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Abstract. The goal of this paper is to present a critique on the incorrect use of the Lipschitz definition
concerning the first variable and/or the second variable in the literature on the system of variational
inequalities by many authors. The possible impact of this paper is rather important, it questions
the results of different authors, particularly when taking into account that some of these papers are
published in quite good mathematical journals. As a result, not only that the proofs are wrong, but
also the credibility of the theorems themselves is compromised. In addition, this paper illustrate, using
a counterexample, that there is an error in setting up first variable definition and the results obtained
in listed references do not hold up in H ×H.
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1. Introduction

The first founder of the theory of variational inequalities was registered by Stampacchia in 1964.
Since then, it has served as an interesting branch of applicable mathematics and engineering
with a wide range of applications in physics, finance, social sciences, ecology, industry, and
economics. It contains, as special cases: complementarity problems, systems of non-linear
equations, problems of optimisation, and is also linked to problems of fixed points. A large class
of problem in fluid mechanic, boundary value problem, transportation and equilibrium problems
can be studied by variational inequalities which is another benefit of variational inequalities.

In recent years, various extensions and generalizations of variational inequalities to a system
of variational inequalities have been considered and examined. Research on the approximate
solvability of a class of a system of variational inequalities in a Hilbert space is due to Verma
[19]. Since the 2004s the system is then extended by M Aslam Noor and some others to
system of general variational inequalities [11], system of general mixed variational inequalities
[12] and so on. There are a lot of papers written on System of variational inequalities, in all
these publications the authors used an unclear Lipschitz continuous in the first variable and/or
second variable definition. The aim of this paper is to illustrate that there is no sense in setting
up this definition and all the results obtained in [1]–[25] have no benefit in H ×H.
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2. Preliminaries

Let H be a real Hilbert space and M be a nonempty closed and convex set in H, we denote by
⟨., .⟩ and ∥.∥, respectively the inner product and the induced norm in H.
In view of the fact that T1, T2 are both nonlinear operators, some researchers establish the
problem of finding (u∗, v∗) ∈ M ×M such that :{

⟨αT1 (v
∗, u∗) + u∗ − v∗, x− u∗⟩ ≥ 0,∀x ∈ M,α > 0

⟨βT2 (u
∗, v∗) + v∗ − u∗, x− v∗⟩ ≥ 0,∀x ∈ M,β > 0

(1)

which is called the system of nonlinear variational inequalities (see [13], [4],[11]). In the other
hand, others (see [5], [22], [15]) establish a system of problems as follows:
Find u∗, v∗, w∗ ∈ H such that, for all r, s, t > 0, ⟨αT1 (v

∗, w∗, u∗) + u∗ − v∗, x− u∗⟩ ≥ 0,∀x ∈ M,α > 0,
⟨βT2 (w

∗, v∗, u∗) + v∗ − w∗, x− v∗⟩ ≥ 0,∀x ∈ M,β > 0,
⟨λT3 (u

∗, v∗, w∗) + w∗ − u∗, x− w∗⟩ ≥ 0,∀x ∈ M,λ > 0.
(2)

For this purpose, they introduced the following definitions.

Definition 1. A map T : H×H → H is Lipschitz in the first variable if there exists a constant
λ > 0 such that, for all pairs x, y ∈ H,

∥T (x, u)− T (y, v)∥ ≤ λ ∥x− y∥ ,∀u, v ∈ H.

Definition 2. A map T : H ×H ×H → H is Lipschitz in the first variable if there exists a
constant λ > 0 such that, for all pairs u, ù ∈ H,

∥T (u, v, w)− T (ù, v̀, ẁ)∥ ≤ λ ∥u− ù∥ ,∀v, v̀, w, ẁ ∈ H.

By a careful reading, I discovered that Definition (1) or Definition (2) are the main tool of
all papers. Also, I remarked that some authors have used the definition (1) implicitly. We shall
take Huang and Noor [7] and Verma [19] as examples.

2.1. About Huang and Noor’s paper [7] (see page 359)

Consider the following text taken from the proof of (Theorem 3.1 in [7]).
proof : First we need to evaluate ∥un+1 − u∗∥. From the nonexpansive property of the projection
PK with (7) and (11), we have

∥un+1 − u∗∥ = ∥(1− αn)un + αnPK [vn − ρT1 (vn, un)]− (1− αn)u
∗ − αnPK [v∗ − ρT1 (v

∗, u∗)]∥
≤ (1− αn) ∥un − u∗∥+ αn ∥PK [vn − ρT1 (vn, un)]− PK [v∗ − ρT1 (v

∗, u∗)]∥
≤ (1− αn) ∥un − u∗∥+ αn ∥[vn − ρT1 (vn, un)]− [v∗ − ρT1 (v

∗, u∗)]∥
= (1− αn) ∥un − u∗∥+ αn ∥vn − v∗ − ρ [T1 (vn, un)− T1 (v

∗, u∗)]∥ .

Since T1 is µ1-Lipschitzian in the first variable and (γ1, r1)−cocoercive, we have:

∥vn − v∗ − ρ [T1 (vn, un)− T1 (v
∗, u∗)]∥2 = ∥vn − v∗∥2 − 2ρ⟨T1 (vn, un)− T1 (v

∗, u∗) , vn − v∗⟩
+ ρ2 ∥T1 (vn, un)− T1 (v

∗, u∗)∥2

≤ ∥vn − v∗∥2 + 2ργ1 ∥T1 (vn, un)− T1 (v
∗, u∗)∥2

− 2ρr1 ∥vn − v∗∥2 + ρ2 ∥T1 (vn, un)− T1 (v
∗, u∗)∥2 .

≤
[
1 + 2ργ1µ

2
1 − 2ρr1 + ρ2µ2

1

]
∥vn − v∗∥ .2
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2.2. About Verma’s paper [19] (see page 207)

Let us look at the following cited text taken from the proof of (Theorem 2.1 in [12]): By
applying Algorithm 2.1, we find

∥uk+1 − u∗∥ = ∥(1− αk)uk + αkPK [vk − ρT (vk, uk)]− (1− αk)u
∗ − αkPK [v∗ − ρT (v∗, u∗)]∥

≤ (1− αk) ∥uk − u∗∥+ αk

∥∥PK

[
vk − ρT

(
vk, u

k
)]

− PK [v∗ − ρT (v∗, u∗)]
∥∥

≤ (1− αk) ∥uk − u∗∥+ αk ∥vk − v∗ − ρ [T (vk, uk)− T (v∗, u∗)]∥ .

Since T is µ-Lipschitz continuous in the first variable and (γ, r)−cocoercive, we have:

∥vk − v∗ − ρ [T1 (vk, uk)− T1 (v
∗, u∗)]∥2 = ∥vk − v∗∥2 − 2ρ⟨T (vk, uk)− T (v∗, u∗) , vk − v∗⟩

+ ρ2 ∥T (vk, uk)− T (v∗, u∗)∥2

≤ ∥vk − v∗∥2 + 2ργ ∥T (vk, uk)− T (v∗, u∗)∥2

− 2ρr ∥vk − v∗∥2 + ρ2µ2 ∥vk − v∗∥2 .
≤

[
1 + 2ργµ2 − 2ρr + ρ2µ2

]
∥vk − v∗∥2 .

3. Main Results

Theorem 1. Let T : H × H → H, be λ-Lipschitzian in the first variable according to the
definition (1), then there exists a λ-Lipschitzian function g : H → H, such that for all x ∈ H:

T (x, y) = g(x), ∀y ∈ H.

Proof. Taking y = x in definition (1), we find

∥T (x, u)− T (x, v)∥ = 0,∀u, v ∈ H.

Therefore
T (x, u) = T (x, v) ,∀u, v ∈ H.

Note that the value of T (x, y) is always independently of the value of y. So there exists a
λ-Lipschitzian function g : H → H, such that for all x ∈ H,

T (x, y) = g(x), ∀y ∈ H

Corollary 1. Let T : H2 → H, be λ-Lipschitzian in the first variable according to the definition
(1), then T becomes an univariate mapping.

4. Conclusion

Several authors have used the Lipschitz definition with respect to first variable and/or second
variable to solve the system of nonlinear variational inequalities in Hilbert spaces. Unfortu-
nately, they relied on incorrect definitions. The purpose of this paper is not to criticize the
authors of the articles, but to examine what is wrong with their publications to help researchers
who are interested to avoid these mistakes and pay attention when using references on system
of nonlinear variational inequalities. Also, I show that there is no favor in setting up this defi-
nition and all the results obtained in [1]–[25] have no pregress in H ×H. We can redirect the
previous studies [1]–[25] with the logical definitions as follow:



134 Ayache Benhadid

Definition 3. A mapping T : H×H → H is said to be λ-Lipschitz in the first variable if there
exists constant λ > 0 such that, for all u ∈ H, for all pairs x1, x2 in H,

∥T (x1, u)− T (x2, u)∥ ≤ λ ∥x1 − x2∥ .

Definition 4. A mapping T : H ×H ×H → H is said to be λ-Lipschitz in the first variable if
there exists constant λ > 0 such that, for all u, v ∈ H, for all pairs x1, x2 in H,

∥T (x1, u, v)− T (x2, u, v)∥ ≤ λ ∥x1 − x2∥ .

5. Counterexample

For all y ∈ R, it is clear that the function (x, y) → cos(xy) is |y|-Lipschitzian in the first variable
in the sense of Definition (3) :

∀y ∈ R,∀(x, x′) ∈ R2 : | cos(xy)− cos(x′y)| ≤ |y||x− x′|.

But, if we applying the Definition (1) with x = y = 1 and u =
π

2
, v =

π

4
we will find a

contradiction:

| cos 1.π
2
− cos 1.

π

4
| ≤ |1− 1| ⇔ | cos π

2
− cos

π

4
| = 0 ⇔

√
2

2
= 0
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