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Abstract. Birth-death processes are applied in the modelling of many biological populations, such
as tumour cells and viruses. Various studies have established that birth-death processes, which occur
when the population size is zero, are not in-line with reality in many situations. Therefore, in this study,
the birth-death processes with immigration were investigated. We considered two immigration policies.
First, immigration is allowed if and only if the population size is zero. Second, immigration at a constant
rate is allowed irrespective of the population size. Birth and death rates were chosen such that the mean
population size is a Gompertz function when the immigration rate is zero. The transient population
size probability was obtained for both cases. Several tumour growth datasets were fitted using the
mean population size of the above models and standard birth-death model without immigration. The
two models with immigration provided entirely different probabilities of the population size being zero
at an arbitrary epoch when compared with the model without immigration. Moreover, all three models
provided a similar fit to the data. For each of the datasets studied, the models that allowed immigration
produced less variance than the non-immigration model.
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1. Introduction

Birth-death processes are considerably important tools in modelling many real-world phenom-
ena, such as queues, inventory, evolution, population biology, and epidemiology. General inputs
to the birth-death process are the birth and death rates. Although assuming these rates to be
independent of time simplifies the analysis of the modelling stochastic process, in real-world
applications, the above rates are often time- dependent. Kendall [15] studied a birth-death
process in which birth and death rates were assumed as functions of time. The author provided
the explicit expression for the expected population size, its variance, and the probability of
extinction, and also discussed the possibility of a model with minimum variance, depending on
the nature of the birth and death rates.

Often, biological applications demand the modelling of large populations. For example,
studies have reported that tumours with a diameter of 1 mm may contain 106 tumour cells [13].
A mathematical model intended to predict the time when the tumour is 2 mm in diameter
would need to address a significantly large population size. In such cases, the probability that
the population size is equal to a particular value (e.g., 106) may not be significantly important
to biologists. This could be the reason deterministic models are the first choice for a tumour
mathematical model [26]. Some popular deterministic models include exponential, power law,
Gompertz, logistic, generalised logistic, and von Bertalanffy models [4]. The growth pattern
of human breast cancer shows that tumours do not grow exponentially after a certain period,
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and this is incorporated in the Gompertz model of cell growth [21]. Although this is the case,
to obtain more details such as the variability in the size of the tumour or the probability of
the tumour disappearing before gaining detectable size, a natural choice for a mathematical
model would be a stochastic model [5, 26]. Speer et al. [25] developed a stochastic numerical
model of breast cancer growth. This model suggests that Gomperzian kinetics govern tumour
growth; however, from time to time, there is a random change in the growth rate. Mazlan
and Rosli [19] described the growth process of breast cancer by including noisy behaviour in
the Gomperzian model, and obtained better results for this stochastic model compared with
those of its deterministic counterpart. Lo [17] proposed a stochastic nonlinear model of tumour
growth based on the Gompertz growth law, in which the probability density function of the
tumour size obeys a nonlinear Fokker-Planck equation that can be solved analytically. Lo [16]
proposed a stochastic model of tumour cell growth based on the deterministic Gompertz law
of cell growth, which assumes a bound on the number of tumour cells. Tumour growth was
studied as a diffusion approximation of a continuous time and density-dependent branching
process with the Gompertz law as the deterministic counterpart [2, 14]. Hence, all the above
studies can be considered as attempts to combine the advantages of a deterministic model with
a more informative stochastic model.

Before we discuss some similar attempts in the case of birth-death processes, let us discuss
the idea of combining deterministic models with a birth-death model. For example, consider
the Gompertz model defined by the differential equation:

dN

dt
= N(β − α logN), t > 0, α, β > 0 (1)

where N(t) is the population size at time t. The solution to Eq. (1) is given by:

N(t) = e(
β
α−(

β−α log N0
α )e−αt) (2)

A random analogue of the above Gompertz model can be considered as a birth-death process
in which a transition from state i can occur only to states i − 1 or i + 1 in a small interval of
time. The transition from state i to i− 1 is considered death, and the transition from i to i+1
is considered birth. Taking the birth rate as λ(t) = βe−αt and µ(t) = α logN0e

−αt, the random
analogue becomes Kendall’s birth–death process [15].

Gompertz’s birth-death process is shown as a special case of the non-homogeneous birth-
death process in [27], which obtained the first four cumulants and absorption probabilities.
The density-dependent birth-death process with a mean satisfying the logistic equation was
given, and expressions for the probability generating function and stationary distributions were
obtained in [22]. The solution of the associated Fokker-Planck equation was used to build a
likelihood function for the unknown parameters. In the above study, the stochastic counterparts
and relevant properties of the logistic growth model were considered and compared with those
of other growth models.

According to [10], the absorbing state at zero in Kendall’s process fails to mimic a real-world
situation in which the reduction of cell size to zero does not occur. Therefore, the authors
considered a random analogue of the Gompertz model as a pure birth process with an average
value that was the same as that of the deterministic Gompertz model. A similar technique
was considered in the logistic growth model [12]. According to Weedon-Fekjær et al. [30],
Gompertz’s and logistic models are popular for modelling tumour growth data. They did not
consider the exponential growth model to be reliable. Because the logistic model behaves as
an exponential model, when the maximum tumour volume is significantly large, the Gompertz
model is more suitable for modelling tumour growth data. Motivated by these studies, we
consider a birth–death analogue of the Gompertz model and the immigration of a single cell if
and only if the cell size becomes zero to avoid the absorbing state. The model obtained differs
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from the usual immigration model where immigration is allowed for any population size [9, 11].
Our immigration policy may be considered as a special case to the one studied by [23], which
assumes that the immigration of particles occurs at a rate λbk whenever the population size is
zero. However, the birth and death rates are assumed to be a2

n and a0

n , respectively, such that the
cumulative birth and death rates remain constant. Conversely, the cumulative birth and death
rates in this study were nλ and nµ respectively. Thus, the analysis of modelled Markov chain
becomes entirely different. We conducted a transient study of the resulting model. The type
of immigration policy discussed in this study can be seen in polling models without switchover
lines, which can be considered a multitype branching process with immigration only in state
zero [1, 6]. Zheng et al. [31] considered a similar immigration policy with time-independent
birth and death rates. This study differs from the aforementioned studies in that the birth and
death rates are of the Gompertz type, which is time- dependent. Moreover, the average cell
population size, which emerges from the stochastic model, was applied to model tumour growth
data, such as to obtain a less variant stochastic model. Hence a comparison of three stochastic
models, namely: i) a model with no immigration; ii) a model with immigration if and only if
the population size is zero; and iii) a model with immigration irrespective of the population
size, was conducted.

The reminder of this paper is organised as follows. In Section 2, we introduce the Markov
chain model and study its transient characteristics. In Section 3, we compare the models with
and without immigration by fitting the models to tumour growth data. Finally, Section 4
concludes the study.

2. Methodology

2.1. Birth-Death process with immigration only when the population
size is zero

Here, we consider Kendall’s birth-death process [15] in which immigration is allowed only when
the population size is zero. We discuss two cases: first, constant birth and death rates, and
second, time-dependent Gompertzian birth and death rates.

2.1.1. Constant birth and death rare case

Consider a Kendall’s birth–death process {N(t); t ≥ 0} [15] in which immigration is allowed
only when the population size is zero. Let γ, λ and µ denote constant immigration, birth, and
death rates, respectively. The transition probabilities in {N(t)} over an infinitesimal interval
of length h are given by:

P [N(t+ h) = 1/N(t) = 0] = γ

P [N(t+ h) = j + 1/N(t) = j] = jλh+ o(h), j ≥ 1,

P [N(t+ h) = j − 1/N(t) = j] = jµh+ o(h), j ≥ 1

(3)

where o(h) → 0 as h → 0.
It follows that pn(t) satisfies the differential difference equations:

p′0(t) = −γp0(t) + µp1(t) (4)

p′1(t) = γp0(t)− (λ+ µ)p1(t) + 2µp2(t) (5)

p′n(t) = (n− 1)λpn−1(t)− n(λ+ µ)pn(t) + (n+ 1)µpn+1(t), n ≥ 2. (6)

We assume that N(0) = 1, such that:
p1(0) = 1. (7)
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Consider the generating function:

P (z, t) =

∞∑
n=0

pn(t)z
n. (8)

Equations (4)–(7) imply that P (z, t) satisfies the partial differential equation:

∂

∂t
P (z, t)− (λz2 − (λ+ µ)z + µ)

∂

∂z
P (z, t) = γ(z − 1)p0(t), (9)

with initial condition:
P (1, t) = 1, P (z, 0) = z. (10)

To find the solution of this equation, we introduce the auxiliary variable ζ such that:

dt

dζ
= 1 and

dz

dζ
= −(λz2 − (λ+ µ)z + µ), (11)

with initial conditions:
t = 0, z = ξ, when ζ = 0. (12)

Eq. (11) yields:

t = ζ and
dz

(λz2 − (λ+ µ)z + µ)
= −dζ. (13)

By partial fractioning the left-hand side of Eq. (13), we obtain:

dz

[
1

1− µ
λ

1

z − 1
− 1

1− µ
λ

1

z − µ
λ

]
= −λdζ, (14)

which implies:

log

(
z − 1

z − µ
λ

)
= (µ− λ)ζ + c1. (15)

Applying the initial condition in Eq. (12), we obtain:

z − 1

z − µ
λ

= exp((µ− λ)ζ)

(
ζ − 1

ζ − µ
λ

)
, (16)

which gives:

(z − 1) =
ϕ(ζ)

1− ϕ(ζ)

(
1− µ

λ

)
, (17)

where:

ϕ(ζ) = exp((µ− λ)ζ)

(
ζ − 1

ζ − µ
λ

)
. (18)

Now, Eq. (9) is reduced to the form:

dP

dt

dt

dζ
+

dP

dz

dz

dζ
= γ(z(ζ)− 1)p0(ζ), (19)

dP

dζ
= γ(z(ζ)− 1)p0(ζ). (20)

By integrating, we obtain:

P (z, t) =

∫ ζ

0

γ
ϕ(u)

1− ϕ(u)

(
1− µ

λ

)
p0(u)du+ k, (21)
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where k is an integration constant. The initial conditions in Eq. (12) implies that P (z, t) = ξ,
when ξ = 0, which gives k = ξ. Thus:

P (z, t) =

∫ ζ

0

γ
ϕ(u)

1− ϕ(u)

(
1− µ

λ

)
p0(u)du+ ξ. (22)

Substituting ζ as t, we obtain:

P (z, t) =

∫ t

0

γ
ϕ(u)

1− ϕ(u)

(
1− µ

λ

)
p0(u)du+ ξ. (23)

To determine p0(t), we note that P (0, t) = p0(t). Hence, for a given t, p0(t) is obtained by
selecting ξ such that z = 0 in Eq. (23).

From Eq. (16), it follows that when z = 0:

ξ =
1

1− λ
µ exp(λ− µ)t

− µ

λ
. (24)

For the above ξ, Eq. (23) gives:

p0(t) =

∫ t

0

γ
ϕ(u)

1− ϕ(u)
(1− µ

λ
)p0(u)du+

1

1− λ
µ exp(λ− µ)t

− µ

λ
(25)

which is a Volterra integral equation of the second type. Efficient numerical methods are
available for solving such equations (please refer to Brunner et al. [7]).

Note that Eq. (4) can be solved to obtain:

exp(γt)p0(t) =

∫ t

0

exp(γu)µp1(u)du. (26)

Because p0(t) is known, the above equation can be considered a Volterra integral equation of
the first type, which can be solved to obtain p1(t). Mirzaee [20] described a numerical procedure
for solving the Volterra integral equations of the first type.

Expected value of N(t).
Let E(t) = E(N(t)) =

∑∞
n=0 npn(t).

Partially differentiating Eq. (9) with respect to z, we obtain:

∂2P (z, t)

∂z∂t
= γp0(t) + (λz2 − (λ+ µ)z + µ)

∂2P (z, t)

∂z2
+

∂P (z, t)

∂z
(2λz − (λ+ µ)). (27)

Note that ∂P (z,t)
∂z is E(t), when z = 1.

When z = 1, we obtain the differential equation for expectation as:

E′(t) = γp0(t) + (λ− µ)E(t). (28)

By integrating, we obtain:

E(t) exp((µ− λ)t) =

∫ t

0

γ exp((µ− λ)u)p0(u)du+ c. (29)

The initial condition, E(0) = 1, gives c = 1.

E(t) = exp((λ− µ)t)

[∫ t

0

γ exp((µ− λ)u)p0(u)du+ 1

]
. (30)
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Variance of N(t).
Let V (t) = V (N(t)) be the variance of N(t).
Partially differentiating Eq. (27) with respect to z, we obtain:

∂3P (z, t)

∂z2∂t
= (λz2 − (λ+ µ)z + µ)

∂3P (z, t)

∂z3
+ 2

∂2P (z, t)

∂z2
(2λz − (λ+ µ)) +

∂P (z, t)

∂z
(2λ). (31)

Note that ∂2P (z,t)
∂z2 − E(t)− E(t)2 is V (t) when z = 1, which leads to the differential equation:

V ′(t)− 2(λ− µ)V (t) = γp0(t)(1− 2E(t)) + (λ+ µ)E(t). (32)

Thus, we obtain:

V (t) = exp(2(λ− µ)t)

(∫ t

0

(γp0(u)(1− 2E(u)) + (λ+ µ)E(u)) exp(2(µ− λ)u)du+ c1

)
(33)

V (0) = 0, implies c1 = 0.

2.1.2. Time-dependent Gompertzian birth and death rate case

Here, we assume that the birth and death rates are time-dependent, as given by λ(t) = βe−αt

and µ(t) = α logN0e
−αt. Note that Kendall’s birth–death process [15] with these rates and

without immigration implies that the expected value of N(t) is a Gompertz function [10].
However, under the assumption of immigration, these rates yield a different E(t). For more
generality, we assume that N(0) = N0. In this case, P (z, t) satisfies the partial differential
equation:

∂

∂t
P (z, t)− exp(−αt)(βz2 − (β + α logN0)z + α logN0)

∂

∂z
P (z, t) = γ(z − 1)p0(t) (34)

with initial and boundary conditions:

p(ξ, 0) = ξN0 , P (1, t) = 1, P (0, t) = p0(t). (35)

Proceeding in lines similar to those in the previous subsection, the generating functions p0(t),
p1(t), expectation, and variance are obtained as:

P (z, t) =

∫ t

0

γ
ϕ(u)

1− ϕ(u)

(
1− α logN0

β

)
p0(u)du+ ξN0 (36)

where

ϕ(u) = exp

(
β − α logN0

α
(exp(−αu)− 1)

)[
ξ − 1

ξ − α logN0

β

]
, (37)

where ξ is given by:

ξ =
1− exp(β−α logN0

α (1− exp(−αt)))

1− β
α logN0

exp(β−α logN0

α (1− exp(−αt)))
(38)

ϕ(u) is given by Eq. (37) for the above ξ, and p0(t) satisfies the Volterra integral equation of
the second type:

p0(t) =

∫ t

0

γ
ϕ(u)

1− ϕ(u)
(1− α logN0

β
)p0(u)du

+

(
1− exp(β−α logN0

α (1− exp(−αt)))

1− β
α logN0

exp(β−α logN0

α (1− exp(−αt)))

)N0 (39)
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Further, p1(t) satisfies the Volterra integral equation of the first type:

exp(γt)p0(t) =

∫ t

0

exp(γu)α logN0 exp(−αu)p1(u)du (40)

E(t) = exp

(
α logN0 − β

α
exp(−αt)

)
×
[∫ t

0

γp0(u) exp(
β − α logN0

α
exp(−αu))du+N0 exp(

β − α logN0

α
)

]
(41)

V (t) = exp

(
2

(
α logN0 − β

α

)
exp(−αt)

)
ϑ(t), (42)

where:

ϑ(t) =

∫ t

0

(γp0(u)[1− 2E(u)] + exp(−αu)(β + α logN0)E(u))

exp(2(
β − α logN0

α
) exp(−αu)du) (43)

2.2. Birth and Death process with immigration in all states

Here, we consider the birth–death process in which immigration occurs at a constant rate,
irrespective of the population size. The immigration, birth, and death rates are described in
Subsection 2.1.2. The transition probabilities over an infinitesimal interval of length h are given
by:

P [N(t+ h) = j + 1/N(t) = j] = jλh+ γ + o(h), j ≥ 1

P [N(t+ h) = j − 1/N(t) = j] = jµh+ o(h), j ≥ 1
(44)

It follows that pn(t) satisfies the differential difference equations:

p′0(t) = −γp0(t) + α logN0 exp(−αt)p1(t) (45)

p′1(t) = γp0(t)− (β exp(−αt) + α logN0 exp(−αt) + γ)p1(t) + 2α logN0 exp(−αt)p2(t) (46)

p′n(t) = ((n− 1)β exp(−αt) + γ)pn−1(t)− (n(β exp(−αt) + α logN0 exp(−αt)) + γ)pn(t)

+ (n+ 1)α logN0 exp(−αt)pn+1(t), n ≥ 2 (47)

Equations (44–47) imply that the generating function P (z, t) satisfy the partial differential
equation:

∂

∂t
P (z, t)− exp(−αt)(βz2 − (β + α logN0)z + α logN0)

∂

∂z
P (z, t) = γ(z − 1)P (z, t). (48)

To determine the solution of this equation, we introduce the auxiliary variable ζ such that:

dt

dζ
= 1 and

dz

dζ
= −(exp(−αt)(βz2 − (β + α logN0)z + α logN0)), (49)

with initial conditions:
t = 0, z = ξN0 , when ζ = 0. (50)

Now, Eq. (48) reduces to the form:

dP

dζ
= γ(z − 1)P. (51)
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A similar procedure as in Subsection 2.1.1 gives:

P (z, t) = exp

(
γ

∫ t

0

ϕ(u)

1− ϕ(u)

(
1− α logN0

β

)
du

)
ξN0 , (52)

where ϕ is the same as in Eq. (37).
With ξ as given by Eq. (38), and ϕ(u) as given by Eq. (37) for this ξ, p0(t) satisfies the

Volterra integral equation of the second type:

p0(t) = exp

(
γ

∫ t

0

ϕ(u)

1− ϕ

(
1− α logN0

β

)
du

)(
1− exp(β−α logN0

α (1− exp(−αt)))

1− β
α logN0

exp(β−α logN0

α (1− exp(−αt)))

)N0

(53)
Furthermore, p1(t) satisfies the Volterra integral equation of the first type:

exp(γt)p0(t) =

∫ t

0

exp(γu)α logN0 exp(−αu)p1(u)du. (54)

The expectation and variance of N(t) are given by:

E(t) = exp

(
α logN0 − β

α
exp(−αt)

)(∫ t

0

γ exp

(
β − α logN0

α
exp(−αu)

)
du

+N0 exp

(
β − α logN0

α

))
(55)

V (t) = exp

(
2

(
α logN0 − β

α

)
exp(−αt)

)
ϑ1(t) (56)

ϑ1(t) =

∫ t

0

(γ + exp(−αu)(β + α logN0)E(t)) exp

(
2

(
β − α logN0

α

)
exp(−αu)du

)
. (57)

2.3. Birth and death processes with no immigration

To compare the models with and without immigration, we discuss the case of a birth–death
process with 0 as the absorbing state. We derive their transient solution when the birth and
death rates are of Gompertz nature using a method similar to that described in the previous
section. We note that a solution to the above problem is given in [8] by exploiting the theory
of the continued fraction to obtain the Laplace transforms of the transient probabilities.

We consider the birth–death process in Subsection 2.1.2 and assume that the immigration
rate is zero. In lines similar to those in Subsection 2.1.2, the generating function is obtained as:

P (z, t) = ξN0 , (58)

where:

ξ =
z[β − α logN0f(t)] + α logN0(f(t)− 1)

z(1− f(t))β + [f(t)β − α logN0]
, (59)

with

f(t) = exp

(
α logN0 − β

α
(exp(−αt)− 1)

)
(60)

By expanding the right-hand side of Eq. (59) as a Taylor series and equating the constant term
and coefficient of z, we obtain p0(t) and p1(t) as:

p0(t) =

(
α logN0(f(t)− 1)

f(t)β − α logN0

)N0

(61)

and p1(t) = N0p0(t)

(
(f(t)− 1)β

f(t)β − α logN0
+

β − α logN0f(t)

α logN0(f(t)− 1)

)
. (62)
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The expected value and variance of N(t) are given by:

E(t) = N0 exp

(
α logN0 − β

α
(exp(−αt)− 1)

)
(63)

V (t) = N0
β + α logN0

α logN0 − β
exp

(
β − α logN0

α

)
exp

(
α logN0 − β

α
exp(−αt)

)
(64)

3. Numerical Examples

The computations of various performance measures were performed using MATLAB R2019b.
Curve fitting was performed by applying the nonlinear least-squares method with a trust-region-
reflective algorithm in MATLAB R2019b.

3.1. Tumour growth data in Tan et al.

A comparison of the birth-death models with and without immigration was performed based
on the tumour growth data given in [28] in terms of the number of tumour cells in different
epochs, to identify the model that best mimics reality. The number of tumour cells at various
epochs was fitted using the mean population size given by Eqs. (41), (55) and (63). Figure 1
shows the fit. The parameter values that provide the fit are listed in Table 1. As shown in the
figure, all three models produced a similar data fit. This may be attributed to the large tumour
population size N(t) to the tune of 768,720, such that the averages produced by each of the
three stochastic models converge to the deterministic model. It is important to note that the
probability p0(t) does not tend to zero in the case of the model with no immigration, which
is the main difference between the three models. More precisely, this probability increased
for the model with no immigration, as depicted in Figure 2, which is the opposite for models
with immigration. This is expected because in the case of the no immigration model, the
presence of the absorbing state at zero continues to add some mass to the probability p0(t) as
t increases. Figure 3 shows that the probability p1(t) continues to decrease with increasing t in
all three models. The behaviour of probabilities p0(t) and p1(t) together suggest that allowing
immigration is more realistic for the stochastic tumour model. Figure 4 shows the variances
of the three models. As observed, the models with immigration produce less variance than
the non-immigration model. These facts suggest that immigration models are more realistic
when compared with the non-immigration model in the case of the data in [28]. Figure 5 shows
that the time-dependent birth and death rates decrease with time rather than remain constant,
which further justifies the choice of the Gompertz model.

Model Immigration when and only All state immigration model No immigration model
when population size is 0

β 1.5948 1.4259 1.5925
α 0.0966 0.0919 0.0966
N0 2.0386 6.0000 2.0000
γ 99.1902 12.9519

Table 1: Gompertzian parameters for the fit of the tumour cell count data [28].
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Figure 1: Fit of the tumour cell count [28] by the expected cell population size obtained from
the birth–death models with and without immigration.

Figure 2: Comparison of the probability of the cell population size being zero at an arbitrary
epoch t in the case of birth–death models with and without immigration based on the data in
[28].

Figure 3: Comparison of the probability of the cell population size being one at an arbitrary
epoch t in the case of birth–death models with and without immigration based on the data in
[28].
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Figure 4: Comparison of the variance in the cell population size in the case of birth–death
models with and without immigration based on the data in [28].

Figure 5: Birth and death rates in the case of birth–death models with and without immigration
based on the data in [28].

3.2. Tumour growth data in Mastri et al.

Here, we consider the tumour growth data given by [18]. These data were obtained from studies
performed on mice after injecting 106 tumour cells and periodically measuring the tumour size
in mm3. The data consisted of the number of tumour cells in 66 animals at different epochs
and are available at https://zenodo.org/record/3574531.

We repeated the comparison performed in the previous section for the above data. The
parameter values that provided the fit in the case of eight animals (animal identification number
1–8 in the study) are given in Table 2. In the case of each animal, a conclusion similar to that
in Section 3.1 is obtained. Figures showing the cell count fit, behaviour of the probabilities
p0(t) and p1(t), behaviour of the cell count variance, and the birth and death rates in the case

https://zenodo.org/record/3574531
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of animal 1 are given in the supplementary material. Therefore, in the case of the data in [18],
the immigration models are more realistic than the non-immigration model.

β α γ N0

Animal 1
Model 1 2.99092113 0.14219634 36.38902689 2.00066629
Model 2 2.98946308 0.14185352 1.00007742 2.00000000
Model 3 2.98946321 0.14212689 2.00000000

Animal 2
Model 1 2.70223853 0.12400724 14.78321876 2.01204108
Model 2 2.70028587 0.12363064 0.99940879 2.00000000
Model 3 2.70028597 0.12394977 2.00000000

Animal 3
Model 1 2.97523983 0.14082930 14.22743179 1.99066115
Model 2 2.97362404 0.14044251 0.99952214 2.00000000
Model 3 2.97362406 0.14071604 2.00000000

Animal 4
Model 1 2.80828457 0.13254888 0.19390893 1.99941087
Model 2 2.80692204 0.13217717 0.99976647 2.00000000
Model 3 2.80692219 0.13248052 2.00000000

Animal 5
Model 1 3.15561319 0.15206211 0.17662123 1.99974785
Model 2 3.15406158 0.15159687 0.99899721 2.00000000
Model 3 3.15406164 0.15198512 2.00000000

Animal 6
Model 1 2.52228960 0.11787264 51.69518522 2.00158947
Model 2 2.52100299 0.11745620 1.00022790 2.00000000
Model 3 2.52100308 0.11781404 2.00000000

Animal 7
Model 1 2.94661214 0.14079881 6.86245272 1.99955558
Model 2 2.94522122 0.14044876 0.99995963
Model 3 2.94522134 0.14072858 2.00000000

Animal 8
Model 1 2.99742413 0.14451661 15.95860856 2.00010829
Model 2 2.99600019 0.14417569 1.00001095 2.00000000
Model 3 2.99600030 0.14444600 2.00000000

Table 2: Gompertzian parameters for the fit of the tumour cell count data [18]. In the table,
Model 1 denotes birth–death model with immigration only when the population size is zero,
Model 2 denotes birth–death model with immigration in all states, and Model 3 denotes birth–
death model with no immigration.

3.3. Tumour growth data in Rodallec et al.

An additional comparison of the birth-death models with and without immigration was per-
formed based on the tumour growth data given by [24]. To obtain this data, mice were initially
injected with 80,000 tumour cells, and the tumour size was measured using optical imaging.
Therefore, these data consisted of measurements of the number of photons and can be obtained
from the website: https://zenodo.org/record/3593919.

Vaghi et al. [29], which had previously analysed the above data, noted that the initial
80,000 cells corresponded to 1.22 × 107 photons. Hence, to convert the number of photons to
the number of cells, we multiplied the former by a factor of 0.0065574.

The parameter values, when the comparison of the three models was conducted in the
case of eight animals (animal identification number 0–7 in the study), are given in Table 3.
Figures showing the cell count fit, behaviour of the probabilities p0(t) and p1(t), behaviour
of the cell count variance, and the birth and death rates in the case of animal 0 are given in
the supplementary material. These results are similar to those obtained by [18]. This further
strengthens the conclusion that immigration models are more realistic than non-immigration
models.

https://zenodo.org/record/3593919
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β α γ N0

Animal 0
Model 1 3.06496 0.14928 25.53077 2.00231
Model 2 3.06322 0.14888 0.99953 2.00000
Model 3 3.06322 0.14920 2.00000

Animal 1
Model 1 2.43777 0.11668 37.92036 2.00120
Model 2 2.43655 0.11666 1.00001 2.00000
Model 3 2.43655 0.11662 2.00000

Animal 2
Model 1 2.60459 0.12584 0.50000 1.99983
Model 2 2.60347 0.12541 0.99979 2.00000
Model 3 2.60347 0.12578 2.00000

Animal 3
Model 1 1.90257 0.08840 94.78272 2.00569
Model 2 1.90216 0.08839 1.00001 2.00000
Model 3 1.90216 0.08839 2.00000

Animal 4
Model 1 2.62651 0.12769 86.13296 2.00220
Model 2 2.62504 0.12724 1.00021 2.00000
Model 3 2.62504 0.12762 2.00000

Animal 5
Model 1 2.91604 0.14090 9.63470 1.99984
Model 2 2.91599 0.14057 0.99894 2.00000
Model 3 2.91599 0.14090 2.00000

Animal 6
Model 1 3.98557 0.19566 40.88037 2.00040
Model 2 3.98339 0.19520 1.00085 2.00000
Model 3 3.98339 0.19556 2.00000

Animal 7
Model 1 1.99909 0.09379 98.50918 2.01848
Model 2 1.99747 0.09369 1.00023 2.00000
Model 3 1.99747 0.09375 2.00000

Table 3: Gompertzian parameters for the fit of the tumour cell count data [24]. Models 1, 2,
and 3 have the same definition as for Table 2.

4. Conclusions

In this study, two birth-death processes with immigration were considered. First, immigration
is allowed if and only if the population size becomes zero. Second, immigration is allowed
irrespective of the population size. The birth and death rates were considered such that the
mean population size is a Gompertz function when immigration is not allowed. These results
were in time-dependent transition rates in modelling the Markov chain. The generating function
of the transient probabilities was obtained by solving a Volterra integral when immigration was
allowed only when the population size was zero. The expected population size suitable for
fitting real-world data was obtained. We compared the models with and without immigration
by fitting the respective mean population sizes to several tumour growth datasets. In each case,
all three models produced a similar fit for the data. Moreover, the models in which immigration
was allowed produced less variance compared to non-immigration model. The probability of
the population size being zero at an arbitrary epoch was found to decrease with time in the
case of the two immigration models. The same probability was found to increase with time in
the case of the birth-death model without immigration. Thus, the models with immigration
were more realistic than the non-immigration model.

Although the assumption that the birth and death rates depend on time brings some gener-
ality in the modelling, assuming them as also depending on the present population size would
be more realistic. Furthermore, considering the logistic model instead of the Gompertz model
would be interesting. Most of the tumour data that we could find started with a large pop-
ulation size. Analysis of tumour growth data that starts with a population size of less than
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1,000 cells would also be interesting. With improvements in tumour detection techniques and
frequent screening, such data may become common in the future.
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