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1 Introduction
Skeletal isomerization of n-butane has of particular interest 
in the ultimate petroleum refining industry in producing 
hydrocarbons of high octane number. The reaction prod-
uct (isobutene) is the precursor for the synthesis of MTBE, 
ETBE, isoprenes, polyisobutene, tert-butyl alcohol, etc.1 
Therefore, the interest in developing more efficient and 
cost-effective commercial processes for direct isomeriza-
tion of n-butane and other light alkanes has increased in 
recent years.2–5 Isomerization reaction is generally realized 
on (strong) acid solids in order to lower the reaction tem-
perature of the skeletal isomerization reaction of light al-
kanes.6,7

The best known catalysts for light n-alkanes isomerization 
at the commercial scale are Pt on chlorinated alumina or 
Pt/H-mordenite.8,10,11 Pt on chlorinated alumina has high 
catalytic activity and selectivity to branched isomers at low 
temperature (115–150 °C). However, this type of catalyst 
suffers from its chlorine contents, and as such is subjected 
to stringent environmental control. Pt/H-mordenite does 
not have these disadvantages, but it requires higher reac-
tion temperature (260 °C), which is thermodynamically 
unfavourable for the formation of branched isomers.

On the other hand, Hino et al.12 and Xu Yan et al.13 claimed 
that sulphated zirconia (SZ) is active for n-butane isomeri-
zation at room temperature. In addition, the activity, selec-
tivity, and stability of SZ can also be improved by adding 
noble metals and transition metal oxides such as those of 
iron and manganese, as reported by Yamaguchi,9 Tanabe et 
al.14, Loften et al.18 and Wang et al.19

Non-promoted and promoted SZ are active for alkanes 
isomerization but suffer from main drawback such as de-
activation, which can be very rapid, by poisoning of the 
noble metal function with sulphur species formed by sul-
phate groups in reducing atmospheres.20,21

The works of Hino et al.7 on tungsten oxide supported on 
zirconia catalysts used for the skeletal isomerization of al-
kanes, showed that super-acid sites are created by interac-
tion of amorphous WO3 with ZrO2 during the formation of 
tetragonal crystalline structure in ZrO2. Addition of plati-
num and transition metal oxides (Ga, Al) greatly improved 
the catalytic activity of tungstate-zirconia (WZ). The two 
latter have shown good activity and selectivity for n-bu-
tane isomerization, Ga was a more efficient promoter with 
good catalytic performances compared to Al, as reported 
by Xiao-Rong et al.24 It is clear that the activity and selec-
tivity of n-alkanes isomerization depend strongly not only 
on the strength of the acids sites but also their distributions. 
The Brønsted acid site strength on ZrO2 depends on the 
WO3 loading. As reported by Scheithauer et al.25, higher 
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WO3 loading results in a higher concentration of perma-
nent Brønsted acid sites, and thus higher catalyst activity. 
Similarly, Naito et al.26 have suggested that the permanent 
Brønsted acid sites on monolayer dispersed WO3 are ac-
tive for the isomerization of n-butane. 

Furthermore, it has been shown by De Rossi et al.27 that for 
isomerization activity development, WZ catalysts should 
be prepared from amorphous hydrous zirconia and then 
activated at high temperature (600–900 °C).

In the present work, interest was focused toward the study 
of the promotion effect of La3+ and Nb5+ when added to 
WZ for their potential role as active and selective catalysts 
for the isomerization of n-butane. 

2 Material and methods
2.1 Catalysts preparation

Tungsten-zirconia oxide catalyst was prepared by wet im-
pregnation of commercial zirconium hydroxide Zr(OH)4 
(from Aldrich 97 %) using ammonium metatungstate 
(NH4)6W12O40

 ∙ nH2O (from Fluka) (used as precursor) solu-
tions in a large excess of water with concentrations adjust-
ed in order to obtain 15 wt% WO3. After drying overnight 
at 110 °C, the impregnated samples were calcined in air at 
800 °C for 3 h as indicated in Arata.28

In the calculation of a theoretical monolayer of WO3, it 
was assumed that one WO3 molecule occupied 23 Å2, as 
reported by Wang et al.20

Nb-promoted (1 % NWZ) and La-promoted (1 % LWZ) cat-
alysts were obtained by impregnating dispersed WO3/ZrO2 
(WZ, yellow) in C4H4NNbO8

 ∙ H2O and La (NO3)2
 ∙ nH2O 

aqueous solutions using dry impregnation method (Incipi-
ent wetness impregnation), then oven dried at 110 °C for 
24 h. Adjustments of solution concentrations were per-
formed in order to obtain 1 % by wt for both Nb and La on 
the synthesized catalysts. The promoted solids were then 
heated in air at 650 °C for 3 h. 

2.2 Catalysts characterisation

2.2.1 Powder XRD 

X-ray diffraction patterns were recorded on a X’Pert MPD 
Pro (PANalytical B.V, Almelo, Netherlands) diffractometer 
fitted with Bragg-Brentano geometry using CuKα radiation 
(λ = 1.5418 nm) in the 2θ range 10°–80° at a scan speed 
of 0.5° min−1. The catalysts were prepared using a com-
mercial sample holder, which was a circle hollowed out on 
the surface (silicon zero background sample holder).

2.2.2 Thermogravimetric analysis

The thermogravimetric analysis (TG-DTA) of the catalyst 
samples was performed on a NETZSCH Proteus. The ex-
periments were carried out at a heating rate of 10 °C min−1 
from 25 to 900 °C in nitrogen flow rate of 60 ml min–1.

2.2.3 Adsorption – desorption isotherms (BET analysis)

The BET surface area (SBET) of the solids was measured 
from nitrogen physisorption at −197 °C (or 76 K) using a 
Quantachrome Autosorb 1 instrument. The samples were 
previously degassed under dynamic vacuum conditions for 
1 h at 200 °C. The specific surface areas were calculated 
from desorption isotherms using the BET equation, while 
the pore structure parameters were determined by the BJH 
method.

2.2.4 NH3-temperature programmed desorption (NH3-TPD)

NH3-TPD experiments were carried out to determine the 
total acidity and the acidic strength distribution of catalysts. 
Catalyst was activated under hydrogen flow at 400 °C for 
3 h, and then cooled to room temperature under the ni-
trogen atmosphere. Ammonia was introduced at 100 °C, 
followed by purge with nitrogen at the same temperature 
for 2 h. The TPD profiles were recorded by raising the tem-
perature to 600 °C at a constant rate (10 °C min−1) under 
nitrogen flow using a TCD detector.

2.2.5 Catalytic measurements 

Catalytic measurements were carried out in a fixed bed 
flow reactor operated under isothermal conditions at at-
mospheric pressure. Prior to reaction, catalysts (1 g of 
40–80 mesh sieved) were systematically pre-treated under 
air at 450 °C and maintained at this temperature for 3 h 
under air, and then flushed under hydrogen flow at reac-
tion temperature for 1 h. The isomerization of n-butane 
was performed at 300 °C at volumetric rate of a mixture of 
3 ml min−1 of n-butane and 18 ml min−1 of H2.

Online gas analyses of reactants and products were carried 
out by Shimadzu gas chromatograph (GC-2014), and then 
respective amounts deduced for the calculation of catalytic 
activity and selectivity.

3 Results and discussion
The impregnated catalysts contained about 14–15 wt% of 
W metal. These loadings were almost similar to the theo-
retical monolayer capacity of ZrO2 (7.3 W nm−2), which 
is equivalent to about 12–13 wt% of W, as reported by 
Barton et al.29 The La and Nb contents were 1 wt% and the 
freshly prepared catalysts were yellowish in colour. 

XRD patterns of WZ promoted with 1 % La and 1 % Nb 
catalysts are presented in Fig. 1. 

Peaks have been assigned according to Vaudagna et al.30 
and Chen et al.32 Like sulphate promotion, the addition of 
tungsten oxide stabilizes the tetragonal phase of zirconia, 
delaying the transformation of this metastable phase into a 
thermodynamically stable phase. WZ samples exhibit simi-
lar behaviour since an amount of W (14–15 %) is required 
for inhibition of tetragonal transformation in monoclinic.
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All samples present a mixture of a monoclinic and a tetrag-
onal phase of zirconia in which the main peak appears 
at 2θ = 30.2°. For all the diagrams, the group of peaks at 
2θ (23–25°) is attributed to the crystal structure of WO3. 
The most intense peaks characteristics of catalytic materials 
are identified by the Miller indices in Fig. 1.37,39 This result 
may indicate the existence of free tungstate anions on the 
catalyst surface forming WO3 during calcination at high 

temperature, as mentioned by Boyse et al.33 and Karima 
et al.34 These results are also in agreement with previous 
observations of Larsen et al.,31 Vaidyanathan et al.,35 and 
Iglesia et al.36 Previous studies38,40 have shown that WO3 
microcrystallites identified by reflections at 2θ (23–25°) 
had developed on the zirconia surface at tungsten cover-
ages above the monolayer as a result of the agglomeration 
of surface WOx species. Youri et al.41 presumed that the 
amorphous WO3 species with W octahedral coordination 
are responsible for the isomerization activity. Huang et al.42 
reported that the tetragonal structure is essential in highly 
active acid catalysts and that a monoclinic phase would 
result in a significantly lower acidity. No peaks correspond-
ing to niobium or lanthanum were observed in different 
diagrams, because of the lower concentration (1 %) of ei-
ther Nb or La, which is below the detection limit of the 
X-ray equipment. Therefore, the promoters were so well 
dispersed that no crystallization forms appeared. Through 
the works of Chen et al.43 and Stichert et al.44 it was known 
that the tetragonal structure was essential in highly active 
acid catalysts, and that the monoclinic phase was poorly 
efficient in n-butane isomerization. This suggested that ni-
obium and lanthanum influenced catalytic activity through 
the crystallization behaviour. They promoted the formation 
of the tetragonal phase and stabilized tetragonal zirconia 
crystallites at high calcination temperature.

The TG/DTA curves for the WZ, 1 % NWZ, and 1 % LWZ 
catalysts are shown in Fig. 2. The decomposition process 
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takes place in the temperature range of 25–900 °C. The 
DTA curve in Fig. 2a for the calcined WZ catalyst shows 
four peaks in the temperature range of 25–350 °C result-
ing in a mass loss of 12.58 % of the total weight. Each 
mass loss was calculated between two consecutive peaks. 
The first two peaks corresponding to the release of physi-
cally adsorbed water (surface and intermediate layer); the 
third and fourth peaks could be due to the dehydroxila-
tion.45

The study of the 1 % NWZ material’s behaviour in Fig. 2b 
shows two peaks at 80 and 189 °C due to the releasing of 
physically adsorbed water, with a total loss of 7 %. The two 
peaks appearing at higher temperatures (270 and 311 °C) 
could be related to the loss of the hydroxyl groups that 
make up the catalyst structure.40

The plot in Fig. 2c indicates two stages of weight loss 1 % 
LWZ catalysts: one of 5 % by weight and another of 3.4 % 
below 200 °C, corresponding to the water desorption mol-
ecules adsorbed on the particles surface. 

A total weight loss of 4.74 % by weight occurring at 312 
and 358 °C corresponds to the sample dehydroxylation, 
as reported by Jacom et al.45 The dehydroxylation suggests 
the formation of amorphous particles during synthesis, 
which were transformed into crystalline phases observed 
after annealing heat treatment. 

After 500 °C, no more weight loss was detected for WZ 
and 1 % NWZ, except for 1 % LWZ catalysts where an 
exothermic peak at 840 °C was observed corresponding to 
the solid structure changes at high temperature.

For all samples, the pore size did not exceed 10 nm, thus, 
N2 adsorption/desorption isotherms are type IV, character-
istic of the adsorption of mesoporous solids. Both, the sur-
face area by BET and the pore volume of WZ, calcined at 
800 °C, attained 33 m2 g−1and 0.13 cm3 g−1, respectively 
(see Table 1). The addition of 1 % La slightly decreased both 
the surface area and the total pore volume. Adding 1 % Nb 
slightly increased the BET area from 33 to 35 m2 g−1. These 
changes in textural properties without modification of the 
zirconia structure are consistent with a physical effect of 
the promoter. 

The pore size distributions (PSD) of different catalysts, 
shown in Fig. 3, were calculated by the BJH method. The 
dV/dD function of WZ exhibits a peak centred at about 
3.86 nm and a larger one centred at around 8 nm for 1 % 
NWZ. The pore distribution for the 1 % LWZ material 

shows a peak at 3.82 nm. According to our results, 1 % 
NWZ has the best textural properties.

In the isomerization of n-butane, Brønsted acid sites play 
a very important role. They are responsible for the proto-
nation of the butene formed from the dehydrogenation of 
n-butane, and this reaction further leads to the formation 
of carbonic intermediates for the isomerization reaction.46 
The Brønsted acidity thus influences directly the rate of 
isomerization and coke formation of the catalyst in this re-
action.

The acidity of our catalysts has been investigated by means 
of temperature-programmed-desorption (TPD). NH3-TPD 
patterns of these catalysts are presented in Fig. 4. From 
the plots, it can be observed that there is no significant 
difference between the NH3-TPD of WZ and 1 % NWZ 
catalysts. The total acidity was calculated from the NH3 
weight loss between 100 and 600 °C. For 1 % NWZ, the 
desorption temperature was at 240 °C. A large ammonia 
desorption peak was observed at 280 °C for WZ. The pro-
grammed desorption of 1 % LWZ was measured at 320 °C.

The NH3 adsorption isotherms (Fig. 4) show clearly that 
the addition of niobium oxide led to a significant increase 
in ammonia adsorption. The acidity of 1 % NWZ was in 
the order of 283.53 µmol s−1 g−1. On the other hand, the 
addition of 1 % La had a negative effect on the amount of 
ammonia adsorbed (75.35 µmol s−1g−1) representing the 
minimal acidity.
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Table 1 – Acidity, textural, and structural properties of studied catalysts

Catalysts SBET ⁄ m2 g−1 Pore volume ⁄ cm3 g−1 Pore size ⁄ nm mZrO2/tZrO2
a

vol % / vol % NH3 desorbed ⁄ µmol g−1

WZ 33 0.130 3.86 27/59 203.69
1 % NWZ 35 0.204 8.00 22/63 283.53
1 % LWZ 30 0.120 3.82 24/62 75.35

a m: monoclinic phase of ZrO2 and t: tetragonal phase of ZrO2
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The high acidity of the 1 % NWZ catalyst can be attributed 
to the desorption rate of NH3 between 100 and 600 °C. 
Above 600 °C, no ammonia was desorbed, it was com-
pletely removed. Mesoporous zirconia favours the forma-
tion of the strongest acid sites and at same time improves 
the total acid sites.

From the previous results, it is possible to associate the cat-
alytic activity during the reaction of n-butane isomerization 
with structure and texture, acidity, or the presence of WO3 
crystallites.

Fig. 5 shows the catalytic activity for n-butane isomerization 
reaction in the presence of hydrogen for all catalysts. Un-
der our reaction conditions, the main product in n-butane 
isomerization reaction was isobutene with minor products 
such as methane, ethane, propane, n-pentane, and isopen-
tane. Activity and selectivity of n-butane isomerization can 
be temperature-dependent, as reported by Rossi et al.47 
Good reaction performances were obtained at 300 °C. The 

promotion with 1 % Nb significantly improved the catalytic 
properties compared to pure WZ, and 1 % NWZ showed a 
higher n-butane conversion than 1 % LWZ. 

For the most active catalyst (NWZ), 13 min was enough 
time to obtain a conversion rate of 27.34 %, and convert 
1.32 % with the weakest active catalyst (LWZ). The conver-
sion over WZ attained a stable conversion of 3.6 % after 
78 min. A comparative study is presented in Table 2.

Table 2 – Comparative characteristics of WZ‐based catalysts with 
different promoters in n‐butane isomerization between 
our study and literature

Catalysts Conversiona,b ⁄ % Selectivitya,c ⁄ % Refs.
1 % NWZ 27.34 92.34 our study

WZ 3.60 83.43 our study
1 % LWZ 1.32 85.30 our study

ZWPd 17.00 – 51
GWZ 26.20 81.50 43
FWZ 5.90 85.90 46
AWZ 6.50 89.38 50

a Data taken after 5 min on stream at 300 °C; b Conversion of n-butane; c 

Selectivity to isobutane

The activity decreased with commissioning time, probably 
due to coke formation. We can observe that n-butane ini-
tial activity increased with the addition of 1 % Nb, and de-
creased with addition of 1 % La. Not much difference was 
observed in selectivity to i-C4 for promoted catalysts. Final-
ly, the best conversion was achieved when the catalyst was 
promoted by 1 % Nb, which had the highest activity in the 
isomerization of n-butane. The good correlation obtained 
between acidity and catalytic activity indicates the strong 
influence of acidity and, in turn, the presence of tetragonal 
zirconia on the isomerization activity. These observations 
are consistent with those presented in the literature.33,48,49

4 Conclusion
In the present study, it has been shown that the presence 
of niobium improves the catalytic stability and n-butane 
isomerization activity of WZ catalyst in the presence of H2 
at 300 °C. Under the same reaction conditions, catalytic 
activity of NWZ was found to be higher than WZ and LWZ 
catalysts. The addition of 1 % Nb to the WZ catalyst signifi-
cantly increased the overall n-butane conversion (27.34 %) 
and selectivity to i-butane (92.34 %). It was found that 1 % 
NWZ catalyst exhibited the best structure (stable tetrag-
onal structure) with SBET = 35 m2 g−1 and NH3 desorbed 
amount of 283.53 µmol g−1. The high isomerization activ-
ity of the catalysts promoted by the addition of 1 % Nb in 
the presence of H2 can be explained by assuming that the 
promoting effect of Nb is a combination of several factors, 
such as, (i) the acidity; (ii) the stability improvement of the 
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tetragonal structure; (iii) the crystal size effect of WO3 on 
WZ surface, and (iv) the redox properties of W6+ improve-
ment. 

As perspectives of this study, we propose to increase the 
mass percentage of Nb and La promoters, and use cerium 
(Ce) on WO3/ZrO2 because their metallic properties will 
be modified (activation and dissociation of chemisorbed 
hydrogen, hydrogenation/dehydrogenation capacity, H2-
D2 exchange). Moreover, hydrogen spillover, if existing on 
the targeted solids, could play a central role in enhancing 
isomerization catalytic activity.
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SAŽETAK
Studija izomerizacije n-butana na kiselim WO3/ZrO2 katalizatorima 
potaknutim niobijem i lantanom: aktivnost izomerizacije n-butana

Zahira Mohamed Seghir,a* Mhamed Djennad,a Reinhard Schomäcker b i 
Mouffok Redouane Ghezzar c

Potreba za ekološki prihvatljivim katalizatorima primjenjivim za izomerizaciju alkana potaknuo je 
istraživanje sustava volframat-cirkonij (WZ). Ovaj rad ispituje aktivnost i selektivnost lantanom i 
niobijem potaknutih WZ katalizatora. U studiji je ispitana primjena WZ katalizatora potaknutih 
dodatkom 1 % lantana (1 % LWZ), odnosno 1 % niobija (1 % NWZ), u izomerizaciji n-butana u 
prisutnosti vodika. Karakterizacija je provedena različitim metodama: fizisorpcijom dušika, tempe-
raturno programiranom desorpcijom amonijaka, termogravimetrijskom analizom i rendgenskom 
difrakcijskom analizom. Katalitička aktivnost i selektivnost znatno su poboljšani dodatkom 1 % 
niobija. Redoks-proces u katalizatoru koji je sadržavao niobij odigrao je glavnu ulogu osiguravajući 
najviše kiselih mjesta (283,53 µmol g−1) s odgovarajućom energijom aktivacije za preslagivanje 
n-butana. Konverzija n-butana (27,34 %) i selektivnost prema i-butanu (92,34 %) kod NWZ kata-
lizatora bili su znatno veći nego kod WZ i LWZ katalizatora. Eksperimentalna istraživanja ukazuju 
učinkovitije poticanje dodatkom niobija u usporedbi s lantanom.

Ključne riječi 
Sustav volframat-cirkonij, izomerizacija n-butana, niobij, lantan, kiselost
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