
Croatian Operational Research Review 1
CRORR 13(2022), 1-12

Determining the Optimal Location of Substations for Electric
Distribution: A Real Application on a Regional Basis

Sema Cebeci1 and Ömer Faruk Baykoç2,∗
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Abstract. Substation optimization involves positioning a substation(s) at the most suitable point
with minimum cost. In this study, multiple data were collected from the Turkish Electric Distribution
Incorporated Company (TEİAŞ) for the substation in the Eryaman region. The substations will be
placed at straight points. Using the capacity of the substations, power, voltage drops, and service
interruptions were calculated for a 10-year planning period. Each criterion represents one constraint.
The established model serves the following objectives: determining the optimal point and size of the
substations in the given planning period by minimizing costs and satisfying the demand of the sectors
without service interruption.
The model is solved in GAMS and optimal results are obtained. Our results demonstrate that by
installing the two substations at the given locations the energy demand of the Eryaman region will
be satisfied. To test the model’s applicability for larger systems, the number and the capacity of the
substations and the transformers are increased. The results show that optimality has been maintained
and that the model remains valid.
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1. Introduction

Energy is vital for human beings to avoid extinction. Many studies have been performed
regarding the daily production, location, and timing of electrical energy [1]. As the population
grows, the demand for energy simultaneously grows. To satisfy the electrical energy demand
without harming nature and to minimally affect the natural balance, new technologies and
methodologies are continuously used. Because electrical energy cannot be stored for a long
period, the production cost remains high. To depend less on electrical energy, new low-energy
technologies are invented [7].

Power distribution can be regarded as the final stage of electric power delivery. It gained
significance in the 1880’s when electricity started being generated in power stations. In order to
distribute electrical energy to individual consumers, power stations were installed all over the
world to transmit the electricity produced. Until that time, the electricity had been consumed
at the same point where it was produced [19].

Undoubtedly, there is a large body of literature on energy; therefore, we only deal with some
studies below that can be thought of as most related to our study. Salyani et al. [17] performed
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simultaneous optimization of substations, feeders, and renewable and nonrenewable distributed
generations in a distribution network. Wang et al. [23] used an optimization method based
on random fork tree coding for the electrical networks of offshore wind farms. Li et al. [9]
combined a technique with a labeling-bus-set approach to configure the substations in power
systems. Mak et al. [10] used sensitivity analysis of volt-VAR optimization in order to deter-
mine the data changes in distribution networks with distributed energy resources. Mikulović et
al. [13] rationalized the operation for industrial networks. Roig and Segundo [18] reduced the
low voltage using power cables in electromagnetic field emission. Giassi et al. [6] performed an
economical layout optimization of wave energy parks clustered in electrical subsystems. Khodr
et al. [8] designed grounding systems in substations using a Mixed-Integer Linear Program-
ming (MILP) formulation. Aydın et al. [3] determined an optimum route for the electrical
energy transmission line using multicriteria with Q-learning. Jing et al. [21] studied the results
of the multicriteria decision analysis aid in sustainable energy decision-making. Ekren and
Ekren [4] studied the simulation-based optimization of a PV/wind hybrid energy conversion
system. Ortmann et al. [14] used experimental validation of feedback optimization in power
distribution grids. Alcayde et al. [12] used Pareto optimization methods to minimize voltage
deviation and power losses. Jing et al. [22] maximized the system to save energy and reduce
environmental impact. Maestre et al. [15] studied the energy flow in HVAC systems. Chojnacki
[2] optimized the time periods of MV/LV transformer-distribution substations. Mancarella et
al. [11] optimized low-voltage distribution networks to minimize CO(2) emissions. Das et al.
[16] planned electrical distribution systems based on a probabilistic model using multiobjective
particle swarm optimization. Singh et al. [20] used multicriteria decision-making with monarch
butterfly optimization to optimize the distributed energy resources in distribution networks.

El-Fouly et al. [5] developed a new optimization model for substation siting, sizing, and
timing. For the proposed model, linear functions are used to generate the total cost function.
In the developed model, the voltage drops, the capacity of the substations and the transformers,
and power flows are used as the electric constraints. To prevent nonlinearity and avoid local
solutions, the model is formulated as a Mixed Integer Linear Programming (MILP) model. To
calculate its efficiency, the model is operated with a numerical sample.

In the present study, we implement a case study for which substations are to be positioned
in the Eryaman region in Ankara, the capital of Turkey. For this purpose, substantive data were
collected for the substation(s) that is (are) going to be positioned and balanced distribution was
integrated into the cost minimization. However, a balanced distribution does not significantly
affect the objective function. Thus, the integrated component is considered the background
and it provides a balanced distribution for the generated power. In addition to the constraints
that are considered in the literature, especially in El-Fouly et al. [5], there is another constraint
in case a short circuit occurs, which is unlikely to appear in the related literature, to the best
of our knowledge. The purpose of this additional constraint is to distribute balanced power
to prevent system defects that may occur except in the case of external factors (bad weather
conditions, acts of terrorism, etc.).

The rest of the paper is organized as follows: after the problem is defined in Section 2, we
propose our mathematical model in Section 3. Section 4 includes computational results and their
analysis. We present sensitivity analysis of our model in Section 5 and finally our conclusion
and future research directions are revealed in Section 6.

2. Problem Definition

The explored area consists of nine sectors. The area is estimated as a square and the distances
among the power distributing cables are assumed to be equal. When the cable length increases,
the cost increases and the efficiency decreases. The long cable lines to be placed also require
mid points, which increases total cost. The area of each sector is 6 km2. The fourth and sixth
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sectors are chosen to place the substations. The chosen positions are the most suitable because
they can easily distribute power to all nine sectors. Each substation (TM) has capacity of 50
MW and has two transformers (TR) with a capacity of 25 MW. Figure 1 shows the sectors and
positions of the placed substations.

Figure 1: Points of placed substations.

Capacity Location

Substation 1 50 MW Sector 4
Transformer 1 25 MW Sector 4
Transformer 2 25 MW Sector 4

Substation 2 50 MW Sector 6
Transformer 1 25 MW Sector 6
Transformer 2 25 MW Sector 6

Table 1: Substation and Transformers Unit Capacities

As observed in Table 1, the unit capacities of the substations and the transformers are 50
MW and 25 MW, respectively. The planning period is 10 years; each period consists of 2 years.
Thus, the demands will be studied for 5 periods. The 10-year demands are shown in Table 2.
The feeder lines of the substations are shown in Table 3.

Dn,p (MW) Sectors (p)

Period (n) 1 2 3 4 5 6 7 8 9
1 5 5 5 4 7 5 7 4 9
2 6 7 6 6 7 6 7 6 8
3 5 6 7 6 7 5 8 6 8
4 6 7 7 5 6 6 8 7 8
5 8 7 8 6 6 5 9 7 9

Table 2: 10-year Demands of All Regions
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Sectors Sectors

TM 1 -
feeders

Starting
Point

Ending
Point

TM 2 -
feeders

Starting
Point

Ending
Point

1 4 1 1 6 1
2 4 2 2 6 2
3 4 3 3 6 3
4 4 4 4 6 4
5 4 5 5 6 5
6 4 6 6 6 6
7 4 7 7 6 7
8 4 8 8 6 8
9 4 9 9 6 9

Table 3: Feeder lines of the substations

3. Mathematical Model

The main objective of planning the position to place a substation and its components is to
minimize the cost and the energy loss. The cost involves determining a substation location,
placing period, loading the transformers, etc. While planning a substation location, if more
substations are placed than required, the installation cost will significantly increase. In this
case, the placing period will lengthen, and the interest rate, the taxes, the inflation rate, and
the insurance rates will be affected. The energy loss is directly connected with loading the
power equipment. If the loading values increase, the total cost will uniformly increase.

This problem is formulated to achieve the following objective components:

• Determining the optimal placing locations in the planned period and

• Satisfying the electric demand of the sectors without service interruption.

The notations used in the model are as follows:

Index Set:
N : the number of periods in 10 years (because one period consists of 2 years, this planned

period is chosen to supply the necessary time to install the substations)
I : the number of substations; I = 1, 2 shows that two substations are planned to be placed.
J : the number of transformers. J = 1, 2 shows that there are two transformers per substation

planned to be placed.

Parameters:
TM SMI,N : fixed cost of substation I, installed in the N th period
TR SMI,J,N : fixed cost of the transformers J from substation I, installed in the N th period

Kcu : copper loss of the transformer in nominal power (kW)
C : energy cost ($/kWh)

Htr : unit efficiency of the transformer (MW)
R : resistance of the feeders, the value is 0.047

Vnom : system’s nominal voltage; the feeder line types are 154 kV
Vmax : system’s maximum permitted voltage drop value, which is ± 1.25% of the

nominal voltage value. If the nominal voltage is 154 kV, the maximal permitted
voltage drop value is 155.925 kV
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Decision Variables:

SI,N :

{
1; if substation I is installed in the N th period.

0; o.w.

XI,J,N :

{
1; if transformer J of substation I is installed in the N th period.

0; o.w.

ZI,J,N,P :

{
1; transformer J of substation I supplies energy to sec. P in theN th period.

0; o.w.

LI,J,N :

{
1; if a malfunction of transformer J of substation I occurs in period N.

0; o.w.

FI,J,N,P : the amount of transmitted power to sector P from transformer J of substation I
in the N th period.

DN,P : the demand of sector P in the N th period.

MaxL : balanced distribution of the service interruption period in the feeders.

Mathematical Model:
Objective function:

minZ =

2∑
I=1

5∑
N=1

(TM SMI,N ∗ SI,N ) +

2∑
I=1

2∑
J=1

5∑
N=1

[
TRSMI,J,N

∗XI,J,N

+

(
Kcu ∗ C
Htr

∗ 8760 ∗XI,J,N

)]
+ 0.1 ∗minL

(1)

Constraints:

SI,N ≤ SI,N+1 I = 1, 2;N = 1, . . . , 4 (2)

XI,J,N ≤ XI,J,N+1 I = 1, 2; J = 1, 2;N = 1, . . . , 4 (3)
2∑

i=1

2∑
j=1

ZI,J,N,P = 1 N = 1, . . . , 5;P = 1, . . . , 9 (4)

2∑
i=1

2∑
j=1

FI,J,N,P = DN,P N = 1, . . . , 5;P = 1, . . . , 9 (5)

FI,J,N,P = DN,P ∗ ZI,J,N,P I = 1, 2; J = 1, 2; N = 1, . . . , 5;P = 1, . . . , 9 (6)

ZI,J,N,P ≤ ZI,J,N+1,P I = 1, 2; J = 1, 2; N = 1, . . . , 5;P = 1, . . . , 9 (7)
2∑

i=1

2∑
j=1

ZI,J,N,P ≤ CARD(P) ∗XI,J,N N = 1, . . . , 5; P = 1, . . . , 9 (8)

2∑
i=1

2∑
j=1

XI,J,N ≤ CARD(J) ∗ SI,N J = 1, 2; N = 1, . . . , 5 (9)

2∑
j=1

9∑
P=1

FI,J,N,P ≤ 40 I = 1, 2; N = 1, . . . , 5 (10)
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9∑
P=1

FI,J,N,P ≤ 20 I = 1, 2; J = 1, 2; N = 1, . . . , 5 (11)

((1000 ∗DN,P ∗R) /Vnom) ∗ ZI,J,N,P ≤ Vmax I = 1, 2; J = 1, 2; N = 1, . . . , 5;P = 1, . . . , 9 (12)

LI,J,N =

9∑
P=1

ZI,J,N,P I = 1, 2; J = 1, 2; N = 1, . . . , 5 (13)

maxL ≤ LI,J,N I = 1, 2; J = 1, 2; N = 1, . . . , 5 (14)

SI,N , XI,J,N , ZI,J,N,P , LI,J,N ∈ {0, 1} I = 1, 2; J = 1, 2; N = 1, . . . , 5;P = 1, . . . , 9 (15)

FI,J,N,P , DN,P ,maxL ≥ 0 I = 1, 2; J = 1, 2; N = 1, . . . , 5;P = 1, . . . , 9 (16)

The objective function (1) is determined in a 10-year planning period.

Even if there is a load connected to the primary bobbins of the transformer, specific losses occur
because of the magnetic field from the bobbin resistances. These losses are named copper losses and
appear as heat.

To not significantly affect the total cost, the value is multiplied by a 0.1 scaled multiplier and
added to the total cost function. Because of service interruptions, the electric demands will not be
satisfied; thus, significant financial losses will occur. When service interruptions cannot be prevented
(bad weather conditions, terrorist incidents, etc.), the power cuts must be limited to a short period.
The service interruption of each feeder indicates a total power cut for each substation. In addition
to the external factors, when a malfunction occurs due to internal factors, distribution balancing is
considered an option.

Fixed cost constraint (2) is a decision variable and represents whether substation I is installed in the
N th period. The substation cost considers when the substation is installed. If the power is transmitted
in the first period, then SI,N = 1 and the substation is installed. In addition, if the substation is
installed in the first period, it will remain functional for the remaining periods. The substation cannot
be uninstalled for the remaining periods.

The other fixed cost constraint, (3) XI,J,N , is also a 0 − 1 integer decision variable. This variable
depends on the first variable, which shows the transformers in substation I. If transformer J is placed
in substation I in the N th period, the value is 1. Similar to the first variable, if the second variable J
is installed in the N th period, it cannot be uninstalled in the N + 1th period.

Each sector demand can be fulfilled from only one feeder. In other words, each sector will supply
energy from only one substation to satisfy the radial flow constraint (4). The radial flow is the current
that flows through the bobbin diameter of the transformers. Thus, the current reaches the feeders and
the sectors via the distributing lines.

FI,J,N,P (5) and DN,P (6) represent the amount of transmitted power and demand of the sector P
from transformer J of substation I in the N th period, respectively.

ZI,J,N,P (7) represents the continuity of energy distribution to sector P in period N ; it will continue
to distribute energy in the remaining periods if the value is 1.

The power flow constraint represents the law of energy preservation. The substation loading and
the transformer loading of period N are equal, which must be simultaneously equal to or greater than
the energy demand of each sector.

When transformer J of substation I distributes energy to sector P in period N , the amount must
be equal to or greater than the demand of the distributed sector. If the substation or one of the
transformers of the substation is not functional or not installed, the energy distribution of sector P
is interrupted. If the substation or the transformers are installed, the energy is transmitted to the
determined sector for period N and remains transmitted for the remainder of the period to the same
sector from the same substation or its transformer. This state can be provided using the CARD(P)

command in GAMS (8).

The loading amount of substation I must be equal to or greater than the loading amount of
transformer J in period N to ensure that transformer J can satisfy the energy demand of the sectors.
If substation I is not functional or not installed, the energy distribution to transformer J will be
interrupted. If substation I is operational or installed, transformer J will distribute energy from the
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period that the substation is installed and continue distributing energy for the remaining periods. This
state can also be provided using the CARD(PJ) command (9).

The capacities of each substation and each transformer are 50 MW and 25 MW, respectively. The
transformers can operate with max. 80% efficiency. Thus, the usage capacities of each substation and
each transformer are 40 MW (10) and 20 MW (11), respectively.

The voltage constraint (12) enables the feeders’ voltage to remain within the permissible standard
values. Each feeder requires the constraint to determine and not to exceed the voltage drop maximum
limit value. If the voltage drop value exceeds the maximum permissible limit, the feeders may become
overloaded and malfunction. Because each feeder distributes energy to only one sector, the demand
will not be satisfied.

A service interruption is a defect that occurs mostly because of the conditions that are irrelevant to
the internal system. Bad weather conditions (snow, lightning, etc.), terrorist incidents, and technical
and suddenly occurring defects (isolator defect, phase conductor defect) are some of the reasons that
the feeders cannot transmit energy, which results in the substation being out of order.

Service interruptions are mostly inevitable and can cause a serious problem. Although technical
defects can be prevented, for malfunctions caused by external defects, the effective methods are not
sufficiently applied. The transformer remains out of order until the defect is rectified. To determine
the service interruption number for the substation to be placed, retrospective data are gathered from
several provinces. The calculation is based on the cumulative annual service interruption periods. The
inoperative period of the substation is equal to the repairing period of the feeders. By determining the
maximal service interruption number (13), each feeder of the substation will be balance-distributed by
shortening the repair periods and re-operating the substations.

If LI,J,N is 1, transformer J remains operating and the feeder distributes the energy to sector P .
Otherwise, if the value is 0, service interruption occurs, and the feeder cannot distribute energy to
sector P .

maxL represents the maximum assigned sector number; if the number exceeds the maxL value,
service interruption occurs (14).

4. Computational Analysis

The model is solved using GAMS and the optimal result is found. The solution is shown in Table 4.
The optimal cost for the 10 -year planning period is $4,250,249.00. The cost obtained is near the value
that Turkish Electric Distribution Inc. (TEİAŞ) intends to spend, which shows that the resulting cost
is meaningful.

Sectors (P )

Period (N) 1 2 3 4 5 6 7 8 9

1 1,1 1,2 1,1 2,1 1,2 2,2 2,1 1,2 2,2

2 1,1 1,2 1,1 2,1 1,2 2,2 2,1 1,2 2,2

3 1,1 1,2 1,1 2,1 1,2 2,2 2,1 1,2 2,2

4 1,1 1,2 1,1 2,1 1,2 2,2 2,1 1,2 2,2

5 1,1 1,2 1,1 2,1 1,2 2,2 2,1 1,2 2,2

Table 4: Sector energy distribution

As observed in Figure 2, the first transformer (TR) of the first substation (TM) distributes energy
to sectors 1 and 3, and the second transformer distributes energy to sectors 2, 5, and 8. The first
transformer of the second substation distributes energy to sectors 4 and 7, whereas the second trans-
former distributes energy to sectors 6 and 9. From another viewpoint, sectors 1, 2, 3, 5, and 8 receive
their energy from the first substation, whereas sectors 4, 6, 7, and 9 receive their energy from the
second substation. The distribution assignment shows that each sector is supplied with energy from
only one substation, i.e., the electric energy demand of one sector cannot be satisfied by more than one
substation.
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Figure 2: Electric distribution of substations.

Table 5 shows the satisfied demands of the sectors in a periodical base. As observed from the table,
the values are equal to the electric energy demand of the sectors.

Dn,p (MW) Sectors (P )

Period (N) 1 2 3 4 5 6 7 8 9

1 5 5 5 4 7 5 7 4 9

2 6 7 6 6 7 6 7 6 8

3 5 6 7 6 7 5 8 6 8

4 6 7 7 5 6 6 8 7 8

5 8 7 8 6 6 5 9 7 9

Table 5: Satisfied energy demand of the sectors

In Table 5, the energy distributions in all five periods to each sector are shown in detail. The
distribution to a specific sector starting from the first period for all five periods is supplied by one
substation, which results from the CARD(P) and CARD(J) commands of the power flow constraint. If
a substation and its transformers are installed in a specific period and distribute energy to sector P ,
they will continue distributing energy to the same sector for the remaining periods. For example, if the
energy demand of sector 1 is satisfied by the first transformer of the first substation in period 1, this
transformer will continue supplying energy to sector 1 for the remaining periods. If the energy demand
of sector 7 is satisfied by the first transformer of the second substation in period 1, this transformer
will continue supplying energy to sector 7 for the remaining periods.

The capacities of the substations and the transformers for five periods are shown in Tables 6 and
7. As observed from the tables, the substations and the transformers produce and distribute energy
without exceeding the 80% efficiency and capacity limit. The second transformer of each substation
produces and distributes energy near the capacity limit.

Sectors (I)

Period (N) 1 2

1 26 25

2 32 27

3 31 27

4 33 27

5 36 29

Table 6: Usage capacity of the substations

As shown in Table 6, the maximum usage capacity of each substation is 40 MW, neither substation
exceeds the capacity, and both substations operate with optimum efficiency.
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Substation 1 Substation 2

Period (N) Transformer 1 Transformer 2 Transformer 1 Transformer 2

1 10 16 7 18

2 12 20 7 20

3 12 19 8 19

4 13 20 8 19

5 16 20 9 20

Table 7: Usage capacity of the transformer

As shown in Table 7, the maximum usage capacity of each transformer is 20 MW, neither transformer
exceeds the maximum usage limit, and both operate with optimum efficiency. The second transformer
of each substation is operating at nearly full capacity for all five periods.

Sectors (P )

Period (N) 1 2 3 4 5 6 7 8 9

1 1,526 1,526 1,526 1,221 2,136 1,526 2,136 1,221 2,747

2 1,831 2,136 1,831 1,831 2,136 1,831 2,136 1,831 2,442

3 1,526 1,831 2,136 1,831 2,136 1,526 2,442 1,831 2,442

4 1,831 2,136 2,136 1,526 1,831 1,831 2,442 2,136 2,442

5 2,442 2,136 2,442 1,831 1,831 1,526 2,747 2,136 2,747

Table 8: Voltage drop values

Table 8 shows the voltage drop values of the feeders. Because all entries in the table are nonzero,
no feeder has exceeded the maximum voltage drop limit. Thus, the system operates/distributes energy
without interruption. Increasing the power also increases the voltage drops.

As observed from all tables, each decision variable takes a value of 1 from the {0, 1} space. In
other words, each substation and each transformer are operating fully and each is assigned for specific
sectors.

Balanced distribution, which helps avoid service interruptions, is shown in Table 9.

Substation 1 Substation 2

Period (N) 1 2 1 2

1 2 3 1 3

2 2 3 1 3

3 2 3 1 3

4 2 3 1 3

5 2 3 1 3

Table 9: Balanced distribution

To better understand the table entries, the first transformer of the first substation simultaneously
distributes energy to two sectors in period 1 and continues simultaneously distributing energy to two
sectors for all five periods. The second transformer of the second substation simultaneously distributes
energy to three sectors in period 1 and continues simultaneously distributing energy to three sectors
for the remaining periods.

The max. L value is 3, which indicates that a transformer can simultaneously distribute energy to,
at most, three sectors. If this value is exceeded, service interruption will occur.
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5. Sensitivity Analysis

The 10-year retrospective data are gathered and formed into five periods to calculate the energy demand
and determine the optimal points for the substation(s) to be placed in the Eryaman region. Two
substations with a capacity of 50 MW, two transformers for each substation, and nine feeders are
sufficient to meet the electric demand of the Eryaman region. The cost gained from the calculations is
near the cost that TEİAŞ intends to incur.

The present study, which was applied for the Eryaman region, can also be easily applied to other
regions using identical or different constraints. Table 10 represents a realistic example for this study.
The model is tested by increasing the substation capacities using the same constraints.

2 Substations & 4 Transformers

Capacity(MW) Solving Time

100 0,031 sec.

200 0,032 sec.

300 0,024 sec.

400 0,036 sec.

Table 10: Solution time of the model by increasing the capacities of the two substations

For the Eryaman region, two substations with a total capacity of 100 MW were sufficient to satisfy
the energy demand of all sectors. By increasing the capacities to 200, 300, and 400 MW, the solutions
show that the model can be easily solved and that optimality is not affected. It also shows that the
model can be used for larger regions with higher energy demands.

Another testing method is to increase the capacities and the number of substations. The substation
capacities are increased to 200, 300, and 500 MW, and the number of substations is increased to 3, 4,
and 10, respectively. Thus, the number of transformers will be uniformly increased.

The results are given in Table 11.

Capacity (MW) Substation Transformer Solving Time

200 4 8 0,047 sec.

200 4 16 0,110 sec.

300 3 18 0,109 sec.

500 10 50 0,202 sec.

Table 11: Solving time with increased capacities

As observed from both tables, the model can be used for larger areas and higher energy demands.
Optimality will not be affected and the problem will be solved without difficulty.

6. Conclusion and Future Research Perspectives

The model is operated using retrospective data and the energy demand is calculated for the Eryaman
region. The results show that if two substations and nine feeders are placed, the energy demand
of the region is satisfied. The results obtained demonstrate that the solution is optimal and by using
alternative inputs optimality is not affected. In other words, our model can also serve for larger systems
with higher energy demands.

For further studies, the model can be used for one specific region, more than one sector in one town,
and for the entire country. In the case of modification, the installation and the fixed cost will most
likely be changed. The feeder lines to be placed will lose linearity because of the geographical position
(field incompatibilities, building location points, etc.). Placing mid points for the feeders and using
other technical electric components will introduce different points and visions to the study. Another
expansion of the model is to add alternative current circuits or to change the network tensions based
on the circuit currency degrees, etc. Corporations use reactive energy in addition to active energy.
The reactive energy is calculated and paid for by TEDAŞ (Turkish Electricity Distribution Inc.). The
reactive power is unused power and can be reduced. To prevent power loss, the power factor can be
calculated and used for further studies as an alternative.
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