The initial data for constructing the matrix included: 
1.  Original and reconstructed observation positions (dates) 

on which groundwater level and total source yield were 
observed); 

2.  Piezometric head data – original and reconstructed using 
the GM (1,1); and 

3.  Observed source yield data.
The constructed nxp matrix denoted by X comprised xij 

(i=1,...,n; j=1,...,p) elements, where the missing data were symbol-
ized by xij

aus.  In the first step, the missing values were imputed 
in their respective columns, to complete matrix X. In the specific 
case, observed average discharges (i.e. known values) were used 
to fill the data gaps.

 The completed matrix X was standardized:

 
( )−

= ij j
ij

j

x m
p

s
 (18)                                                                                                               

where:
mj is the mean deviation of the j-th column,
sj is the standard deviation of the j-th column, and
pij are the standardized elements.
The matrix with pij elements was denoted by P.
The next step was to calculate SVD of matrix P. SVD of a 

standardized matrix is a fundamental and prominent approach in 
modern numerical linear algebra. The SVD algorithm represents 
an approximation of the main matrix by smaller matrices (MEI-

Table 2. Accuracy according to MAPE (%).

MAPE (%) Forecast (prediction) accuracy

< 1 High

1-5 Good

5-10 Acceptable

>10 Unacceptable (low)
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JAARD, 1993). According to this theorem, any matrix A (mxn) 
can be decomposed into three matrices, as:
 A = ULVt (19)

U is the orthogonal mxm matrix,
V is the orthogonal nxn matrix,
L is the diagonal mxn matrix with positive elements on the 

main diagonal, referred to as singular values of A, and all the 
other terms are equal to zero.

The singular values are generally sorted in descending order, 
on the main diagonal L.

Taking into account the first two components, the resulting 
equation (expression) is: 

 
2

1

( )
λ α γ ε

=

−
= = +∑ij j

ij k ik jk ij
j k

x m
p

s
 (20)

lk are the singular values, 
aik are the eigenvectors of the rows,
gjk are the eigenvectors of the columns, and
eij is the error of row i in column j.
The new matrix, composed of pij

(2) elements, was denoted by 
P(2). All the pij

(2) elements in P(2) were re-assigned their original 
values,

(2)
(2)∧ = +ij j j ijx m s p . This resulted in a new matrix – X(2)

(n×p). 
The  xij

aus missing in the original matrix X were imputed with the 
corresponding values of 

∧xij
(2) in X(2). Filling of data gaps was fol-

lowed by iterations (back to matrix standardization, repeating the 

entire process) until the specified condition ( 0.01− <
d
y

) was ful-

filled and the imputed missing values stabilized. The iterations 
then continued until the following condition was met (ARCINIE-
GAS-ALARCON et al., 2014):

 0.01− <
d
y

 (21)

where:
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–  na is the total number of values missing in matrix X, 
–  xi is the value forecasted for the i-th row of missing values 

in the active iteration, 
–  xi

A is the value forecasted for the i-th missing values in the 
previous iteration, 

–  yij are the original values (not missing) in the i-th row and 
j-th column, and 

–  N is the total number of considered values.

4. RESULTS AND DISCUSSION – APPLICATION  
OF THE METHODOLOGY TO A REAL CASE STUDY
Before the missing data were reconstructed, the hydrogeological 
system was analyzed based on data collected in the last 30 years 
of operation to determine the groundwater dynamics. 

The unconfined intergranular aquifer (aquifer I) is relatively 
thin and the values of its hydraulic parameters are low, so the 

groundwater reserves are modest. This aquifer is recharged by 
precipitation and via a good hydraulic link with a river. The aq-
uifer is drained by the pumping wells and by migration into the 
deeper aquifers, given the semi-permeable floor of aquifer I.

Recharge of the confined intergranular aquifers (II, III and 
IV) is highly complex because of the large distances involved, so 
the recharge process can only be assumed based on the geological 
and hydrogeological features of the terrain and long-term piezo-
metric levels of the groundwater. In view of the fact that the spread 
of the aquifers is regional, recharge occurs over a large area where 
their overlying strata are dominated by sands or in zones where 
the aquifers are directly linked to the land surface or rivers. Infil-
tration of precipitation into the confined aquifers has not been 
confirmed or occurs on a small scale. It is assumed that recharge 
also takes place through groundwater migration from the first, 
unconfined aquifer, given that the strata overlying aquifer II are 
composed of sands, clayey sands and sandy clays, which allow 
partial groundwater infiltration from aquifer I. This infiltration 
rate is very slow. The confined aquifers are drained solely by the 
studied pumping wells and neighbouring groundwater sources.

All the observation wells registered identical piezometric 
head fluctuation trends – lower in the summer and early autumn 
months due to higher rates of groundwater abstraction. Given the 
amount of water withdrawn from these aquifers, this decrease 
indicates that recharge conditions are satisfactory. The total ave-
rage monthly yield of the groundwater source suggests that the 
amount of abstracted groundwater has not changed significantly 
compared to 10 years ago. The recorded piezometric level ranged 
from a minimum of 65 m above sea level to a maximum of 76 
m.a.s.l., while the total source yield was from 68 l/s to 124 l/s. 

The missing data reconstruction results are described below.
Records of groundwater abstraction rates since the groundwater 
source was commissioned (a period of 30 years, Fig. 3 provided 
input data for applying the GM (1,1) and biplot method to Bečej 
GS. The missing data were reconstructed according to the algo-
rithm shown in Fig. 4, first the observation dates using the AR 
model, then the groundwater levels resulting from GM (1,1), and 
finally the total source yield applying the biplot method. The pro-
posed methodology with regard to the period of no observations 
is described below.

4.1. Imputing of missing observation positions based 
on the AR model 
The AR model was used to forecast observation data (dates) of 
piezometric head and total source yield. Observation date is the 
date (day, month and year) of measurement. For AR modeling 

Figure 5. Original piezometric head observation positions at all observation wells.
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purposes, these dates were converted into cumulative days (Fig. 
3 shows the dates of original measurement). Each observation 
date is identified as an observation position in order to define the 
total number of measured and later reconstructed values (125 
measured and 38 reconstructed).

Given that the original time-series was transient (Fig. 5) and 
in view of the growing trend resulting from Eq. (3), first-order dif-
ferentiation (Fig. 6) was needed in order to apply the AR model. 
Time-series that exhibit a trend are referred to as non-stationary.

Equation (1) was applied to the stationary time-series, the 
values for the AR models of the second, third and fourth orders 
were calculated, and then the AIC criterion was used to assess 
the most accurate solution. AIC was applied to second-, third- and 
fourth-order AR (AR2, AR3 and AR4). The results based on Eq. 
(5) are shown in Table 3.

The lowest AIC value was adopted (i.e. second-order AR, 
AR2).

Figure 7. shows the original dates (in red) from 1 October 
1980 to 1 February 1989, based on which the missing dates 
(shown in blue) were reconstructed, along with subsequent orig-
inal dates (1 June 1998 to 1 May 2010).

Table 4. is a numerical representation of the forecasted ob-
servation positions based on second-order AR. The dates shown 
in red were reconstructed (there were no actual piezometric head 
and source yield observations).

The MAPE of AR2 was 2.26 %. In view of the large number 
of missing observation dates, this error was deemed acceptable. 
Also, AR2 was adopted according to AIC.

4.2. Imputing of missing piezometric head data based 
on the GM
The input data used in this research were considered to be a grey 
system, with some known and some unknown information, so 

that it could be analyzed applying the grey system theory. The 
first step was to analyze the input data from 1 October 1980 to 1 
May 2010, and the second step to apply a GM (1,1).  The GM (1,1) 
was used to reconstruct piezometric head values for the period 
during which the observation wells (P1, P2, P3, P4, P5, P6, P7-2) 
were not monitored. The first step was to verify the accuracy of 
the GM (1,1) using the observed data. 

Figure 6. Stationary time-series of original observation positions at all observa-
tion wells.

Table 3. AIC values for AR2, AR3 and AR4.

AIC(AR2) AIC(AR3) AIC(AR4)

7.43 7.44 7.44

Table 4. Reconstructed observation positions based on second-order AR.

Observation position Day Observation position Day Observation position Day Observation position Day

1 1 19 1827 37 3315 55 4924

2 183 20 1888 38 3405 56 5013

3 274 21 1919 39 3494 57 5102

4 397 22 2009 40 3583 58 5192

5 517 23 2100 41 3673 59 5281

6 639 24 2162 42 3762 60 5371

7 762 25 2374 43 3851 61 5460

8 854 26 2435 44 3941 62 5549

9 882 27 2527 45 4030 63 5639

10 1004 28 2557 46 4119 64 5728

11 1127 29 2618 47 4209 65 5817

12 1248 30 2680 48 4298 66 5907

13 1309 31 2740 49 4388 67 5996

14 1370 32 2831 50 4477 68 6085

15 1462 33 2954 51 4566 69 6175

16 1613 34 3046 52 4656 70 6264

17 1674 35 3136 53 4745 71 6353

18 1735 36 3226 54 4834 72 6443

Figure 7. Original and reconstructed observation positions according to sec-
ond-order AR.
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Equations (7) through (15), described in the theoretical sec-
tion, were applied in that order to the original time-series of ob-
served piezometric head data. This yielded the predicted piezo-
metric head values. The objective was to check the accuracy and 
applicability of the GM to the case study or, in other words, to 
the original measured data (Table 5). Then Eq. (16) was applied 
to the reconstructed time-series to check the calculation error and 
Table 2. was used to assess whether the GM was applicable to 
the original time-series and if it yielded acceptable solutions. 

 Table 5. shows the observed (original) and reconstructed piezo-
metric heads at observation well P1. It is apparent that the differ-
ence between the observed and reconstructed values was accept-
able according to the criterion from Table 2 and that the model 
could be used for the discontinued period from 2 January 1989 
to 6 January 1998.

The errors are shown in Table 6.
The observed and reconstructed piezometric head values 

agreed rather well, given the ten-year period of discontinued 

Table 5. Observed (original) and reconstructed values of piezometric head at observation well P1 and absolute error.

Day
P1 Original 
time-series

P1 Recon. 
time-series

Abs. error Day
P1 Original 
time-series

P1 Recon. 
time-series

Abs. error Day
P1 Original 
time-series

P1 Recon. 
time-series

Abs. error

1 74.57 74.57 0.00 7063 67.69 68.76 1.58 9497 67.94 67.72 0.33

183 74.74 71.69 4.08 7184 67.68 68.70 1.50 9528 67.82 67.71 0.17

274 74.59 71.63 3.97 7245 67.02 68.66 2.44 9558 67.89 67.69 0.29

397 74.41 71.58 3.80 7276 66.49 68.64 3.23 9589 68.41 67.68 1.07

517 75.01 71.53 4.64 7306 66.59 68.63 3.06 9620 68.64 67.67 1.42

639 74.50 71.48 4.05 7337 66.63 68.61 2.98 9648 68.52 67.66 1.26

762 74.11 71.43 3.62 7367 66.68 68.60 2.88 9679 68.98 67.64 1.94

854 73.28 71.38 2.59 7398 67.07 68.59 2.26 9709 68.60 67.63 1.41

882 72.77 71.35 1.95 7549 66.71 68.55 2.76 9740 68.20 67.62 0.85

1004 72.55 71.32 1.69 7610 66.74 68.51 2.65 9770 68.29 67.61 1.00

1127 72.18 71.27 1.26 7763 67.37 68.46 1.62 9801 68.09 67.59 0.73

1248 72.13 71.22 1.27 7822 67.52 68.42 1.33 9832 67.54 67.58 0.06

1309 71.11 71.18 0.09 7853 67.50 68.40 1.33 9862 67.83 67.57 0.38

1370 71.42 71.15 0.38 7914 67.34 68.38 1.54 9893 67.74 67.56 0.27

1462 70.78 71.12 0.48 7975 66.62 68.35 2.60 9923 67.94 67.54 0.58

1613 70.65 71.06 0.59 8067 66.91 68.32 2.11 9985 68.14 67.53 0.90

1674 71.27 71.02 0.35 8097 66.61 68.30 2.53 10014 68.39 67.51 1.29

1735 70.99 70.99 0.00 8159 67.58 68.28 1.03 10045 68.79 67.49 1.88

1827 70.79 70.96 0.24 8248 67.38 68.25 1.29 10075 68.60 67.48 1.63

1888 70.44 70.93 0.69 8309 66.15 68.22 3.12 10106 68.06 67.47 0.87

1919 70.91 70.91 0.01 8371 66.00 68.19 3.32 10136 67.74 67.46 0.42

2009 70.68 70.88 0.28 8462 67.43 68.16 1.08 10167 67.52 67.44 0.11

2100 70.39 70.84 0.64 8524 68.08 68.13 0.07 10198 67.59 67.43 0.23

2162 70.15 70.81 0.94 8614 68.44 68.10 0.50 10228 67.87 67.42 0.66

2374 70.30 70.75 0.64 8675 68.24 68.06 0.26 10259 67.47 67.41 0.09

2435 70.35 70.69 0.48 8737 68.23 68.04 0.28 10289 67.89 67.39 0.73

2527 70.03 70.66 0.90 8767 68.32 68.02 0.44 10320 68.08 67.38 1.03

2557 70.00 70.63 0.90 8828 68.72 68.00 1.05 10351 68.17 67.37 1.18

2618 70.09 70.61 0.75 8949 69.08 67.96 1.62 10379 68.46 67.36 1.61

2680 70.11 70.59 0.68 8979 69.23 67.93 1.87 10410 68.59 67.34 1.82

2740 70.09 70.56 0.67 9071 67.77 67.91 0.20 10440 68.57 67.33 1.80

2831 69.71 70.53 1.17 9102 67.84 67.88 0.06 10471 68.57 67.32 1.82

2954 69.41 70.48 1.54 9132 68.01 67.87 0.21 10501 68.57 67.31 1.84

3046 68.51 70.44 2.81 9163 68.06 67.86 0.30 10532 68.49 67.30 1.74

6453 66.59 69.69 4.66 9193 68.32 67.84 0.70 10563 68.39 67.28 1.62

6483 66.59 68.97 3.57 9255 68.85 67.82 1.49 10593 68.56 67.27 1.88

6514 65.99 68.96 4.49 9283 68.75 67.81 1.37 10654 68.74 67.25 2.17

6545 64.99 68.94 6.08 9314 68.99 67.79 1.73 10685 68.69 67.23 2.12

6575 65.54 68.93 5.17 9344 70.41 67.78 3.73 10744 68.99 67.21 2.57

6606 65.89 68.92 4.60 9375 68.89 67.77 1.63 10775 68.92 67.20 2.50

6698 66.49 68.89 3.61 9436 67.95 67.75 0.29 10805 69.49 67.18 3.32

6879 66.69 68.83 3.22 9467 68.22 67.73 0.72     
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groundwater monitoring (Table 5). Based on the criterion shown 
in Table 2, the conclusion was that the error was acceptable in 
view of the fact that the accuracy of the reconstructed values was 
high, so the solution was deemed acceptable. 

4.3. Imputing of missing source yield data based on 
the biplot method 

The biplot method was used to reconstruct the missing 
source yield data, from 1 October 1980 to 1 July 1998. The input 
data in this case included original and reconstructed:

– observation dates,
– piezometric heads and
– observed source yield data. 

The first step, before the biplot method, was to complete ma-
trix X for calculating the missing total source yield values. The 
averages of the observed source yields were used for the missing 
values, xij

aus. The completed matrix included the observation 
dates (original and reconstructed), piezometric heads (original 
and reconstructed), observed source yields and average source 
yields (in place of those that needed to be reconstructed). Matrix 
X was than standardized applying Eq. 18, resulting in standardi-
zed matrix P. This was followed by the SVD of matrix P (in Mat-
Lab), based on Eq. 19. Then Eq. 20 was applied, resulting in ma-

trix P(2). After applying 
(2)

(2)
ij j j ijx m s p

∧
= + , all the elements of 

that matrix reverted to original values in matrix X(2)
(nxp). The 

missing xij
aus in the original matrix X were completed with the 

corresponding values of x
∧

ij
(2) iz X(2). This was followed by itera-

tions, back to matrix standardization, and the entire process was 
repeated. Iterations lasted until the condition 0.01d

y−
<

 

was ful-

filled (ARCINIEGAS-ALARCON et al., 2014), which occurred 
in the second iteration (Table 7).

Table 8 and Figure 8 show the observed (original) and recon-
structed source yields.

Table 6. Reconstructed piezometric head errors at all observation wells.

 Max. abs. error MAPE (%)

P1 6.08 1.60

P2 4.42 1.34

P3 3.31 1.16

P4 4.51 1.40

P5 3.61 1.02

P6 3.81 1.27

P7-2 5.83 1.66

Table 8. Observed (original) and reconstructed source yields – iteration 2. 

Day
Q 

Original 
time-series

Q 
Reconst. 

time-series
Day

Q 
Original 

time-series

Q 
Reconst. 

time-series
Day

Q 
Original 

time-series

Q 
Reconst. 

series

6483 95.31 93.18 8614 106.28 106.08 9832 98.10 98.15

6514 96.99 95.85 8675 116.34 113.58 9862 99.40 98.39

6545 104.60 99.85 8737 109.64 109.02 9893 100.72 97.37

6575 101.23 97.75 8767 105.43 108.55 9923 100.29 93.04

6606 98.06 97.95 8828 96.55 101.54 9985 100.73 94.78

6698 101.41 100.84 8949 94.83 97.10 10014 97.35 93.02

6879 93.87 94.02 8979 96.86 97.34 10045 95.14 92.17

7063 91.33 86.23 9071 105.12 101.47 10075 95.83 92.19

7184 99.94 92.97 9102 103.90 100.80 10106 95.86 92.81

7245 105.14 101.06 9132 103.47 99.98 10136 97.43 94.89

7276 104.93 102.58 9163 97.93 96.67 10167 97.71 95.77

7306 98.80 99.41 9193 95.82 94.82 10198 90.37 92.84

7337 100.77 100.84 9255 97.66 94.33 10228 92.88 92.99

7367 101.13 101.91 9283 95.60 92.87 10259 87.41 89.06

7398 100.97 100.85 9314 94.68 91.59 10289 86.34 88.36

7549 104.38 105.04 9344 96.76 91.21 10320 86.97 88.42

7610 102.22 103.67 9375 99.93 94.22 10351 83.21 86.20

7763 100.82 102.24 9436 97.11 94.61 10379 78.58 82.91

7822 98.87 100.19 9467 93.47 92.56 10410 79.41 83.37

7853 99.52 101.09 9497 96.28 93.79 10440 77.86 82.76

7914 99.53 101.06 9528 96.59 92.61 10471 81.66 87.75

7975 96.76 100.87 9558 92.51 89.59 10501 86.99 90.80

8067 98.54 103.96 9589 92.61 86.49 10532 82.75 90.24

8097 96.35 103.06 9620 92.85 86.91 10563 78.07 87.35

8159 94.78 100.60 9648 94.74 91.53 10593 67.28 81.33

8248 105.43 105.68 9679 95.66 90.18 10654 87.77 91.09

8309 112.72 112.49 9709 94.59 93.39 10685 87.84 90.26

8371 123.38 118.85 9740 97.82 95.18 10744 105.61 99.02

8462 112.00 110.48 9770 103.30 99.40 10775 85.27 86.95

8524 113.51 111.08 9801 100.54 97.68 10805 81.44 83.75
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It is apparent in Figure 8. that the original and reconstructed 
source yield data agree rather well, over the entire study period 
(from 1 October 1980 to 1 May 2010).

Table 9. shows the errors in the 2nd iteration.
Figure 9. shows the Bečej GS observed and reconstructed 

piezometric head and source yield data.

Table 7. Condition for ending iterations.

d y
 d 
y

1.417 246.031 0.006

Figure 8. Observed (original) and reconstructed source yield data (2nd iteration).

Figure 9. Original (observed) and reconstructed piezometric head and total source yield at all observation wells of Bečej GS.
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Figure 9. shows that the trends of the piezometric head and 
source yield data are consistent with those registered in situ. The 
reason for the lack of fluctuations of the reconstructed values is 
attributable to the long period of time during which the conside-
red parameters were not observed, as the applied methodology 
cannot produce more accurate solutions. However, the proposed 
methodology was highly effective in the study area, given that all 
the solutions were within the set criteria and the errors were in 
the predefined range. The models used in this research yielded 
satisfactory results and it is believed that they can be applied to 
fill data gaps in the study area (Bečej, Serbia). The developed 
methodology can also serve as a tool for upgrading other models 
(e.g. hydrodynamic) in groundwater management, when available 
input data are insufficient for this type of analysis. The level of 
error associated with the proposed methodology indicates that it 
can be applied to other groundwater sources and groundwater 
management systems.

5. CONCLUSION
An adequate groundwater source monitoring database is essen-
tial for efficient decision making in groundwater resources mana-
gement. When such data are lacking, it is a challenge to provide 
sufficiently reliable groundwork for forecasting the future status 
of a groundwater source and the regime of the captured ground-
water.

The paper described a methodology developed to reconstruct 
missing piezometric head and source yield data because monitor-
ing of the Bečej groundwater source (Bečej GS) had been dis-
continued for a period of ten out of 30 years. The accuracy of the 
reconstructed values was first assessed in respect of the observed 
(original) data. MAPE showed that the applied models were 
highly accurate, indicating that the methodology could be applied 
to the entire time series of data observed during the study period. 

Temporarily discontinued monitoring of piezometric head 
and source yield is one of the problems that had an adverse effect 
on the reliability of decisions relating to the feasibility of expand-
ing the groundwater source in the future, in view of the potential 
of the area and the predicted efficiency of groundwater abstrac-
tion over a long period of time.

The proposed methodology effectively solves that problem. 
The implementation of the proposed algorithm, resulting in com-
plete input data, improved source expansion solutions based on 
one of many methods for predicting groundwater dynamics. In 
the specific case, future research will focus on hydrodynamic 
modeling with reconstructed and filled data gaps for Bečej GS.

The proposed, verified methodology can be applied to 
groundwater abstraction systems, but also other systems, such as 
groundwater control (mines, hydraulic structures, agriculture, 
industrial zones, and urban areas), groundwater protection, and 
hydrometeorological, hydrological and similar systems.

The advantage of the proposed methodology is that it ensures 
sufficiently reliable reconstruction and/or forecasting of needed 
parameters, in cases that involve a small amount of observed data, 

or known quantities. In some instances it is relatively simple to 
implement. 
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