
Multi-Criteria Service Selection Agent for Federated Cloud

S. Sudhakar, B. L. Radhakrishnan, P. Karthikeyan, K. Martin Sagayam, and Dac-Nhuong Le

Abstract—Federated cloud interconnects small and medium-

sized cloud service providers for service enhancement to meet

demand spikes. The service bartering technique in the federated

cloud enables service providers to exchange their services.

Selecting an optimal service provider to share services is

challenging in the cloud federation. Agent-based and Reciprocal

Resource Fairness (RRF) based models are used in the federated

cloud for service selection. The agent-based model selects the best

service provider using Quality of Service (quality of service). RRF

model chooses fair service providers based on service providers'

previous service contribution to the federation. However, the

models mentioned above fail to address free rider and poor

performer problems during the service provider selection process.

To solve the above issue, we propose a Multi-criteria Service

Selection (MCSS) algorithm for effectively selecting a service

provider using quality of service, Performance-Cost Ratio (PCR),

and RRF. Comprehensive case studies are conducted to prove the

effectiveness of the proposed algorithm. Extensive simulation

experiments are conducted to compare the proposed algorithm

performance with the existing algorithm. The evaluation results

demonstrated that MCSS provides 10% more services selection

efficiency than Cloud Resource Bartering System (CRBS) and

provides 16% more service selection efficiency than RPF.

 Index terms—federated cloud, multi-factor service selection,

multi-provider service selection, QoS, free rider.

I. INTRODUCTION

Federated cloud has gained huge popularity among the Cloud

Service Providers (CSPs) as it facilitates service sharing ability

to meet dynamic demand. Small and medium-sized CSPs are

unable to handle service requests efficiently due to the varying

number of service request. CSPs have two solutions to handle

the varying number of service request: (a) Increase the amount

of available resources, (b) Reject the resource request. The

solution (a) may lead to underutilization of resources, and the

solution (b) affects the customer base of the service provider.

Besides, both solutions (a) and (b) may affect the

trustworthiness and reputation of the CSPs in the market.

Manuscript received October 12, 2021; revised January 18, 2022. Date of

publication May 31, 2022. Date of current version May 31, 2022.

S. Sudhakar is with the SRM Institute of Science and Technology,
Kattankulathur, Tamilnadu, India (e-mail: sudhakar.sree@gmail.com).

B. L. Radhakrishnan is with the Karunya Institute of Technology and

Sciences, Coimbatore, India (e-mail: blradhakrishnan@gmail.com).
P. Karthikeyan is with the National Chung Cheng University,Taiwan- (e-

mail: nrmkarthi@gmail.com).

K. Martin Sagayam is with the Karunya Institute of Technology and
Sciences, Coimbatore, India (e-mail: martinsagayam.k@gmail.com).

Dac-Nhuong Le is with the Faculty of Information Technology, Haiphong

University, Haiphong, Vietnam (e-mail: nhuongld@dhhp.edu.vn)
(Corresponding author).

Digital Object Identifier (DOI): 10.24138/jcomss-2021-0148

Cloud federation interconnects service providers and

aggregates unused services of the federation to meet dynamic

demand. The small and medium-sized service providers join the

federation to meet dynamic service demand. Cloud federation

provides a monetary based solution to the problem mentioned

above. However, monetary based service exchange is

frightening for the CSPs with limited capital investment [1-3].

Bartering is a technique used to exchange services for other

services without monetary benefits. Service bartering is an

alternative to the monetary based service exchange that

significantly increases CSPs’ service capacity and utilization [4,

5]. Direct and indirect are the two service bartering trading

methods. Both direct trade (peer to peer) and indirect trade

(agent-based) are used in the federated cloud. Direct trade is

provider to provider, and no third party is involved. Indirect

trade is among multiple providers with the help of a third-party

agent. Avoiding poor performers and free riders are significant

challenges in the development of the service bartering-based

system. QoS value determines service provider performance in

service selection process. A poor performer is a CSP who has

low QoS value. A free rider is a user who avails services but

does not share services with others [6], [7].

Whitewasher is a CSP who utilizes the services of one service

provider entirely but does not share any services. Majorly,

reputation-based system and ring-based incentive mechanism

were used to handle the white washer problem [8-10]. In

reputation-based system and ring-based incentive mechanism,

rating collection, information aggregation, source validation,

recording performance, and calculating the reputation value of

service providers create computational overhead. Resource

contribution-based service selection method solves the free

rider problem, but it selects poor performers. Additionally,

many CSPs offer similar services that create challenges while

selecting an optimal CSP [11]. For example, Amazon, IBM,

Microsoft, and Google offer similar services like compute,

storage, database, migration, mobile services, and analytics.

Majority of the method fail to address problem of

computational overhead, poor performer selection,

whitewashing, and optimal service selection.

The proposed MCSS system uses three parameters, such as

QoS, PCR, and RRF, to select the best CSP for service sharing.

QoS value is calculated from CSPs’ service history. PCR is the

ratio between QoS of service provided and quoted service cost.

RRF is the ratio between resources consumed and resources

shared by the service provider. MCSS presents CSP selection

algorithm that comprises of factors such as QoS, PCR, and

RRF, which solves the problem of free riders, poor performer

selection, whitewashing, and optimal service selection. MCSS

selects the best CSP by neglecting poor performers and free

riders.

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 3, SEPTEMBER 2022 217

1845-6421/09/2021-0148 © 2022 CCIS

mailto:nrmkarthi@gmail.com

The significant contributions of the paper are outlined as

follows:

1. A novel multi-criteria service selection agent has been

proposed for federated cloud.

2. Multi-factor Service Selection (MFSS) algorithm and

Multi-provider Service Selection (MPSS) algorithm

have been implemented to select a service provider

effectively

3. Comprehensive case studies are conducted to prove the

effectiveness of the proposed algorithm.

4. The extensive simulation experiments are conducted to

compare the proposed algorithm performance with

existing algorithm.

The rest of paper is organized as follows; section II discusses

the related work of multi-criteria service selection agent for

federated cloud. The proposed system and algorithm is

described in section III. The proposed algorithm performance is

evaluated using simple case study in section IV. Section V deals

with performance evaluation, and section VI consists of the

conclusion and future work.

II. RELATED WORKS

Many service selection models have been proposed to solve

free riders, whitewashers, poor performers, and optimal service

selection problems in the federated cloud. Agent-based service

selection, QoS-based service selection, and RRF-based service

selection in peer-to-peer environment are discussed in

subsections, respectively.

A. Agent-based Service Selection

An automated resource bartering system proposed by

ZarAfshan Goher et al. [12] is a multi-agent e-bartering system

that uses utility value to select services from available CSPs.

The automated resource bartering system makes price

adjustment based on utility values and prolongs free riders to

consume services until they clear their previous debts. When a

new provider joins federation, agent assigns zero to QoS

parameter that causes starvation in the service provider

selection process. The proposed model is not handling free

riders.

Agent-based e-barter system developed by Demirkol et al.

[13] is a multi-agent e-bartering system that utilizes ontology-

based comparison for bid matching. The agent-based e-barter

system performs service selection using consumers' maximum

buying price, providers' maximum selling price, and their

tolerance value (for negotiation). Also, the agent-based e-barter

system makes a price adjustment. However, systems mentioned

above fail to address free-riding, resource contribution, and

whitewashing problems.

Zhao et al. reported the service agent for simulation in cloud

manufacturing. Cloud manufacturing application stage,

administration agent can assist endeavors with discovering

accomplices quicker with all the more precisely. Be that as it

may, in the cloud producing reenactment stage, the

administration agent can mimic the conduct of service, the plan

of action, the administration procedure [14]. Al-Sayed et al.

implemented the intelligent cloud service framework by

considering functional and nonfunctional features of the cloud

service providers to share the resource. Intelligent system as it

applies most of the fundamental AI techniques, such as

knowledge representation, knowledge inference, knowledge

discovery, and NLP. The developed framework depends on a

comprehensive cloud service ontology that has been

constructed to provide a standardized semantic specification of

services [15].

B. QoS-based Service Selection

Ranking CSPs based on QoS attributes mentioned in the

CSMIC Service Measurement Index (SMI) version 2.1 is a

complex task as it has many KPIs, attributes, and sub-attributes.

Zeleny [16] defined this problem as Multi-Criteria Decision

Making (MCDM) problem. Moreover, Grguevic [17] has found

that choice of MCDM techniques depends on the kind of service

offered by CSPs. Context-aware cloud service selection

approach implemented by Lie et al. [18] is a subjective and

objective assessment system based on cloud providers’ QoS

value. Service selection algorithm in multi-cloud environment

proposed by Farokhi [19] is a Service Level Agreement (SLA)

based service allocation method, which is suitable for SaaS.

Service selection algorithm in a multi-cloud environment

proposed by Farokhi et al. [20] is a prospect theory based

service selection method that compares SLA while selecting a

service provider. Integrated multiple criteria decision-making

method implemented by Kumar et al. [21] is an Analytical

Hierarchical Process (AHP) and TOPSIS based service

selection method. SELCLOUD proposed by Jatoth et al. [22]

is a hybrid service provider selection method that uses AHP,

TOPSIS, and gray theory. A Neutrosophic Multi-Criteria

Decision Analysis (NMCDA) approach proposed by Abdel-

basset et al. [23] is a framework for evaluating CSPs’ QoS

value. The above-mentioned methods consider only QoS value

for service selection that solves poor performer problem but

fails to solve free rider, whitewasher, and optimal service

selection.

C. RRF-based Service Selection in Peer-to-Peer Environment

RRF-based service selection systems select service providers

by considering past service contribution [24], [25]. Zhang et al.

[8] proposed a novel Cluster-Based Incentive Mechanism

(CBIM) that provides incentives to the contributing service

provider that solves free riding and whitewashing problems.

However, the CBIM is suitable for the CSPs who consume a

type of resource and shares another type of resource in the

federation simultaneously. The CBIM is not suitable for the

CSPs who needs to consume resources when there is a demand,

contributes resources in the near future and inversely. Falcao et

al. [10], [24] proposed a Decentralized Fairness Driven

Network of Favors (FD-NoF) model that focuses service

contribution fairness based service selection in peer to peer

service sharing. FD-NoF has high computational overhead

because peers calculate and update fairness value, debit details

for every transaction.

Zhang et al. [26] implemented a lightweight reputation-based

incentive system that gives solution to free riding. Lightweight

reputation-based incentive system computes simple reputation

value and goodness factor based on local transaction data. Then,

218 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 3, SEPTEMBER 2022

the ultimate reputation value is calculated from the simple

reputation value and goodness factor. Peers who have low

ultimate reputation value in the suspect table are considered as

cooperative peers, and others are considered as rational peers or

malicious free riders. Lightweight reputation-based incentive

system eliminates free-riding problems; however, the final

decision is individual peer’s decision and not a collective one.

RRF based resource selection approach is a multitenant

cooperative system which is suitable for cooperative users but

not suitable for federated cloud users The methods mentioned

above are not automated bartering systems. Rosa et al. present

the computational resource and cost prediction service for

scientific workflows in federated clouds (CRCPs). CRCPs

allows users to pick between high-performance, low-budget

executions or to automatically and transparently define how

much to pay and how long to complete a procedure [27].

Chauhan et al developed the broker-based resource allocation

model for federated. Kumar et al discuss the performance-based

risk driven trust secured service sharing in peer-to-peer

federated cloud. This work mainly focusses on the secure

service selection and it is not considering the free riding issues

in the federated cloud [28], [29].

In federated cloud, service selection deals with optimal

service selection, free riding, whitewashing, and poor performer

problems. The existing systems adopted two different

approaches for service selection: a) QoS-based selection, and b)

RRF-based selection. However, the approach (a) has free riding

and whitewashing problems, and (b) has poor performer

problem. The proposed MCSS algorithms select optimal CSPs

by considering the QoS, PCR, and RRF. Besides, MFSS and

MPSS algorithms solve free riding, whitewashing, and poor

performer problems. Various models, discussed above consider

the factors such as QoS, service contribution, and fairness

individually while selecting services. The models do not

consider a combination of these factors while selecting services.

Additionally, none of the models discussed service distributions

equitably if more than one service provider meets the service

requirement. Our MCSS algorithms consider a combination of

the factors while selecting the service provider and provides fair

service selection efficiency than traditional methods.

III. MULTI-CRITERIA SERVICE SELECTION AGENT FOR

FEDERATED CLOUD

Cloud Federation indicates to the unionization of

programming, framework and stage administrations from

divergent organizations that can be gotten to by a customer

through the web. It is vital to take note of that united distributed

computing administrations actually depend on the presence of

actual server farms. The union of cloud assets permits

customers to upgrade venture IT administration conveyance.

The league of cloud assets permits a customer to pick the best

cloud administrations supplier, as far as adaptability, cost and

accessibility of administrations, to meet a specific business or

innovative need inside their association. Organization across

various cloud asset pools permits applications to run in the most

suitable foundation conditions. The union of cloud assets

additionally permits a venture to disperse responsibilities all

over the planet, move information between dissimilar

organizations and execute creative security models for client

admittance to cloud assets.

One shortcoming that exists in the league of cloud assets is

the trouble in expediting availability between a customer and a

given outer cloud supplier, as they each have their own

remarkable organization tending to plot. To determine this

issue, cloud suppliers should give customers the authorization

to indicate a tending to conspire for every server the cloud

supplier has stretched out to the web. This furnishes clients with

the capacity to get to cloud administrations without the

requirement for reconfiguration when utilizing assets from

various specialist organizations. Cloud league can likewise be

carried out behind a firewall, furnishing customers with a menu

of cloud administrations given by at least one confided in

substances.

We developed a multi-criteria service selection agent for

federated cloud that performs optimal service selection by using

QoS, performance-cost ratio, and reciprocal resource fairness

value.

A. Mathematical Preliminaries

The list of mathematical terms used is given below for better

understanding of the paper.
TABLE I

THE LIST OF MATHEMATICAL TERMS

Symbol Description Symbol Description

a cost adjust value av available service

c service cost CSP cloud service provider set

CSPs
selected service

provider
d duration

in number of instances n(S)
number of service

provider in s

pcr performance cost ratio q qos value
r required service rc service count

rrf
reciprocal resource

fairness
s csp score

S
service request

satisfying provider set
st service type

wpcr
weight of the
performance cost ratio

wq weight of the qos

wrrf
weight of the reciprocal

resource fairness

B. Service Selection Architecture

Service selection architecture is shown in Fig. 1. consists of

three components: CSPs, service selection agent, and service

monitoring database. CSPs are service providers who share

services to federation or consume services from federation.

Service provider score calculation component calculates

service provider’s score to rank services. Service provider score

is calculated using equation

CSP𝑖 . s = CSP𝑖 . q × 𝑤𝑞 + CSP𝑖 . pcr × wpcr

 +CSP𝑖 . rrf × wrrf (1)

where CSPi is ith service provider where i = 1, 2… n, q – QoS,

pcr – performance-cost ratio, rrf – reciprocal resource fairness,

Wq, Wpcr, and Wrrf are relative weight assigned to QoS, PCR,

and RRF, respectively.

The agent sort score in descending order and selects a high

score service provider using the calculated score. Service

aggregation and negotiation component do the service

S. SUDHAKAR et al.: MULTI-CRITERIA SERVICE SELECTION AGENT FOR FEDERATED CLOUD 219

negotiation and service aggregation if the required service is not

available with one service provider. Otherwise, the agent

eliminates top scored CSP from the list and selects next top

scored CSP for service negotiation, and this step iterates till the

service negotiation is successful. After the successful

negotiation, service control is transferred to service requesting

CSP. Service monitoring component monitors selected services'

and records the performance in service monitoring database.

Service history update component records complete transaction

details in service monitoring database.

Fig. 1. Service selection architecture

C. Multi-factor Service Selection

Multi-factor service selection (MFSS) makes the service

provider selection using input attributes such as service type,

QoS, number of instances, duration, service cost, and cost

adjustment value. A registered CSP submits a service request to

the federation to avail service. Agent executes MFSS algorithm

to find best CSP that meet the submitted service requests. MFSS

algorithm performs two functions service discovery and service

selection.

C.1 Multi-factor Service Discovery

Service Discovery (SD) algorithm takes attributes in the

service request as inputs and returns set of services (S) that

satisfy the service request. Initially, S is an empty set containing

no service. SD algorithm takes services from service database

in sequential order to check service request is met or not. If

service meets the service request, then the selected service is

added to S and weighted score of the service is calculated using

eq. (1). Weighted sum technique is a widely used multi-factor

decision-making technique for evaluating a number of

alternatives. Otherwise, service is not added to S. This process

repeats for all the services exist in the service database. Finally,

S contains a set of services that meets service request.

Service_Discovery (CSP, r, in, q, d)

Input: r: required service

 in: number of instances

 q: QoS, d: duration

 CSP: List of cloud service providers

Output: S: set of services satisfying r, in, q, and d

Initialization S= ϕ; i=1;

begin

1. foreach (CSPi in CSP) do

2. if(CSPi.st == r^q<=CSPi.q ^ in<= CSPi.av ^ d<= CSPi.d)

3. CSPi.s=CSPi.q*wq+CSPi.pcr*wpcr+ CSPi.rrf*wrrf;

4. S = S U CSPi

5. return S;

end

C.2 Service Selection

MFSS has two sub-algorithms, namely SD and service

selection algorithm. Initially, MFSS calls SD algorithm to find

a set of matching services (S) for the given request. Next, MFSS

calls the service selection algorithm to find the best service from

the set S. Service selection algorithm performs two tests based

on number of elements in the set S. When n(S) = 0, service

selection algorithm returns failure and agent informs the failure

to the requesting service provider. When n(S) > 0, service

selection algorithm selects the service provider that has the

highest weighted score in set S. If the cost of the service

(CSPi.c) is less than or equal to cost of service (c) given in the

request, then selected service provider is returned. Otherwise,

price negotiation process starts. During the negotiation process,

cost difference (CSPi.c – c) is calculated. If cost difference is

less than or equal to service provider's cost adjustment value

(CSPi.a) or cost adjustment value given in the service request,

then negotiation succeeds, and the selected service provider is

returned. Otherwise, the selected service provider is removed

from the set S and repeat from step 2 of service selection

algorithm.

Service_selection (CSP, r, in, q, d, c, a)

Input: CSP: list of cloud service providers;

 r: required service, in: number of instances;

 q: QoS, d: duration, c: service cost;

 a: cost adjustment value

Output: CSPi: selected service provider or a failure;

begin

1. S = SD (CSP, r, in, q, d));

2. if (n(S) == 0) return failure;

3. else

4. i=findMaxIndex(CSP[].s);

5. if (CSPi.c <= c) return CSPi;

6. else

7. if (CSPi.a >= CSPi.c – c ˅ a >= CSPi.c – c)

8. return CSPi;

9. else

10. S = S – CSPi;

11. repeat step2;

end

D. Multi-provider Service Selection

Multi-provider service selection (MPSS) is called, when one

service provider of the federation does not have sufficient

services to meet the submitted service requests. MPSS

aggregates services from multiple service provider of the

federation to meet the submitted service requests.

220 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 3, SEPTEMBER 2022

D.1 Multi-provider Service Discovery

The submitted service request has multiple attributes such as

service type, QoS, number of instances, duration, service cost,

and cost adjustment value. Service Discovery1 (SD1)

algorithm takes all attributes in the service request as inputs

except number of instances required (in) and returns set of

services (S) that satisfy the service request. Initially, S is an

empty set containing no service. SD1 algorithm takes services

from service database in sequential order to check service

request is met or not. If service meets the service request, then

the selected service is added to S and weighted score of the

service is calculated using eq. (1). Otherwise, service is not

added to S. This process repeats for all the services that exist in

the service database. Finally, S contains a set of services that

meet all attributes except the number of instances required.

Service_Discovery_1 (CSP, r, q, d)

Input: r: required service;

 q: QoS, d: duration;

Output: S: List of services satisfying r, q, and d

Initialization S= ϕ; i=1;

begin

1. foreach (CSPi in CSP) do

2. if(CSPi.st == r ^ q<=CSPi.q ^ d<= CSPi.d)

3. CSPi.s=CSPi.q*wq+ CSPi.pcr*wpcr+ CSPi.rrf*wrrf;

4. S = S U CSPi

5. return S;

end

D.2 Service Selection

Service_selection_1 algorithm executes three functions

orderly to select a set of service providers for the given service

request that is shown in Fig. 2. Firstly, service selection1

algorithm executes service discovery by calling SD1 algorithm

to find matching services (S) for the given request.

Fig. 2. State diagram for service selection algorithm 1

Secondly, Service_selection_1 algorithm examines the

number of elements in the set S. When n(S) = 0, service

selection1 algorithm returns failure and agent informs the

failure to the requesting service provider. When n(S) > 0,

service selection algorithm1 selects the service provider that has

the highest weighted score in set S.

Thirdly, service selection1 algorithm checks the number of

instances required (in) from the service request. If instances

required is 0, then service selection1 algorithm returns a set of

service providers (CSPs). Otherwise, service selection1

algorithm verifies the service cost with service cost given in the

request. Next, service selection1 algorithm goes for the price

negotiation process when the service cost is higher than the

service cost given in the request. Finally, MPSS examines the

criteria (a) and (b). (a) If the service cost is less than or equal to

service cost given in the request or price negotiation process

succeeds then CSPi is added to CSPs. Subsequently, MPSS

updates the instance count details in the service database, and

CSPi is removed from the set S. (b) If the price negotiation

process fails in the third step, CSPi is removed from the set S.

This process continues till the service selection algorithm

returns either set of service providers for the given request or

failure.

Service_selection_1 (CSP, r, in, q, d, c, a)

Input: r: required service;

 in: number of instances;

 q: QoS, d: duration;

 c: resource cost, a: cost adjustment value;

 CSP: list of cloud service providers;

Output: CSPs: selected service provider set or a failure;

begin

1. CSPs = ϕ;

2. S:= Discovery (CSP, r, in, q, d))

3. if (n(S) == 0)

4. return failure;

5. else

6. i=findMaxIndex(CSP[].s);

7. if (in >0)

8. if (CSPi.c > c)

9. if (CSPi.a >= CSPi.c – c ˅ a >= CSPi.c – c)

10. CSPs = CSPs U CSPi;

11. if (in >= CSPi.a)

12. in = in – CSPi.a;

13. CSPi.rc = CSPi.a;

14. CSPi.a=0;

15. S = S - CSPi;

16. else

17. CSPi.a = CSPi.a – in;

18. CSPi.rc = in;

19. in = 0;

 else

20. S:= S – CSPi;

21. repeat step3;

22. else

23. CSPs = CSPs U CSPi;

24. if (in >= CSPi.a)

25. in = in – CSPi.a;

26. CSPi.rc = CSPi.a;

27. CSPi.a=0;

28. S = S - CSPi;

29. else

30. CSPi.a = CSPi.a – in;

31. CSPi.rc = in;

32. in = 0;

33. else

34. return CSPs;

end

IV. CASE STUDY: CSP SELECTION USING MCSS

Consider CSP1, CSP2 … and CSP10 have advertised their

service (VM) sharing details with the federation, which is given

in Table II. Agent at federation maintains CSPs’ service sharing

details in the service database. Agent calculates service

providers' QoS, PCR, and RRF values using the weighted sum

method [30]. The calculated CSPs' QoS, PCR, and RRF values

S. SUDHAKAR et al.: MULTI-CRITERIA SERVICE SELECTION AGENT FOR FEDERATED CLOUD 221

TABLE II
CSPS SERVICE SHARING DETAILS

CSP /
Service

details

Instance details Cost

Small

Instance

cost /hour

(in $)

Duration

(in days)
Medium

Instance

cost/hour

(in $)

Duration

(in days)
Large

Instance

cost / hour

(in $)

Duration

(in days)

X-

large

Instance

cost / hour

(in $)

Duration

(in days)

adj.

(in

%)

CSP1 200 0.191 60 80 0.367 30 22 0.739 45 2 1.498 90 10

CSP2 415 0.192 45 60 0.369 45 10 0.743 90 4 1.506 30 5

CSP3 50 0.191 30 78 0.367 60 24 0.739 60 5 1.498 60 12

CSP4 130 0.193 30 30 0.371 45 16 0.747 60 3 1.514 30 10

CSP5 260 0.192 60 20 0.369 30 12 0.743 45 6 1.506 45 18

CSP6 75 0.191 75 42 0.367 45 18 0.739 30 5 1.498 90 10

CSP7 20 0.191 60 60 0.367 30 6 0.739 60 0 1.498 45 12

CSP8 360 0.193 90 85 0.371 30 15 0.747 60 7 1.514 75 12

CSP9 30 0.194 30 55 0.373 45 0 0.751 90 3 1.522 45 10

CSP10 80 0.188 30 100 0.361 60 4 0.727 45 8 1.474 60 12

TABLE III

CSPS’ QOS, PCR, AND RRF DETAILS

CSP /

Year

CY CYM1 CYM2 CYM3 Weighted Sum

QoS PCR RRF QoS PCR RRF QoS PCR RRF QoS PCR RRF QoS PCR RRF

CSP1 89.95 470.95 121.67 87.35 457.33 108.89 71.91 376.49 88.89 87.33 457.23 95.56 85.30 446.60 108.67

CSP2 67.60 352.08 101.25 69.63 362.65 108.57 69.73 363.18 91.43 68.60 357.29 91.43 68.73 357.99 100.50

CSP3 87.72 459.27 115.38 86.63 453.56 109.30 89.47 468.43 90.70 89.99 471.15 104.88 87.97 460.58 107.57

CSP4 96.90 502.07 80.00 90.34 468.08 85.71 99.95 517.88 100.00 94.37 488.96 93.62 95.29 493.73 87.08

CSP5 66.86 348.25 90.00 68.46 356.56 110.00 64.44 335.63 105.00 65.91 343.28 95.00 66.76 347.72 99.50

CSP6 82.24 430.59 115.00 84.41 441.94 90.00 80.31 420.47 106.45 81.11 424.66 90.00 82.39 431.38 103.29

CSP7 72.42 379.18 116.67 74.77 391.47 106.25 73.76 386.18 106.12 73.45 384.55 96.08 73.50 384.80 109.37

CSP8 77.44 401.24 89.29 79.98 414.40 93.75 79.35 411.14 105.41 80.45 416.84 121.21 78.88 408.73 97.04

CSP9 92.83 478.50 75.00 88.63 456.86 82.05 90.55 466.75 107.14 91.91 473.76 110.34 91.02 469.19 87.08

CSP10 86.12 458.08 80.00 88.55 471.01 120.00 89.19 474.41 110.00 88.99 473.35 142.86 87.75 466.75 104.29

TABLE IV
VIRTUAL MACHINE CONFIGURATION DETAILS

Specification
Virtual machine configuration

Micro Small Medium Large X-Large

RAM 1 - 4 GigB 4 - 8 GiB 8 - 16 GiB 16 - 32 GiB 32 - 64 GiB

Storage Space 20 – 60 GB 80 – 240 GB 320 – 800 GB 1 – 1.5 TB 2 TB

VCPUs 1 1 - 2 1 - 4 2 - 8 4 - 16

222 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 3, SEPTEMBER 2022

are given in Table III. VM standard instance configuration

details are given in Table IV.

Let’s assume a CSP in federation submits a service request

as <X- large, 4, 80, 45 days, $1.35, 5>. Firstly, the agent

executes SD algorithm and selects CSP3, CSP6, and CSP10 that

meets the given service request and rejects CSP1, CSP2, CSP4,

CSP5, CSP7, CSP8, and CSP9 that do not meet the given

service request. Reason for rejecting service providers CSP1,

CSP2, CSP4, CSP5, CSP7, CSP8, and CSP9 is given in Table

V.
TABLE V

SERVICE PROVIDER REJECTION SET

Service Provider Reason for rejection

CSP1 Insufficient instances

 CSP2 Duration did not match

CSP4 Insufficient instances

CSP5 QoS value did not match

CSP7 Insufficient instances

CSP8 QoS value did not match

CSP9 Insufficient instances

The selected service provider set (S) details are shown in

Table VI. SD algorithm uses a relative weight-based score

calculation method to rank service providers in the set S that is

given in Eq. (1). Let us consider relative weight assigned for

QoS, PCR, and RRF are 0.4, 0.3, and 0.3, respectively.

TABLE VI

SERVICE PROVIDER SELECTION SET (S)

CSP /

Service
details

X-

Large

Instance

cost/hour
(in $)

Duration

(in days)

Cost adj.

(in %)
QoS PCR RRF

CSP3 5 1.498 60 12 87.97 460.58 107.57

CSP6 5 1.498 90 10 82.39 431.38 103.29

CSP10 8 1.474 60 12 87.75 466.75 104.29

 Service providers in set S are arranged as per the calculated

score that is shown in Table VII.

TABLE VII

SERVICE PROVIDERS’ SCORE

CSP / Service details QoS PCR RRF Score

CSP10 87.75 466.75 104.29 206.41

CSP3 87.97 460.58 107.57 205.63

CSP6 82.39 431.38 103.29 193.36

V. PERFORMANCE EVALUATIONS

The simulation environment was made to evaluate the

efficacy of the MCSS algorithm. The results of the simulation

of MCSS are compared against two popular techniques: (a)

Cloud Resource Bartering System (CRBS) and (b) RRF.

A. Evaluation Setup

Federated cloud environment was created using

CloudSim4.0. We have used Simulated Cloud Service QoS

Dataset, the dataset used for this simulation experiments were

based on SMI attributes [31-35]. The data values were

synthesized based on quantitative attributes such as response

time, cost, and availability. The datasets were prepared

according to the dataset used in the existing federated cloud

literature. On every dataset, iterative evaluations were

conducted to find the performance of MCSS.

The entire dataset was divided into two sets. The first set

contains service advertisement details, and the second set

contains service request details. Datasets were further

categorized into micro, small, medium, and large classes. Micro

datasets contain 25 service providers whereas small, medium

and large contain 50, 100 and 150 respectively. Dataset

categorization aimed to produce test cases that calculate MCSS

performance under different conditions. First, test cases were

executed on MCSS, and the outcome was logged.

B. Comparative Methods

The proposed method performance analyzed with the

existing methods, such Cloud Resource Bartering System

(CRBS) and Reciprocal Resource Fairness (RRF) and each

work is discussed in detail as follows:

Cloud Resource Bartering System (CRBS): It dynamically

extends the capacity of cloud providers. It encourages cloud

providers to work together to meet spikes in resource demand.

It increases overall service availability without requiring

additional infrastructure.

Reciprocal Resource Fairness (RRF): RRF is a revolutionary

resource allocation technique that allows numerous tenants in

new-generation cloud systems to share several types of

resources fairly. Inter-tenant resource trading and intra-tenant

weight adjustment are two complimentary and hierarchical

strategies for resource sharing that RRF provides.

C. Handling Free Riders

Free-riders can take a number of steps to get around the

barriers that are in the way of their activities while also

maximizing resource consumption in the ecosystem.

Identifying and studying these behaviors can aid in the

development of anti-free-rider systems. The existence of an

uncooperative service provider who does not follow federation

guidelines and increase his revenue affects trust in the

federation. Free riders are selfish service providers focusing

only on revenue generation, as discussed in section 1. Service

provider selection in CRBS is based on their QoS value, but

frequently free riders get selected in this method.

MCSS agent maintains service contribution and service

consumption history of all the registered service providers.

Additionally, MCSS employs QoS, PCR, and RRF as service

selection factors for selecting a service provider. A service

provider who has low RRF value gets an overall low score in

service provider score calculation. Service providers with low

score are rarely get selected during service provider selection.

RRF is one of the selection criteria to avoid free riders. In order

to get selected for service sharing at the federation, the

corresponding service provider has to improve RRF (service

contribution and service consumption) value.

In the dataset, a random number of free riders were included

to verify the MCSS performance against the free riders. Two

distinct sets of experiments were conducted to test the

efficiency of MCSS. In the first experiment, the number of

S. SUDHAKAR et al.: MULTI-CRITERIA SERVICE SELECTION AGENT FOR FEDERATED CLOUD 223

service request was fixed as 100, whereas the number of service

providers was varied as 25, 50, 75, and 100. Among 100 service

requests, 80 requests are made by genuine service providers,

and 20 requests are made by free riders. In the second

experiment, the number of service request was changed as 25,

50, 100, and 150, whereas the service providers made fixed as

50.

The evaluation results proved that CRBS permits a

considerable number of free riders to avail services from the

federation (shown in Fig. 3, and Fig. 5). MCSS rarely permits

free riders to consume services from federation (shown in Fig.

4 and Fig. 6). Preventing free riders created a significant impact

on the number of successful transactions; however, preventing

free riders made enough service availability for genuine service

providers.

Fig. 3. Free riders’ prevention in CRBS (No. of service request fixed as 100)

Fig. 4. Free riders’ prevention in MCSS (No. of service request fixed as 100)

Fig. 5. Free riders’ prevention in CRBS (No. of service provider fixed as 50)

Fig. 6. Free riders’ prevention in MCSS (No. of service provider fixed as 50)

D. Handling Poor Performing Service Providers

The presence of poor-performing service providers in

federation affects its reputation. In RRF, a service provider can

acquire services from federation based on their service

contribution. Selecting service providers based on RRF value

selects a poorly performing service provider. In MCSS, Service

provider score calculation takes three factors such as QoS, PCR,

and RRF while calculating service provider weighted score.

Service provider having low QoS value gets a low score in the

score calculation. Score based service selection provides more

chances to the high scored service provider at the same time

provides less chance to the low scored service providers.

Service providers should improve their QoS, PCR, and RRF

value to get an increased score. Selection of service provider

based on multiple factors eliminates poor performer selections.

Fig. 7. Poor performers negotiation in RRF (Number of service request fixed as 100)

In the dataset, a random number of poor performers were

included to verify the MCSS performance against the poor

performer selection problem. Two distinct sets of experiments

were conducted to test the efficiency of MCSS discussed in

Section 5.2. Test cases were executed on CRBS, and results

were recorded. The same set of test cases was executed on

MCSS, and results were recorded for comparative studies. The

evaluation results showed that MCSS rarely selects poor

performing service provider that is shown in Fig. 7, and Fig. 9.

Whereas RRF based service selection selects a considerable

number of poor performers in service selection that is shown in

Fig. 8 and Fig 10.

224 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 3, SEPTEMBER 2022

Fig. 8. Poor performers negotiation in MCSS (No. of service request fixed as 100)

Fig. 9. Poor performers negotiation in RRF (No. of service provider fixed as 50)

Fig. 10. Poor performers negotiation in MCSS (No. of service provider fixed

as 50)

E. Service Selection Ability

Service selection ability of agent-based systems is

determined by the number of genuine providers' transactions.

Many test cases were prepared to determine the ability of MCSS

under different conditions. In the first experiment, the number

of service providers in the federation was fixed as 25, and

service requests were given as 25, 50, 100, and 150. In the

second experiment, the number of service request was fixed as

25, and service providers were set as 25, 50, 75, and 100.

The performance of MCSS for a fixed number of service

providers against the variable number of service requests was

recorded. Similarly, the performance of MCSS for a fixed

number of service requests against the variable number of

service providers was recorded. The same set experiments were

conducted on CRBS and RRF based systems, and the results

were recorded. The experiment results demonstrated that

service selection ability of MCSS outperformed CRBS and

RRF based systems. Also, the service selection efficiency of

MCSS was not decreasing when increasing the number of

service requests. Whereas, service selection efficiency of CRBS

and RRF based systems were decreasing when increasing

number of service requests. The comparison of MCSS, CRBS,

and RRF based systems is given in Fig. 11.

Fig. 11. Comparison of service selection efficiency

F. Average Service Cost

Request making service provider gets satisfied when selected

service cost is lesser. An effective service matching system

matches services at a lesser cost. Average service cost is taken

as an evaluation parameter to evaluate low-cost service

matching ability of the MCSS system. MCSS' successful

transactions average cost was calculated for 25, 50, 100, and

150 service requests. Besides, CRBS' and RRF' successful

transactions average cost was calculated for the same number

of service requests. Average service cost comparison proved

that the average cost of MCSS' transactions were less than the

average cost of CRBS' and RRF' transactions. Also, CRBS' and

RRF' average cost were fluctuating whereas MCSS' cost was

steady, that is shown in Fig. 12.

Fig. 12. Comparison of selected service average cost

VI. CONCLUSION AND FUTURE DIRECTION

Multi-criteria Service Selection (MCSS) has been used to

select a service provider effectively in the federated cloud

environment. MCSS system uses QoS, Performance-Cost Ratio

S. SUDHAKAR et al.: MULTI-CRITERIA SERVICE SELECTION AGENT FOR FEDERATED CLOUD 225

(PCR), and RRF values for selecting service providers.

Reciprocal resource fairness ensures that service providers

actively participate in federation. MCSS handles non-

cooperative providers such as free rider, poor performers, and

white washer very effectively by selecting service providers

with good QoS, PCR, and RRF value than the traditional

algorithm. Service selection efficiency of MCSS is high

compared to the existing CRBS and RRF based systems. MCSS

selects low-cost services, whereas CRBS and RRF based

systems select high-cost services.

MCSS algorithms suggested deal with service requests that

only include one service type at a time. In the future, these

algorithms may be expanded to handle service requests that

combine numerous service types into a single request. Another

research might be conducted with the goal of dynamically

balancing service charges based on the services provided in the

federation. Dynamically balancing service charges may

incentivize service providers to supply additional services while

also preventing free riding issues. Data analytics services may

be used to forecast service provider behavior and weed out non-

cooperative service providers. Data analytics may also be used

to forecast service demand increases.

REFERENCES

[1] K. Woongsup and J. Mvulla, “Reducing Resource Over-Provision Using

Workload Sharing for Energy Cloud Computing,” Appl. Math. Inf. Sci.,
vol. 7, no. 5, pp. 2097–2104, 2013.

[2] S. S. Chauhan, E. S. Pilli, R. C. Joshi, G. Singh, and M. C. Govil,

“Brokering in interconnected cloud computing environments: A survey,”
J. Parallel Distrib. Comput., vol. 133, pp. 193–209, 2019.

[3] C. Labba, N. Bellamine Ben Saoud, and J. Dugdale, “A predictive

approach for the efficient distribution of agent-based systems on a
hybrid-cloud,” Futur. Gener. Comput. Syst., vol. 86, pp. 750–764, 2018.

[4] O. C. D. Anejionu et al., “Spatial urban data system: A cloud-enabled

big data infrastructure for social and economic urban analytics,” Futur.
Gener. Comput. Syst., vol. 98, pp. 456–473, 2019.

[5] C. T. Do, N. H. Tran, E. N. Huh, C. S. Hong, D. Niyato, and Z. Han,

“Dynamics of service selection and provider pricing game in
heterogeneous cloud market,” J. Netw. Comput. Appl., vol. 69, pp. 152–

165, 2015.

[6] M. Liaqat et al., “Federated cloud resource management: Review and
discussion,” J. Netw. Comput. Appl., vol. 77, pp. 87–105, 2017.

[7] A. Levin, D. Lorenz, G. Merlino, A. Panarello, A. Puliafito, and G.

Tricomi, “Hierarchical load balancing as a service for federated cloud
networks,” Comput. Commun., vol. 129, pp. 125–137, 2018.

[8] K. Zhang and N. Antonopoulos, “A novel bartering exchange ring based

incentive mechanism for peer-to-peer systems,” Futur. Gener. Comput.
Syst., vol. 29, no. 1, pp. 361–369, 2013.

[9] A. Comi, L. Fotia, F. Messina, G. Pappalardo, D. Rosaci, and G. M. L.

Sarné, “A reputation-based approach to improve QoS in cloud service
composition,” Proc. - 2015 IEEE 24th Int. Conf. Enabling Technol.

Infrastructures Collab. Enterp. WETICE 2015, pp. 108–113, 2015.

[10] E. de L. Falcão, F. Brasileiro, A. Brito, and J. L. Vivas, “Enhancing
fairness in P2P cloud federations,” Comput. Electr. Eng., vol. 56, pp.

884–897, Nov. 2016.

[11] Q. Duan, “Cloud service performance evaluation: status, challenges, and
opportunities – a survey from the system modeling perspective,” Digit.

Commun. Networks, vol. 3, no. 2, pp. 101–111, 2017.
[12] S. ZarAfshan Goher, P. Bloodsworth, R. Ur Rasool, and R. McClatchey,

“Cloud provider capacity augmentation through automated resource

bartering,” Futur. Gener. Comput. Syst., vol. 81, pp. 203–218, 2018.
[13] S. Demirkol, S. Getir, M. Challenger, and G. Kardas, “Development of

an agent based e-barter system,” in 2011 International Symposium on

Innovations in Intelligent Systems and Applications, 2011, pp. 193–198.
[14] C. Zhao, X. Luo, and L. Zhang, “Modeling of service agents for

simulation in cloud manufacturing,” Robot. Comput. Integr. Manuf., vol.

64, no. November 2019, p. 101910, 2020.

[15] M. M. Al-Sayed, H. A. Hassan, and F. A. Omara, “An intelligent cloud
service discovery framework,” Futur. Gener. Comput. Syst., vol. 106, pp.

438–466, 2020.

[16] M. ZELENY, “Multiple Criteria Decision Making (MCDM): From
Paradigm Lost to Paradigm Regained,” vol. 18, no. 2, pp. 77–89, 2011.

[17] I. Grgurević, “Multi-criteria Decision-making in Cloud Service Selection

and Adoption,” pp. 8–12, 2017.
[18] L. Qu, Y. Wang, M. A. Orgun, L. Liu, H. Liu, and A. Bouguettaya,

“CCCloud: Context-aware and credible cloud service selection based on

subjective assessment and objective assessment,” IEEE Trans. Serv.
Comput., vol. 8, no. 3, pp. 369–383, 2015.

[19] S. Farokhi, “Towards an SLA-based service allocation in multi-cloud

environments,” Proc. - 14th IEEE/ACM Int. Symp. Clust. Cloud, Grid
Comput. CCGrid 2014, pp. 591–594, 2014.

[20] S. Farokhi, F. Jrad, I. Brandic, and A. Streit, “HS4MC: Hierarchical

SLA-Based Service Selection for Multi-Cloud Environments,” Proc.
CLOSER’14, pp. 722–734, 2014.

[21] R. R. Kumar, S. Mishra, and C. Kumar, “Prioritizing the solution of

cloud service selection using integrated MCDM methods under Fuzzy
environment,” J. Supercomput., vol. 73, no. 11, pp. 4652–4682, 2017.

[22] C. Jatoth, G. R. Gangadharan, U. Fiore, and R. Buyya, “SELCLOUD: a

hybrid multi-criteria decision-making model for selection of cloud
services,” Soft Comput., vol. 23, no. 13, pp. 4701–4715, 2019.

[23] M. Abdel-Basset, M. Mohamed, and V. Chang, “NMCDA: A framework

for evaluating cloud computing services,” Futur. Gener. Comput. Syst.,
vol. 86, pp. 12–29, 2018.

[24] E. D. L. Falcão, F. Brasileiro, A. Brito, and J. L. Vivas, “Enhancing P2P

Cooperation through Transitive Indirect Reciprocity,” Proc. - 2016 IEEE
36th Int. Conf. Distrib. Comput. Syst. Work. ICDCSW 2016, pp. 189–

198, 2016.

[25] H. Liu and B. He, “Reciprocal Resource Fairness: Towards Cooperative
Multiple-Resource Fair Sharing in IaaS Clouds,” Int. Conf. High

Perform. Comput. Networking, Storage Anal. SC, vol. 2015-January, no.

January, pp. 970–981, 2014.
[26] K. Zhang and N. Antonopoulos, “A lightweight reputation system for

bartering exchange based incentive mechanisms in Peer-To-Peer

systems,” Proc. - 2nd Int. Conf. Intell. Netw. Collab. Syst. INCOS 2010,
pp. 443–448, 2010.

[27] Rosa, M.J., Ralha, C.G., Holanda, M. and Araujo, A.P., 2021.
Computational resource and cost prediction service for scientific

workflows in federated clouds. Future Generation Computer

Systems, 125, pp.844-858.
[28] Chauhan, Sameer Singh, Emmanuel S. Pilli, and R. C. Joshi. "BGSA:

Broker Guided Service Allocation in Federated Cloud." Sustainable

Computing: Informatics and Systems 32 (2021): 100609.
[29] Kumar, Rakesh, and Rinkaj Goyal. "Performance based Risk driven

Trust (PRTrust): On modeling of secured service sharing in peer-to-peer

federated cloud." Computer Communications, 183 (2022): 136-160.
[30] Sudhakar, N. S. Nithya, and B. L. Radhakrishnan, “Fair service matching

agent for federated cloud,” Comput. Electr. Eng., vol. 76, pp. 13–23,

2019.
[31] Le DN, Bhateja V, Nguyen GN. A parallel max-min ant system

algorithm for dynamic resource allocation to support QoS requirements.

In 2017 4th IEEE Uttar Pradesh Section International Conference on
Electrical, Computer and Electronics (UPCON) 2017 Oct 26 (pp. 697-

700). IEEE.

[32] Le DN. A New Ant Algorithm for Optimal Service Selection with End-
to-End QoS Constraints. Journal of Internet Technology. 2017 Sep

1;18(5):1017-30.

[33] Le DN. Applied MMAS Algorithm to Optimal Resource Allocation to
Support QoS Requirements in NGNs. In International Wireless Internet

Conference 2014 Nov 13 (pp. 209-216). Springer, Cham.

[34] Le DN. Evaluation of pheromone update in min-max ant system
algorithm to optimizing QoS for multimedia services in NGNs. In

Emerging ICT for Bridging the Future-Proceedings of the 49th Annual

Convention of the Computer Society of India CSI Volume 2 2015 (pp. 9-
17). Springer, Cham.

[35] Ezenwoke, Azubuike; Daramola, Olawande; Adigun, Matthew (2018),

“Simulated Cloud Service QoS Dataset”, Mendeley Data, V1, doi:
10.17632/5vffs75j85.

226 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 18, NO. 3, SEPTEMBER 2022

Dr. S Sudhakar obtained the Bachelor of
Technology in Information Technology from Anna

University, Chennai, and Tamil nadu, India in 2005

and received his Master of Engineering (M.E,) in
Computer Science and Engineering from Anna

University, Coimbatore India in 2011. He has

completed a Ph.D. degree in Anna University,
Chennai in 2020. He is currently faculty in the

Department of Data Science and Business Systems,

School of Computing, SRM Institute of Science and
Technology, India. Skilled in developing projects

and carrying out research in the area of Federated Cloud and Blockchain.

B. L. Radhakrishnan is currently faculty in the

Department of Computer Science and Engineering,
Karunya Institute of Technology and Sciences

(KITS), India. He is currently pursuing his Ph.D. in

Computer Science and Engineering, KITS.
Received his M.Tech in Computer Science and

Engineering from Dr.MGR University, India in

2008, and did his B.E in Computer Science and
Engineering from Anna University, India in 2006.

He holds Industry Certifications such as Certified

OpenStack Administrator, SUSE Certified
Engineer in Enterprise Linux and Google Certified Associate Cloud Engineer.

His research interests include remote sleep monitoring, cloud computing and

Blockchain.

Dr P. Karthikeyan obtained his Bachelor of

Engineering (B.E.,) in Computer Science and
Engineering from Anna University, Chennai, and

Tamil nadu, India in 2005 and received his Master

of Engineering (M.E,) in Computer Science and
Engineering from Anna University, Coimbatore

India in 2009. He has completed a Ph.D. degree in

Anna University, Chennai in 2018. Skilled in
developing projects and carrying out research in the

area of Cloud computing and Data science with the

programming skill in Java, Python, R and C. He
published more than 20 International journals with

a good impact factor and presented more than 10 International conferences. He

was the reviewer of Elsevier, Springer, Inderscience and reputed Scopus
indexed journals. He is acting as editorial board members in EAI Endorsed

Transactions on Energy Web, The International Arab Journal of

Information Technology and Blue Eyes Intelligence Engineering and Sciences

Publication journal.

K. Martin Sagayam, completed his PhD in the
field of Signal and Image Processing using

Machine Learning Algorithms from Karunya

Institute of Technology and Sciences (Deemed to
be University), India. Currently, he is working as

an Assistant Professor in the Department of ECE,

Karunya Institute Technology and Sciences,
Coimbatore, India. He has authored/ co-authored a

greater number of referred International Journals

and conferences. He has three Indian patents and
two Australian patents for his innovations. He

published 2 edited books, 2 authored books, book series and more than 15 book

chapters with reputed international publishers. He is an active member of IEEE.

Dac-Nhuong Le has an MSc and PhD in computer
science from Vietnam National University, Vietnam in

2009, and 2015, respectively. He is an Associate

Professor on Computer Science, Deaon of Faculty of
Information Technology, Haiphong University,

Vietnam. He has a total academic teaching experience

of 20+ years in computer science. He has more than
100+ publications in the reputed international

conferences, journals, and book chapter contributions

(Indexed by SCIE, SSCI, ESCI, Scopus). His areas of
research are in the field of intelligence computing,

multi-objective optimization, network security, cloud computing, virtual

reality/argument reality. Recently, he has been on the technique program
committee, the technique reviews, the track chair for international conferences

under Springer-ASIC/LNAI/CISC Series. Presently, he is serving on the

editorial board of international journals and edited/authored 20+ computer
science books published by Springer, Wiley, CRC Press, IET, and Bentham

Publishers.

S. SUDHAKAR et al.: MULTI-CRITERIA SERVICE SELECTION AGENT FOR FEDERATED CLOUD 227

